2017年高考数学必考知识点:对数及对数函数

2016/09/05 09:51:52文/网编2

开云平台登陆 给各位考生整理了2017年高考数学必考知识点:对数及对数函数,希望对大家有所帮助。更多的资讯请持续关注开云平台登陆 。(http://www.pourbars.com/)

高考数学所考的知识点比较多,为了方便同学们更好、更准高效学习开云KY官方登录入口 数学,开云平台登陆 小编整理了高考数学必考知识点:对数及对数函数,供参考。

高考数学必考知识点:对数定义

如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数,记作x=logaN。其中,a叫做对数的底数,N叫做真数。

注:1、以10为底的对数叫做常用对数,并记为lg。

2、称以无理数e(e=2.71828...)为底的对数称为自然对数,并记为ln。

3、零没有对数。

4、在实数范围内,负数无对数。在复数范围内,负数是有对数的。

高考数学必考知识点:对数公式

高考数学必考知识点:对数函数定义

一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。

其中x是自变量,函数的定义域是(0,+∞)。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。

高考数学必考知识点:对数函数性质

定义域求解:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1}

值域:实数集R,显然对数函数无界。

定点:函数图像恒过定点(1,0)。

单调性:a>1时,在定义域上为单调增函数;

奇偶性:非奇非偶函数

周期性:不是周期函数

对称性:无

最值:无

零点:x=1

注意:负数和0没有对数。

两句经典话:底真同对数正,底真异对数负。解释如下:

也就是说:若y=logab (其中a>0,a≠1,b>0)

当a>1,b>1时,y=logab>0;

当01时,y=logab<0;

当a>1,0

对数的基本性质及推导过程

基本性质:

1、a^(log(a)(b))=b

2、log(a)(a^b)=b

3、log(a)(MN)=log(a)(M)+log(a)(N);

4、log(a)(M÷N)=log(a)(M)-log(a)(N);

5、log(a)(M^n)=nlog(a)(M)

6、log(a^n)M=1/nlog(a)(M)

推导

1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。

2、因为a^b=a^b

令t=a^b

所以a^b=t,b=log(a)(t)=log(a)(a^b)

3、MN=M×N

由基本性质1(换掉M和N)

a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N)

由指数的性质

a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}

两种方法只是性质不同,采用方法依实际情况而定

又因为指数函数是单调函数,所以

log(a)(MN) = log(a)(M) + log(a)(N)

4、与(3)类似处理

MN=M÷N

由基本性质1(换掉M和N)

a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)]

由指数的性质

a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]}

又因为指数函数是单调函数,所以

log(a)(M÷N) = log(a)(M) - log(a)(N)

5、与(3)类似处理

M^n=M^n

由基本性质1(换掉M)

a^[log(a)(M^n)] = {a^[log(a)(M)]}^n

由指数的性质

a^[log(a)(M^n)] = a^{[log(a)(M)]*n}

又因为指数函数是单调函数,所以

log(a)(M^n)=nlog(a)(M)

基本性质4推广

log(a^n)(b^m)=m/n*[log(a)(b)]

推导如下:

由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]

log(a^n)(b^m)=ln(b^m)÷ln(a^n)

换底公式的推导:

设e^x=b^m,e^y=a^n

则log(a^n)(b^m)=log(e^y)(e^x)=x/y

x=ln(b^m),y=ln(a^n)

得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)

由基本性质4可得

log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]}

再由换底公式

log(a^n)(b^m)=m÷n×[log(a)(b)]

以上内容就是小编为大家整理的《2017年高考数学必考知识点:对数及对数函数》,对于高考数学知识点了解是否更加加深了一点呢更多学习相关材料,敬请关注开云平台登陆 ,小编随时为大家更新更多有效的复读材料及方法!

推荐阅读:

2017年高考数学必考知识点:直线与圆的方位置关系
2017年高考数学必考知识点:参数方程
2017年高考数学必考知识点:数列通项与数列求和
2017年高考数学必考知识点:复数

THE END

最新文章

相关文章

高考最后一周 高考数学各题型解题方法与技巧
高考数学答题技巧及套路 高考数学答题方法及注意事项
如何学好开云KY官方登录入口 数学的方法和技巧 开云KY官方登录入口 数学方法与技巧
高考最后阶段备考建议 高考数学冲刺计划
开云KY官方登录入口 数学必背公式总结 开云KY官方登录入口 数学必背公式整理
Baidu
map