小学因数和倍数教案(通用19篇)

格式:DOC 上传日期:2023-11-11 02:26:20
小学因数和倍数教案(通用19篇)
时间:2023-11-11 02:26:20     小编:书香墨

在编写教案的过程中,教师需要考虑学生的认知特点和学习需求,以便更好地实施教学。教案的编写需要教师的耐心和细心,积极与学生进行互动和交流。这里有一些优秀的教案实例,供大家参考和学习。

小学因数和倍数教案篇一

第6课时。

1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。

2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。

1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。

2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。

活动1:利用数的奇偶性解决一些简单的实际问题。

让学生尝试解决问题,寻找解决问题的策略,利用解决问题的策略发现规律,教师适当进行“列表”“画示意图”等解决问题策略的指导。

本题是让学生应用上述活动中解决问题的策略尝试自己解决问题,最后的结果是:翻动10次,杯口朝上;翻动19次,杯口朝下。解决问题后,让学生以“硬币”为题材,自己提出问题、解决问题,还可以开展游戏活动。

活动2:探索奇数、偶数相加的规律。

[板书设计]。

数的奇偶性。

12+34=48偶数+偶数=偶数。

11+37=48奇数+奇数=偶数。

12+11=23奇数+偶数=奇数。

小学因数和倍数教案篇二

让学生能利用最大公因数知识解决生活中的实际问题。

教学重点。

利用最大公因数知识解决生活中的实际问题。

教学难点。

利用最大公因数知识解决生活中的实际问题。

课件。

一、导入新课。

1.什么是公因数?什么是最大公因数?

2.找出每组数的最大公因数。

5和1521和2830和188和911和3312和42。

过渡:在现实生活中,有的问题需要用最大公因数的知道来解决,这就是我们今天要学习的内容。

二、新课教学。

出示教材第62页例3。

(1)引导学生审题,理解题意。在贮藏室的长方形地面上铺正方形地砖。要求既要铺满,又要都用整块的方砖。

(2)学生以小组为单位,探究如何拼摆。

每组4人,在课前印好画有长方形的方格纸,每人选择一种边长的方砖,试一试,只要画满一条长边,一条宽边就可以。

教师巡视指导,辅导学生。

(3)多媒体演示拼摆过程,进一步验证学生动手操作的情况。

(4)教师:应该怎样选择方砖来铺地呢?

通过交流,得出结论:要使所用的正方形地砖都是整块的,地砖的边长必须既是16的因数,又是12的因数。

(5)12和16的公因数有1、2、4,其中最大公因数是4。所以可选边长是1dm、2dm、4dm的地砖,边长最大的是4dm。

三、巩固练习。

1.教材第63页练习十五第5题。

此题是有关两数最大公因数的实际问题。教师要引导学生理解题意,要剪成“同样大小的正方形而没有剩余”。正方形的边长必须既是70的因数又是50的因数,要使正方形的边长最大,所以要找70和50的最大公因数。学生弄清题意后,由学生独立完成,然后全班反馈。

2.教材第63页练习十五第6题。

此题也是有关两数最大公因数的实际问题,“要使每排的人数相等”则每排的人数必须既是48,又是36的因数,要使每排的人数最多,所以要找48和36的最大公因数,学生理解题意即可完成。

3.教材第64页练习十五第9题。

此题检查学生当两数是倍数关系、互质关系、一般关系情况下求最大公因数的能力。

5.长方形的边长是70和50的最大公因数是10cm,所以小正方形的边长最长是10cm。

6.每排人数是36和48的最大公因数,是12人。

男生:48÷12=4(排)女生:36÷12=3(排)。

9.(1)a(2)c(3)c。

四、课堂小结。

今天你学习了什么?有什么收获?

五、布置作业。

教材第64页练习十五第7、8、10题。

小学因数和倍数教案篇三

教学内容:

教材分析:

本节教学是在学生学习掌握了因数和倍数两个概念的基础上,在教师的引导下,让学生运用乘法算式及除法中的整除自主尝试、探究“求一个数的因数”的方法。同时,通过多种形式的训练,使学生能熟练找全一个数的因数。另外,通过引导学生用集合的形式表示一个数的因数,一方面给学生渗透集合思想,更重要的是为后面教学求两个数的公因数做准备。

教学目标:

2、逐步培养学生从个别到全体、从具体到一般的抽象归纳的思想方法。

教学重点:

探究求一个数的因数的方法及规律特点。

教学难点:

用求一个数的因数的方法熟练找全一个数的因数。

教具准备:

投影仪、小黑板、卡片。

教学课时:一课时。

教学设想:

运用尝试教学法,从学生已有的知识经验出发,通过教师引导、学生自学例1,自主尝试、探究求一个数的因数的方法方法,并能运用所获得的方法、经验找全一个数的因数。

教学过程:

一、复习旧知。

师:同学们,前面学习了因数和倍数的概念,老师很想考考你们学得怎么样,可以吗?

生:(预设)可以!

师:出示小黑板。

1、利用因数和倍数的相互依存关系说一说下面各组数的相互关系。

21和72×7=1430÷6=5。

2、判断。

(1)12是倍数,2是因数。()。

(2)1是14的因数,14是1的倍数。()。

(3)因为6×0.5=3,所以,6和0.5是3的因数,3是6和0.5的倍数。()。

教师根据学生完成练习的情况对学生进行恰当的表扬激励,同时进入新课教学:……。

二、新课教学。

过程一:尝试训练。

(一)出示问题。

师:同学们,老师有一个新问题,想请大家帮助解决,行吗?

生:行!(预设)。

尝试题:14的因数有哪几个?

(二)学生解决问题,教师巡视并根据实际适时辅导学困生。

(三)信息反馈。

板书:

1×14。

14 2×7。

14÷2。

14的因数有:1,2,7,14。

过程二:自学课本(p13例1)。

(一)学生自学例1。

教师提出自学要求(投影):

1、18有哪些因数?

2、文中的小朋友是怎样找出18的因数的?他们找完了吗?如果没有,请帮助他们完成。

3、你还有别的找法吗?请试一试,并用自己喜欢的方式写出18所有的因数。

(二)信息反馈。

1、反馈自学要求情况;

板书:

1×18。

182×9。

3×6。

18的因数有1,2,3,6,9,18。

还可以这样表示:18的因数。

2、知识对比,探索发现规律。

(1)师:同学们,根据求14和18的因数时获得的体验,再思考下面问题:

投影出示问题:

思考一:你用什么方法找出?

(2)学生思考,教师适时引导。

(3)同桌交流思考结果。

(4)师生互动。总结方法、点出课题。

求一个数的因数的方法:用乘法计算或除法计算(整除)。

过程三:尝试练习。

(一)用小黑板出示练习题。

1、找出30的因数有哪些?36的因数有哪些?

(二)信息反馈:师生互动总结特点。

板书:

一个数的因数的个数是有限的。它的最小因数是1,的因数是它本身。

三、课堂作业。

练习二第2题和第4题前半部分。

四、课堂延伸。

猜一猜:(卡片)只有一个因数的数是谁?

五、课堂小结。

师:今天你学会了求一个数的因数的方法吗?你知道一个数的因数特点吗?

生:……。

板书设计:

求一个数的因数的方法。

1×14。

142×7 方法:用乘法计算或除法计算(整除)。

14÷2。

14的因数有:1,2,7,14。

1×18。

182×9。

3×6。

18的因数有:1,2,3,6,9,18特点:一个数的因数的个数是有限的。

还可以表示为:

它的最小因数是1,的因数是它本身。

小学因数和倍数教案篇四

《因数和倍数》是一节数学概念课,通过这个乘法算式直接给出因数和倍数的概念。这部分内容学生初次接触,对于学生来说是比较难掌握的内容。

数学课程标准“以人为本”的理念决定着数学教学目标的指向:适应并促进学生的发展。根据本节课知识的特点和学生的认知规律,我采用了角色转换、数形结合、合作学习等发展性教学手段进行教学,在教学中我注重体现以学生为主体的新理念,努力为学生的探究发现提供足够的空间。在课堂中,我主要围绕以下几方面来进行教学:

(1)捕捉生活与数学之间的联系,帮助学生理解因数倍数相互依存的关系。

因数和倍数是揭示两个整数之间的一种相互依存关系,在课前谈话中我利用一个脑筋急转弯,渗透相互依存的关系。 通过生活中人与人之间的关系,迁移到数学中的数和数之间的关系,这样设计自然又贴切,既让学生感受到了数学与生活的联系,初步学会从数学的角度去观察事物、思考问题,激发了对数学的兴趣,又潜移默化地帮助学生理解了因数倍数之间的相互依存关系。在教学中,也达到了预期的效果,学生对因数和倍数相互依存的关系理解的比较深刻。

(2)角色转换,让学生亲身体验数和数之间的联系。

因数和倍数这节课研究的是数和数之间的关系,知识内容比较抽象。因而,我采用了“拟人化”的教学手段,每人一张数字卡片,学生和老师都变成了数学王国里的一名成员。当学生想回答问题时都会高高地举起自己的号码,整节课学生都沉浸在自己的角色体验中,学生都把自己当成了一个数。通过对自己一个数的认识,举一反三,从而理解了数与数之间的因数和倍数关系,既充分激发了学生的学习兴趣,又十分有效地突破了教学难点。

(3)数形结合,让学生带着已有知识走进数学课堂。

“数形结合”是一种重要的数学思想。对教师来说则是一种教学策略,是一种发展性课堂教学手段;对学生来说又是一种学习方法。如果长期渗透,运用恰当,则使学生形成良好的数学意识和思想,长期稳固地作用于学生的数学学习生涯中。开课教师引导学生进行空间想象。

(4)重组教材,根据学生的实际情况,多种形式探究找因数倍数的方法。

教材上,探究因数这部分的例题比较少,只有一个:找18的因数。根据学生的实际情况,我进行了重组教材,先让学生根据乘法算式“一对对”地找出15的因数,在此基础上再让学生探究18的因数。通过“质疑”:有什么办法能保证既找全又不遗漏呢?让学生思考并发现:按照一定的顺序一对对的找因数,能既找全又不遗漏。进而又借助体态语言——打手势,让学生说出20和24的因数,达到了巩固练习的目的。这样设计由易到难,由浅入深,符合了学生的认知规律。而在探究倍数时,我则大胆的放手,让学生自主探索找一个数倍数的方法,给学生提供了广阔的思维空间。这样通过多种形式的教学,既激发了学生的学习兴趣,又极大地提高了课堂教学的实效性。

(5)趣味活动,扩大学生思维的空间,培养学生发散思维的能力。

只有让学生亲身感受到数学知识内在的智取因素,数学学习的无穷魅力才能深深地打动学生。这节课的练习设计紧紧把握概念的内涵与外延,设计有效练习,拓展知识空间。譬如:让学生用所学知识介绍自己,通过数字卡片找自己的因数和倍数朋友等等。学生拿着自己的数字卡片上台找自己的朋友,让台下学生判断自己的学号是不是这个数的因数或倍数,如果台下学生的学号是这个数的因数或倍数就站到前面。由于答案不唯一,学生思考问题的空间很大,这样既培养了学生的发散思维能力,又使学生享受到了数学思维的快乐。但由于我缺乏时间观念,这部分时间太仓促,没有展开练习,学生没有尽兴,也没有达到充分地练习效果。

因数和倍数教学反思。

《倍数和因数》这一内容与原来教材比有了很大的不同,老教材中是先建立整除的概念,再在此基础上认识因数倍数,而现在是在未认识整除的情况下直接认识倍数和因数的。数学中的“起始概念”一般比较难教,这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。

这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我在本课的教学中体现了自主化、活动化、合作化和情意化,具体做到了以下几点:

(一) 操作实践,举例内化,认识倍数和因数。

(二)自主探究,意义建构,找倍数和因数。

整个教学过程中力求体现学生是学习的主体,教师只是教学活动的组织者、指导者、参与者。整节课中,教师始终为学生创造宽松的学习氛围,让学生自主探索,学习理解倍数和因数的意义,探索并掌握找一个数的倍数和因数的方法,引导学生在充分的动口、动手、动脑中自主获取知识。

新课程提出了合作学习的学习方式,教学中的多次合作不仅能让学生在合作中发表意见,参与讨论,获得知识,发现特征,而且还很好地培养了学生的合作学习能力,初步形成合作与竞争的意识。

(三)变式拓展,实践应用---—促进智能内化。

练习的设计不仅紧紧围绕教学重点,而且注意到了练习的层次性,趣味性。在游戏中,师生互动,激活了学生的情感,学生的思维不断活跃起来,学生不仅参与率高,而且还较好地巩固了新知。课上,我能注重自始至终关注学生学习兴趣、学习热情、学习自信等情感因素的培养,并及时让学生感受到学习成功的喜悦,享受数学,感悟文化魅力。

由于这节是概念课,因此有不少东西是由老师告知的,但并不意味着学生完全被动地接受。教学之前我知道这节课时间会很紧,所以在备课的时候,我认真钻研了教材,仔细分析了教案,看哪些地方时间安排的可以少一些,所以我在第一部分认识因数和倍数这一环节里缩短出示时间,直接出示,,实际效果我认为是比较理想的。课上还应该及时运用多媒体将学生找的因数呈现出来,引导学生归纳总结自己的发现:最小的因数是1,最大的因数是它本身。教师应该及时跟上个性化的语言评价,激活学生的情感,将学生的思维不断活跃起来。

小学因数和倍数教案篇五

3、能熟练地找一个数的因数和倍数;

4、培养学生的观察能力。

掌握找一个数的因数和倍数的方法。

能熟练地找一个数的因数和倍数。

一、引入新课。

1、出示主题图,让学生各列一道乘法算式。

2、师:看你能不能读懂下面的算式?

出示:因为26=12。

所以2是12的因数,6也是12的因数;

12是2的倍数,12也是6的倍数。

3、师:你能不能用同样的方法说说另一道算式?

(指名生说一说)。

师:你有没有明白因数和倍数的关系了?

那你还能找出12的其他因数吗?

4、你能不能写一个算式来考考同桌?学生写算式。

师:谁来出一个算式考考全班同学?

5、师:今天我们就来学习因数和倍数。(出示课题:因数倍数)。

齐读p12的注意。

二、新授。

(一)找因数。

1、出示例1:18的因数有哪几个?

学生尝试完成:汇报。

(18的因数有:1,2,3,6,9,18)。

师:说说看你是怎么找的?(生:用整除的方法,181=18,182=9,183=6,184=;用乘法一对一对找,如118=18,29=18)。

师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

2、用这样的方法,请你再找一找36的因数有那些?

汇报36的因数有:1,2,3,4,6,9,12,18,36。

师:你是怎么找的?

举错例(1,2,3,4,6,6,9,12,18,36)。

师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)。

仔细看看,36的因数中,最小的是几,最大的是几?

看来,任何一个数的因数,最小的一定是(),而最大的一定是()。

小学因数和倍数教案篇六

尊敬的各位领导、老师大家上午好:我们团队所执教的是《因数和倍数》。

一、说教材:

《因数和倍数》是小学人教版课程标准实验教材五年级下册第二单元的内容,也是小学阶段“数与代数”部分最重要的知识之一。《因数和倍数》的学习,是在初步认识自然数的基础上,探究其性质。其中涉及到的内容属于初等数论的基本内容,相当抽象。在这一内容的编排上与以往教材不同,没有数学化的语言给“整除”下定义,而是在本课时通过乘法算式借助整除的模式na=b直接给出因数与位数的概念。这节课是因数与倍数的概念的引入,为本单元最后的内容,以及第四单元的最大公因数,最小公倍数提供了必须且重要的铺垫。

根据教材所处的地位和前后关系,确定了以下目标:

知识技能目标:

掌握因数倍数的概念,理解因数与倍数的意义,掌握找一个数因数与倍数的方法。

情感,价值目标:培养学生合作、观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心和求知欲。

教学重点和难点:理解倍数和因数的意义,掌握找出一个数因数和倍数的方法。

二、学情分析:

学生在平时学习中缺少主动性,一部分学生怕困难,缺乏独立思考的习惯,同时考虑问题也不够全面。在本堂课的教学中,主要调动学生学习的积极性,提高学生课堂学习的参与性,体验成功的乐趣,通过学生的亲自探索和合作交流,来达到学习知识,掌握所学知识的目的。同时感受数学中的奥妙。

三、教法与学法指导。

当今社会,人类的语言离不开素质教育,而实施素质教育必须“以学生为本”课堂教学要围绕培养学生的探索精神、创新精神出发,为全面提高学生的综合素质打下一定的基础。本节课根据学生的认知能力与心理特征来进行教学策略和方法的设计。

1、遵循学生主体,老师主导,自主探究,合作交流为主线的理念,利用学生对乘法的运算理解概念。

2、小组合作讨论法。以学生讨论,交流,互相评价,促成学生对找一个数的因数和倍数的方法进行优化处理,提升。巩固学生方法表达的完整性,有效性,避免学生只掌握方法的理解,而不能全面的正确的表达。

四,教学过程。

1、揭示主题。

老师直接揭示主题,大胆创新,打破了传统的为了导入而导入的教学模式。为学生的自主合作学习提供了开放的空间。

2、合作交流,理解因数,倍数的概念及其意义。

教师出示前置性作业,小组内交流,汇报学习成果,教师适时点拨,真正把课堂还给学生,也充分体现了教师的主导作用和学生的主体地位。使学生在交流中培养了合作学习的意识,对因数和倍数的概念有了初步的认识,对它们之间的联系也有了更好的理解。

一个数的因数和倍数是本节课中技能目标中很重要的一部分。使学生在已有的经验基础上,独立的列举一个数的因数,在小组合作交流中得出。找一个数的因数和倍数的方法。真正地把主动权交给学生,教师通过引导,使学生加深理解,化解难点。

4、引导学生分析,比较归纳寻找共性,找出不同,得出一个数的因数,使学生学会有序思考,从而形成基本技能与方法,做到即关注了过程,又关注了结果。教师的教学水到渠成,学生的学习则是山重水复疑无路,柳暗花明又一村。

5、引导学生置疑,集体交流,化解疑问。

便于学生对本课所学知识更好的消化理解。

三、练习。

练习题设计形式多样,有梯度。既注重基础,又有所提高,从而真正实现了课堂教学的有效性。

小学因数和倍数教案篇七

1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。

2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的.方法,提高推理能力。

1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。

2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。

活动1:利用数的奇偶性解决一些简单的实际问题。

让学生尝试解决问题,寻找解决问题的策略,利用解决问题的策略发现规律,教师适当进行“列表”“画示意图”等解决问题策略的指导。

本题是让学生应用上述活动中解决问题的策略尝试自己解决问题,最后的结果是:翻动10次,杯口朝上;翻动19次,杯口朝下。解决问题后,让学生以“硬币”为题材,自己提出问题、解决问题,还可以开展游戏活动。

活动2:探索奇数、偶数相加的规律。

[板书设计]。

数的奇偶性。

12+34=48偶数+偶数=偶数。

11+37=48奇数+奇数=偶数。

12+11=23奇数+偶数=奇数。

小学因数和倍数教案篇八

1、使学生结合乘、除法运算初步认识倍数和因数的含义,探索求一个数的倍数和因数的方法。

2、使学生在探索的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。

3、增强学生学习数学的兴趣,感受到成功的快乐。

理解倍数和因数的含义,探索并掌握找一个数的倍数和因数的方法。

理解倍数和因数的含义及倍数和因数的相互依存关系。

学生:每人准备12个同样大小的正方形。教师:课件。

一、认识倍数和因数。

1、提出活动要求:每一桌的同学合作,用12个同样大小的正方形拼成一个长方形,想想有几种不同的摆法,并用乘法算式把不同的摆法表示出来。看看哪桌的同学最快完成。

2分组操作活动,师巡视指导。

3、指名汇报,出示课件,全班交流。汇报时是引导学生根据“每排摆几个”“摆了几排”这两个问题说出三种不同的乘法算式。师提示:每排摆5个,能摆几排,明确只有这三种摆法。

4、教学“倍数”和“因数”的概念。

(1)结合4×3=12,说明12是4的倍数,12也是3的倍数,4和3都是12的因数。并板书。

(2)齐读这三句话,板书课题:倍数和因数。

(3)指名看式子说。

(4)请学生根据6×2=12和12×1=12两道算式,照样子说。

一说哪个数是哪个数的倍数?哪个数是哪个数的因数?

追问:如果说12是倍数,3是因数,可以吗?为什么?

明确:倍数和因数都是指两个数之间的关系,是相互依存的。

教师指出阅读底注明确:为了方便,我们在研究倍数和因数时,所说的数一般指不是0的自然数。不是0的自然数,0要考虑吗?那从什么数开始。如1、2、3、4、5、6、7、8、9……在小数和分数等其他数中就也没有倍数和因数的说法了。(可根据具体的算式说明,如0×3=0,1.5×2=3。)。

(5)练习:“想想做做”第1题。每位同学都各选一个乘法算式同桌之间互相说一说,

三、探索找倍数和因数的方法。

1、探索找一个数的倍数的方法。

(1)提出问题:什么样的数会是3的倍数呢?明确:3的倍数是3与一个数相乘的积。你能找到多少个3的倍数?先让学生独立思考,再组织交流。

(2)启发:谁能按从小到大的顺序有条理的说出3的倍数?根据什么样的乘法算式?明确:可以按从小到大的顺序,依次用1、2、3、4……与3相乘,每次乘得的积都是3的倍数。同时板书:

3×1=(3)3×2=(6)……。

追问:能把3的倍数全部说完吗?应该怎样表示3的倍数有哪些呢?

根据学生的回答课件演示:3的倍数有3、6、9、12、15……。

(3)完成后面的试一试。提醒学生注意有序的思考,并规范的表示出结果。

(4)一个数的倍数的特点。

提问:观察上面的几个例子,你发现一个数的倍数有什么特点?根据学生的交流归纳:一个数的倍数中,最小的是它的本身,没有最大的倍数,一个数的倍数的个数是无限的。

提问:现在你能很快说出6的最小倍数是多少吗?10呢?

2、探索找一个数的因数的方法。

(1)提出问题:什么样的数是36的因数?

学生举例说明。明确:如果有两个数相乘的积是36,那么这两个数都是36的因数。

板书()×()=36。

学生试着在练习本上列式找出。

(3)学生汇报交流,根据学生的回答课件演示。

请同学们看书71页,完成书上的填空。

(5)完成“试一试”。提醒学生有序的思考,做到不重复,不遗漏。

学生汇报,说说你是怎样找的。

(6)观察发现。

提问:观察上面的例子,你发现一个数的因数有什么特点?

小结:一个数因数的个数是有限的,一个数的因数中,最小的是1,最大的是它本身。

提问:现在你能很快说出18的最小因数和最大因数是多少吗?25呢?

四、巩固练习。

1、“想想做做”第2题。

2、“想想做做”第3题。

五、全课总结。

这节课你学会了什么?

小学因数和倍数教案篇九

1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。

2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。

1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。

2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。

活动1:利用数的奇偶性解决一些简单的实际问题。

让学生尝试解决问题,寻找解决问题的策略,利用解决问题的策略发现规律,教师适当进行“列表”“画示意图”等解决问题策略的指导。

试一试:

本题是让学生应用上述活动中解决问题的策略尝试自己解决问题,最后的结果是:翻动10次,杯口朝上;翻动19次,杯口朝下。解决问题后,让学生以“硬币”为题材,自己提出问题、解决问题,还可以开展游戏活动。

活动2:探索奇数、偶数相加的规律。

[板书设计]。

例子:结论:

12+34=48偶数+偶数=偶数。

11+37=48奇数+奇数=偶数。

12+11=23奇数+偶数=奇数。

小学因数和倍数教案篇十

掌握因数、倍数的概念,知道因数、倍数的相互依存关系。

2、过程与方法。

通过自主探究,使学生学会用因数、倍数描述两个数之间的关系。

3、情感态度与价值观。

使学生感悟到数学知识的内在联系的逻辑之美。

教学重点。

掌握找一个数的因数、倍数的方法。

教学难点。

能熟练地找一个数的因数和倍数。

课件、投影。

一、迁移引入。

同学们,在我们的日常生活中,人与人之间存在着许多相互依存的关系,如:佳爸是佳佳的爸爸,佳佳是佳爸的儿子。其实在我们的数学王国里,数与数回见也存在着这种相互依存的关系,请看大平米,认识这些吗?(课件出示:0,1,2,3,4,5……)。

这些自然数。(课件去“0”)。

去0后这又是什么数?(非零自然数中。)这节课我们就在非零自然数中来研究数与数之间的这种相互依存的关系。

二、情境创设,探究新知。

1、理解整除的意义。

(1)出示例1,在前面学习中,我们见过下面的算式。

12÷2=68÷3=2……230÷6=519÷7=2……59÷5=1.8。

26÷8=3.2520÷10=221÷21=163÷9=7。

你能把这些算式分类吗?

(2)分类所得:

12÷2=620÷10=2。

30÷6=521÷21=1。

63÷9=7。

8÷3=2……29÷5=1.8。

19÷7=2……526÷8=3.25。

(3)观察发现,合作交流。

观察算式,说一说谁是谁的倍数,谁是谁的约数。

12÷2=6中,我们就说12是2的倍数,2是12的因数。12÷6=2,所以12是6的倍数,6是12的因数。由此可知:(在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。)。

3、总结归纳。

(1)在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。

4、注意:

为了方便,在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括0)。

5、做一做。

下面的4组数中,谁是谁的因数?谁是谁的倍数?

4和2436÷1375÷2581÷9。

6、教学例2。

18的因数有哪几个?

18的因数有1、2、3、6、9、18。

也可以这样用图表示。

18的因数。

1,2,3,

6,9,18。

30的因数有哪些?36呢?

7、教学例3。

2的倍数有哪些?

2的倍数有2、4、6、8……。

2的倍数。

2,4,6,

8,10,12,

14,……。

3的倍数有哪些?5呢?

8、小组讨论,归纳总结。

一个数的最小因数是1,最大的因数是它本身。一个数的最小倍数是它本身,没有最大倍数。

一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

一个数的最小因数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的最小倍数是它本身,没有最大倍数。

一个数的因数的个数是有限的,最大的因数是它本身。一个数的倍数的个数是无限的。

1、填空。

(1)36是4的()数。

(2)5是25的()。

(3)2.5是0.5的()倍。

2、下面各组数中,有因数和倍数关系的有哪些?

(1)18和3(2)120和60(3)45和15(4)33和7。

3、24和35的因数都有哪些?

一个数的最小因数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的最小倍数是它本身,没有最大倍数。

一个数的因数的个数是有限的,最大的因数是它本身。一个数的倍数的个数是无限的。

小学因数和倍数教案篇十一

1、从操作活动中理解因数与倍数的意义,会判断一个数不是另一个数的因数或倍数。

2、培养学生抽象、概括与观察思考的能力,渗透事物之间相互联系,相互依存的辨证唯物主义观点。

3、培养学生的合作意识、探索意识,以及热爱数学学习的情感。

小学因数和倍数教案篇十二

1.学生通过回忆和整理,进一步明确因数和倍数的相关知识,加深认识相关概念之间的联系与区别,能求两个数的公因数和公倍数,并能运用这些知识解决相关实际问题。

2.学生在应用相关知识进行判断和推理的过程中,能说明思考过程,进一步培养归纳概括和演绎推理等思维能力,进一步增强分析问题和解决问题的能力。

3.学生进一步体会数学知识之间的内在联系,感受数学思考的严谨性和数学结论的确定性,激发学习数学的兴趣和学好数学的自信心。

掌握倍数和因数等相关概念,以及应用概念判断、推理。

理解相关概念的联系和区别。

一、揭示课题。

1.回顾知识。

提问:上节课,我们已经复习了整数和小数的有关知识。

结合学生交流,板书。

2.揭示课题。

引入:这节课,我们复习因数和倍数的相关知识。

通过复习,能进一步了解关于因数和倍数的知识,理解它们之间的联系和区别,并能应用这些知识。

二、基本练习。

1.知识梳理。

提高:回想一下,在学习因数和倍数时,我们还学习了哪些相关的知识?

学生回顾,交流,教师适当引导回顾。

根据学生回答,板书整理。

2.做练习与实践第10题。

学生独立完成,指名板演。

集体交流,让学生说说找一个数的因数和倍数的方法。

3.做练习与实践第11题。

出示题目,学生直接口答。

提问:怎样判断一个数是不是2的倍数?判断是3和5的倍数呢?

追问:这里哪些是偶数,哪些是奇数?说说你是怎样想的。

4.做练习与实践第12题。

学生先独立写出质数和合数,再指名口答。

追问:最小质数是几?最小的合数呢?

小学因数和倍数教案篇十三

:p70~72的例题及相应的试一试、想想做做中的1—3题。

1、使学生初步理解倍数和因数的含义,知道倍数和因数相互依存的关系。

2、使学生依据倍数和因数的含义以及已有乘除法知识,通过尝试、交流等活动,探索并掌握找一个数倍数和因数的方法,能在1—100的自然数中找出10以内某个数的所有倍数,找出100以内某个数的所有因数。

3、使学生在认识倍数和因数以及找一个数的倍数和因数的过程中进一步感受数学知识的内在联系,提高数学思考的水平。

:理解因数和倍数的含义,知道它们的关系是相互依存的。

探索并掌握找一个数的因数的方法。

:12个小正方形片、每个学生的学号纸。

1、操作活动。

(1)明确操作要求:用12个同样大的正方形拼成一个长方形。每排摆几个?摆了几排?用乘法算式把自己的摆法记录下来。

(2)整理、交流,分别板书4×3=1212×1=126×2=12。

2、通过刚才的学习,我们发现用12个同样的小正方形可以摆出3种不同的长方形,由此,还得出3道不一样的乘法算式。4×3=12可以说12是4的倍数,12也是3的倍数;反过来,4和3都是12的因数。

(1)那其它两道算式,你能说出谁是谁的倍数吗?你能说出谁是谁的因数吗?

指名回答后,教师追问:如果说12是倍数,2是因数,是否可以?为什么?

小结:倍数和因数是指两个数之间的关系,他们是相互依存的。

指出:为了方便,我们在研究倍数和因数时,所说的数都是指不是0的自然数。

二、探索找一个数倍数的方法。

1、从4×3=12中,知道12是3的倍数。3的倍数还有哪些?从小到大,你能找到几个?同桌交流自己的思考方法。

3、议一议:你发现找3的倍数有什么小窍门?

明确:可以按从小到大的顺序,依次用1、2、3……与3相乘,乘得的积就是3的倍数。

4、试一试:你能用学会的窍门很快地写出2和5的倍数吗?

生独立完成,集体交流。注意用……表示结果。

5、观察上面的3个例子,你发现一个数的倍数有什么特点?

根据学生的交流归纳:一个数的倍数中,最小的是它本身,没有最大的倍数,一个数倍数的个数是无限的。

6、做“想想做做”第2题。

1、学会了找一个数倍数的方法,再来研究求一个数的因数。

你能找出36的所有因数吗?

2、小组合作,把36的所有因数一个不漏的写出来,看看哪个组挑战成功。并尽可能把找的方法写出来。教师巡视,发现不同的找法。

3、出示一份作业:对照自己找出的36的因数,你想对他说点什么?

4、交流整理找36因数的方法,明确:哪两个数相乘的积等于36,那么这两个数就是36的因数。(一对一对地找,又要按次序排列)。

板书:(有序、全面)。正因为思考的有序,才会有答案的全面。

5、试一试:请你用有序的思考找一找15和16的因数。

指名写在黑板上。

一个数的因数最小是1,最大是它本身,一个数因数的个数是有限的。

7、“想想做做”第3题。

生独立填写,交流。观察表格,表中的排数和每排人数与24有怎样的关系。

四、课堂总结:学到这儿,你有哪些收获?

五、游戏:“看谁反应快”。

规则:学号符合下面要求的请站起来,并举起学号纸。

(1、)学号是5的倍数的。

(2、)谁的学号是24的因数。

(4、)谁的学号是1的倍数。

2、在得出这些乘法算式以后,先根据4×3=12说明12是3和4的倍数,3和4都是12的因数,使学生初步体会倍数和因数的含义。在学生初步理解的基础上,再让他们举一反三,结合另两道乘法算式说一说。在这一个环节中,我设计了一个练习。即“根据下面的算式,同桌互相说说谁是谁的倍数,谁是谁的因数”第一个是20×3=60,根据学生回答后质疑“能不能说3是因数,60是倍数”,从而强调倍数和因数是相互依存的。第二个是36÷4=9,让学生根据除法算式说出谁是谁的因数,谁是谁的倍数,并追问:你是怎么想的?使学生知道把它转化为乘法算式去说。

在学生有了倍数、因数的初步感受后,再向学生说明:我们在研究倍数和因数时,所说的数一般指不是0的自然数,明确了因数和倍数的研究范围。

3、p71例一:找3的倍数,先让学生独立思考,“你还能再写出几个3的倍数?你是怎样想的?”在学生交流的基础上,适时提出:什么样的数就是3的倍数?你能按照从小到大的顺序有条理地说出3的倍数吗?使学生明确:找3的倍数时,可以按从到大的`顺序,依次用1、2、3……与3相乘,而每次乘得的积都是3的倍数。在此基础上,引导学生进一步思考:你能把3的倍数全都说完吗?从而使学生学会规范地表示一个数的所有倍数,并初步体会到一个数的个数是无限的。随后,让学生试着找出2和5的倍数,并正确表达2和5的所有倍数。最后引导学生观察写出的3、2和5的所有倍数,发现一个数的倍数的特点,即:一个数的最小的倍数是它本身,没有最大的倍数。一个数的倍数的个数是无限的。

4、例二:找36的所有因数,准备让学生独立尝试,但这部分内容对学生来说是个难点,所以我采用了四人小组合作的方式让学生试着找出36的所有因数。在找36的因数时,无论想乘法算式还是想除法算式,学生一般都从无序到有序,从有重复或遗漏到不重复不遗漏。所以,我在教学时允许他们经历这样的过程。先按自己的思路、用自己的方法写36的因数,能写几个就写几个,是什么顺序就什么顺序。然后在交流中互相评价,让他们知道一组一组地找比较方便,可以利用乘法算式,按一个因数从小到大的顺序,同时又让他们掌握按次序地书写。此外,结合例题和试一试,通过比较和归纳,使学生明确:一个数的因数的个数是有限的,一个数的因数中最小的是1,最大的是它本身。

5、教材p72第2题让学生解决实际问题在表里填数,把4依次乘1、2、3、……得出“应付元数”,然后思考下面的问题,可以使学生进一步认识把4依次乘1,2,3,……所得的积,就是4的倍数,进一步理解找倍数的方法。第3题也是解决实际问题填写表里的数,并提出问题让学生思考,使学生明确两个相乘的数都是它们积的因数,求一个数的所有因数,可以想乘法一对一对地找出来,理解找一个数的因数的方法。

为了提高学生学习兴趣,巩固所学的知识。最后安排了一个游戏,让学生在游戏中进一步练习找一个数倍数或因数的方法。

小学因数和倍数教案篇十四

1、精简概念,减轻学生记忆负担。

三方面的调整:

a。不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。

b。不再正式教学“分解质因数”,只作为阅读性材料进行介绍。

c。公因数、公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。

2、注意体现数学的抽象性。

数论知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。

小学因数和倍数教案篇十五

1.理解因数和倍数的意义以及两者之间相互依存的关系,掌握找一个数的因数和倍数的方法。

2.在探究的过程中体会数学知识之间的内在联系,在解决问题的过程中培养学生思维的有序性和条理性。

3.培养学生的探索意识以及热爱数学学习的情感。

小学因数和倍数教案篇十六

(父子、母子、母女关系)我和你们的关系是?(师生关系)。

在数学中,数与数之间也存在着多种关系,这节课,我们一起研究两数之间的因数与倍数关系。

(二)探究新知-理解因数和倍数的意义。

教学例1:

1.观察算式的特点,进行分类。

(1)仔细观察算式的特点,你能把这些算式分类吗?

(2)交流学生的分类情况。(预设:学生会根据算式的计算结果分成两类)。

第一类是被除数、除数、商都是整数;第二类是被除数、除数都是整数,而商不是整数。

2.明确因数和倍数的意义。

(1)同学们,在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。例如,12÷2=6,我们就说12是2的倍数,2是12的因数。12÷6=2,我们就说12是6的倍数,6是12的因数。

(2)在第一类算式中找一个算式,说一说,谁是谁的因数?谁是谁的倍数?

(3)强调一点:为了方便,在研究倍数与因数的时候,我们所说的数指的是自然数(一般不包括0)。

3.理解因数和倍数的依存关系。

(1)独立完成教材第5页“做一做”。

(2)我们能不能说“4是因数”“24是倍数”呢?表述时应该注意什么?

4.理解一个数的“因数”和乘法算式中的“因数”的区别以及一个数的“倍数”与“倍”的区别。

(1)今天学的一个数的“因数”与以前乘法算式中的“因数”有什么区别呢?

课件出示:

乘法算式中的“因数”是相对于“积”而言的,可以是整数,也可以是小数、分数;而一个数的“因数”是相对于“倍数”而言的,它只能是整数。

(2)今天学的“倍数”与以前的“倍”又有什么不同呢?

“倍数”是相对于“因数”而言的,只适用于整数;而“倍”适用于小数、分数、整数。

(3)交流汇报。

(三)探究新知-找一个数的因数。

教学例2:

1.探究找18的因数的方法。

(1)18的因数有哪些?你是怎么找的?

(2)交流方法。

预设:方法一:根据因数和倍数的意义,通过除法算式找18的因数。

因为18÷1=18,所以1和18是18的因数。

因为18÷2=9,所以2和9是18的因数。

因为18÷3=6,所以3和6是18的.因数。

方法二:根据寻找哪两个整数相乘的积是18,寻找18的因数。

因为1×18=18,所以1和18是18的因数。

因为2×9=18,所以2和9是18的因数。

因为3×6=18,所以3和6是18的因数。

2.明确18的因数的表示方法。

(1)我们怎样来表示18的因数有哪些呢?怎样表示简洁明了?

(2)交流方法。

预设:列举法,18的因数有:1,2,3,6,9,18。

集合图的方法(如下图所示)。

3.练习找一个数的因数。

(1)你能找出30的因数有哪些吗?36的因数呢?

(2)怎样找才能不遗漏、不重复地找出一个数的所有因数?

(四)探究新知-找一个数的倍数。

教学例3:

1.探究找2的倍数的方法。

(1)2的倍数有哪些?你是怎么找的?

(2)想方法:利用乘法算式找2的倍数。

因为2×1=2,所以2是2的倍数。

因为2×2=4,所以4是2的倍数。

因为2×3=6,所以6是2的倍数。……。

(3)2的倍数能写完吗?你能继续找吗?写不完怎么办?

(4)根据前面的经验,试着表示出2的倍数有哪些?(预设:列举法、集合图的方法)。

2.练习找一个数的倍数。

你能找出3的倍数有哪些吗?5的倍数呢?

(五)我的发现-因数与倍数的特征。

举例子,找规律,勾画知识点,读一读。

预设:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的,没有最大的倍数,最小的倍数是它本身。1是所有非零自然数的因数。

(六)智慧乐园。

1.在练习本上完成下列填空题。(独立完成后,师订正答案)。

一个数的最大因数是17,这个数是(),它的最小的因数是()。

一个数的最小倍数是17,这个数是(),它()最大的倍数,17的倍数的个数是().

一个数既是12的因数,又是12的倍数,这个数是()。

2.在练习本上完成下列判断题。(独立完成后,师订正答案)。

(1)在算式6×4=24中,6是因数,24是倍数。()。

(2)15的倍数一定大于15。()。

(3)1是除0以外所有自然数的因数。()。

(4)40以内6的倍数有12、18、24、30、36这5个。()。

(5)34的最小倍数是34;34的最小因数是17。()。

(6)1.2是3的倍数。()。

(七)全课总结,交流收获。

这节课我们学了哪些知识?你有什么收获?

(八)布置作业。

完成课时练第3、4页,提交家校本。

小学因数和倍数教案篇十七

1、使学生理解质数和合数的概念,能正确地判断一个数是质数还是合数。

2、培养学生观察、比较、抽象、慨括的能力。

3、培养学生自主探究的精神和独立思考的能力。教学重点:质数和合效的概念。

质数、台数、济数、偶数的区别

给教室里的人分类。体会:同样的事物,依据不问的分类标准,可以有多种小_的分类方法。明确:分类的际准很重要。

说一说,在我们学习的空间,你可以得到那些数?(要求与同学说的尽也不重复)

给这些自然数分类。根据自然数能不能被2整除,可以分成新数和偶数两类。

板书对应的集合图。

自然数

(能不能被2整除)

把学生列举的数填写在对应的集合圈里。

问:看了集合图,你想说什么么?(学生看图说自己的想法,复习奇数和偶数的有关知识)

说明:这是一种有价值的分类方法,在以后的学习中很有用。

问:想不想学一种新的分类方法?关于新的分类方法,你想知道些什么?

今天我们就用找约数的方法来给自然数分类。

复习:什么叫约数?怎样找一个数所有的约数?

同桌合作。找出列举的各数的所有的约数。(同时板演)

引导学生观察:观察以上各数所含的数的个数,你能把它们分成几种情况‘!

根据学生的回答板书。

自然数

(约数的个数)

(只有两个约数)(有3个或3个以上的约数)

引导学生思考:只含有两个约数的,这两个约数有什么特点?引出约数的概念。

明确:这是一种新的分类方法。看厂集合圈,你想说什么?(学生看图说自己的想法,巩固寺数阳台数的知识)

猜一猜:奇数有多少个?合数呢?

明确:因为自然数的个数是无限的,所以,新数阳偶数的个数也是无限的。运用新知,解决问题。

出示例1下面各数,哪些是质数?哪些是合数?

15 28 31 53 77 89 1ll

学生独立完成。

问:你是怎么判断的?

明确:可以找出每个数所有的约数,再根据质数和合数的意义来判断;一个数,只有找到1和它本身以外的第三个约束,就能判断这个数是合数还是质数。不必找出所有的约数来,这样可以提高判断的效率。

说明:判断一个数是不是质数还可以查表。100以内的质数比较常用,看书本上的100以内的质数表。用质数表检查对例子1的判断是否正确。

完成练一练。

1、坚持下面各数的约数的个数,指出哪些是质数哪些是合数,再用质数表检查。

22 29 35 49 51 79 83

2、出示2到50的数。先划掉2的倍数,再依次划掉3、5、7的倍数(但2、3、5、7本身不划掉。)

学生操作后,提问:剩下的都是什么数?

告诉学生:古代的数学家就是用这样的方法来找质数的。

学到这里,一种新的分类方法,你掌握了吗?学生回答:相机揭示课题,质数和合数

讨论:质数、合数、奇数、偶数之间是这样的关系呢?

(略)。

小学因数和倍数教案篇十八

2、学生能了解一个数的因数是有限的,倍数是无限的;

4、培养学生的观察能力。

1、出示主题图,让学生各列一道乘法算式。

2、师:看你能不能读懂下面的算式?

出示:因为2×6=12。

所以2是12的因数,6也是12的因数;

12是2的倍数,12也是6的倍数。

3、师:你能不能用同样的方法说说另一道算式?

(指名生说一说)。

师:你有没有明白因数和倍数的关系了?

那你还能找出12的其他因数吗?

4、你能不能写一个算式来考考同桌?学生写算式。

师:谁来出一个算式考考全班同学?

5、师:今天我们就来学习因数和倍数。(出示课题:因数倍数)。

齐读p12的注意。

(一)找因数:

1、出示例1:18的因数有哪几个?

学生尝试完成:汇报。

(18的因数有:1,2,3,6,9,18)。

师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)。

师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

2、用这样的方法,请你再找一找36的因数有那些?

汇报36的因数有:1,2,3,4,6,9,12,18,36。

师:你是怎么找的?

举错例(1,2,3,4,6,6,9,12,18,36)。

师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)。

仔细看看,36的因数中,最小的'是几,最大的是几?

看来,任何一个数的因数,最小的一定是(),而最大的一定是()。

3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。

4、其实写一个数的因数除了这样写以外,还可以用集合表示:如。

18的因数。

小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

(二)找倍数:

1、我们一起找到了18的因数,那2的倍数你能找出来吗?

汇报:2、4、6、8、10、16、……。

师:为什么找不完?

你是怎么找到这些倍数的?(生:只要用2去乘1、乘2、乘3、乘4、…)。

那么2的倍数最小是几?最大的你能找到吗?

2、让学生完成做一做1、2小题:找3和5的倍数。

汇报3的倍数有:3,6,9,12。

师:这样写可以吗?为什么?应该怎么改呢?

改写成:3的倍数有:3,6,9,12,……。

你是怎么找的?(用3分别乘以1,2,3,……倍)。

5的倍数有:5,10,15,20,……。

师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示。

2的倍数3的倍数5的倍数。

师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)。

我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

完成练习二1~4题。

小学因数和倍数教案篇十九

教科书第25页,练习四第5~8题。

1、通过练习与对比,使学生发现和掌握求两个数最小公倍数的一些简捷方法,进行有条理的思考。

2、通过练习,使学生建立合理的认识结构,形成解决问题的多样策略。

3、在学生探索与交流的合作过程中,进一步发展学生与同伴合作交流的意识和能力,感受数学与生活的联系。

1、我们已经掌握了找两个数的公倍数和最小公倍数的方法,这节课我们继续巩固这方面的知识,并能够利用这些知识解决一些实际问题。

(板书课题:公倍数和最小公倍数练习)。

2、填空。

5的倍数有:()。

7的'倍数有:()。

5和7的公倍数有:()。

5和7的最小公倍数是:()。

3、完成练习四第5题。

(1)理解题意,独立找出每组数的最小公倍数。

(2)汇报结果,集体评讲。

(3)观察第一组中两个数的最小公倍数,看看有什么发现?

每题中的两个数有什么特征呢?(倍数关系)可以得出什么结论?

(4)第二组中两个数的最小公倍数有什么特征?(是这两个数的乘积)。

在有些情况下,两个数的最小公倍数是这两个数的乘积。

4、完成练习四第6题。

你能运用上一题的规律直接写出每题中两个数的最小公倍数吗?

交流,汇报。

说说你是怎么想的?

1、完成练习四第7题。

(1)理解题意,独立完成填表。

(2)你是怎样找到这两路车第二次同时发车的时间的?

你还有其他方法解决这个问题吗?(7和8的最小公倍数是56)。

2、完成练习四第8题。

(1)理解题意。

你能说说,他们下次相遇,是在几月几日吗?(8月24日)。

你是怎样知道的?

要知道他们下次相遇的日期,其实就是求什么?(6和8的最小公倍数)

通过练习,同学们又掌握了一些比较快的求两个数最小公倍数的方法,并能运用这些方法解决一些实际问题。

在小组中互相说说自己本节课的收获。

【本文地址:http://www.pourbars.com/zuowen/10513510.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map