教案要根据学生的不同需求和特点进行个性化调整,满足不同学生的学习要求。教案的调整要及时灵活,能够根据实际情况进行适当的调整。以下是小编为大家收集的教案范文,供大家参考。
三角形的内角和的教案篇一
“三角形内角和”是人教版数学四年级下册的一节探索与发现课,让学生在学习了三角形的特征、高以及三角形分类的基础上,进一步研究三角形三个角的关系。本节课学生对知识点的掌握还不错,但是,这一节课还有很多不足之处,需要加以改进:
1、教学设计不错,环节紧凑,思路清晰。
2、重视操作过程,时间把握得好。本节课用了大量的时间来让学生做小组实验,从而让他们自己感知三角形内角和是180°,印象深刻。
3、能注意前后照应,解决了前面的疑问。在讲授新课前,设置一个疑问“为什么同一个三角形不能有两个直角?”以此来吸引学生,找出三角形内角和的特性。在掌握了三角形内角和是180°后,再次把问题提出来,让学生解决。
4、板书巧妙,一步步引入课题。先是让学生复习“三角形”的定义,接着简单说明什么是“三角形内角”,最后再讲授三角形三个内角度数的和叫做“三角形内角和”。
5、课堂纪律好,气氛活跃,学生踊跃积极。学生在小组活动时,活跃而有序,上课时能认真听讲,积极举手。同时,实行小组评价更是发挥了学生的主动性。
6、求三角形内角和的方法,一个比一个直观、生动。从量一量、算一算,到剪一剪、折一折,让学生更容易感受到三角形内角和是180°。
7、练习题设计得比较好,特别是判断题,都是学生平时容易出错的题目,在课堂上用比较直观的课件显示出来,让学生的印象深刻。组合题也很有灵活性,先是找出能组成三角形的度数,然后根据度数判断出是什么三角形。
8、能尊重学生的意见,有的小组没有在算一算的时候,没有得出180°的结果,老师能够分析其中的原因。
1、在老师给出“画有2个内角是直角的三角形”的任务时,学生明显是画不出来。但是教师也可以把学生失败的作品展示出来,照应之后的讲解。而不能一带而过。
2、如果量一量的方法,不能让人信服,要在后面打个“?”,等到解决疑问后,再去掉。
3、在进行剪一剪、折一折的活动时,老师应该先用板书上的三角形来示范一次,告诉学生应该怎么做。因为有些学生折不出来。拼的时候,也有出错。
4、把三角形拼成平角后,要用直尺或者是量角器测量一下,看看得出的图形是不是平角,要用严谨的态度对待,不能光用眼睛来判断。
5、老师注意提醒学生读题的时候要规范,要读出度数单位,这很好。但是,在做题练习时,应该请一两个学生在黑板上做,这样也便于教师提醒学生,在书写时,也要注意写上度数单位,强调格式。
三角形的内角和的教案篇二
根据上面三组实验分别证明了锐角三角形、直角三角形、钝角三角形的内角和都等于180度。
四、练一练。
请学生自己画任意的`三角形,并用刚才老师所讲的方法自己来判断一下三角形的内角和。
五、实践活动:
第1题:用纸剪出一个等边三角形。
第2题:将等边三角形两边取中点,并向底作垂线,
第3题:把纸沿着虚线对折。
第4题:观察三个角的内角加起来为多少?
三角形的内角和的教案篇三
人教版义务教育课程标准试验教科书数学四年级下册第67页。
遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。《数学课程标准》指出,让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生提出问题、分析问题和解决问题的探究能力。
三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180。
学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道三角形的内角和是180度的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。
1、使学生经历自主探索三角形的内角和的过程,知道三角形的内角和是180°,能运用这一规律解决一些简单的问题。
2、使学生在观察、操作、分析、猜想、验证、合作、交流等具体活动中,提高动手操作能力和数学思考能力。
三角形的内角和的教案篇四
l教学目标:
知识与技能目标:
1.会用平行线的性质与平角的定义证明三角形内角和等于180o;。
2.能用三角形内角和等于180o进行角度计算和简单推理,并初步学会利用辅助线解决问题,体会转化思想在解决问题中的应用.
过程与方法目标:
2.掌握三角形内角和定理,并初步学会利用辅助线证题,同时培养学生观察、猜想和论证能力..
情感态度与价值观目标:
1.通过操作、交流、探究、表述、推理等活动,培养学生的合作精神,体会数学知识内在的联系与严谨性,鼓励学生大胆提出疑问,培养学生良好的学习习惯.
l重点:
难点:
l教学流程:
一、情境引入。
内角三兄弟之争。
在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起了……”“为什么?”老二很纳闷.
同学们,你们知道其中的道理吗?
目的:通过对话激发学生的求知欲;让学生通过小组讨论:其中的道理.
三角形的内角和的教案篇五
本节微课视频是苏教版数学教科书四年级下册第78~79页的教学内容。在教学之前,学生已经掌握了角的概念、角的分类和角的测量;认识了三角形,知道三角形是由三条线段首尾相接围成的图形,有三个顶点、三条边和三个角。这些已经构成学生进一步学习的认知基础。《三角形的内角和》是三角形的一个重要性质。学生在学习四年级上册“角的度量”时,通过测量三角尺三个角的度数,知道三角尺三个角加起来的和是180度,再加上课前的预习,大部分的学生已经能得出结论:三角形的内角和是180度,只不过他们不清楚其中的道理,只是机械性的记忆。因此,本节课的重点不是结论,而是验证结论的过程。教材组织学生对不同形状、不同大小的三角形的内角和进行探索,通过转化、推理、比较、操作和验证,总结概括出“所有三角形的内角和都是180度”的规律,从而进一步发展学生的空间观念,提高学生的自主学习能力和推理能力。
下面就具体谈谈微课的教学设计:
1、通过测量、转化、观察和比较等活动探索发现并验证“三角形的内角和是180度”的规律,并且能利用这一结论解决求三角形中未知角的度数等实际问题。
2、通过折一折、拼一拼和剪一剪等一系列的操作活动培养学生的联想意识和动手操作能力。体验验证结论的过程与方法,提高学生分析和解决问题的能力。
3、使学生通过操作的过程获得发现规律的喜悦,获得成就感,从而激发学生积极主动学习数学的兴趣。
重点:让学生亲自验证并总结出三角形的内角和是180度的结论
难点:对不同验证方法的理解和掌握。
交流:不同三角尺的内角和都是一样的吗?三角尺的内角和有什么特征?
引导学生得出三角尺的三个内角的度数和是180度。
提问:三角尺的形状是什么三角形?三角尺的内角和是180度,我们还可以说成是什么?(得出结论:直角三角形的内角和是180度。)
你有什么办法验证这一结论呢?(动手操作,寻找答案)
方法一:拿出不同的直角三角形,分别测量三个内角的度数,再求和。(提示存在误差,但三个内角的和都在180度左右)
方法二:用两个相同的直角三角形拼成一个长方形,由于长方形的四个内角和是360度,因此能得出一个直角三角形的三个内角和是180度。
出示三个三角形:直角三角形、锐角三角形和钝角三角形。
引导:直角三角形的内角和是180度了,由此我们联想到锐角三角形和钝角三角形的内角和也有可能是180度。
提问:你有什么办法来验证这一猜想呢?
拿出事先从课本第113页剪下来的3个三角形,动手操作,自主探索,发现规律。
方法一:可以像上面那样先测量每个三角形的三个内角的度数,再计算出它们的和,看看能发现什么规律。学生测量计算,教师巡视指导。
引导:测量时要尽量做到准确,测量是存在误差的,对于测量的不准的同学要重新测定和确认,计算出它们的和,发现其中的规律。
方法二:既然是求三角形的内角和,我们就可以想办法把三角形的3个内角拼在一起,看看拼成了什么角。那怎样才能把3个内角拼在一起呢?我们可以将三角形中的3个内角撕下来,再拼在一起,会发现拼成了一个平角,是180度。
方法三:把三角形的三个内角撕下来,虽然能将他们拼在一起,但是原有的三角形被破坏了。因此,我们还可以通过折一折的方法,把三个内角折过来拼在一起,同样会发现拼成一个平角,是180度。
方法四:将锐角三角形和钝角三角形分别分成两个直角三角形,利用直角三角形内角和是180度进行推理。180+180=360度,360-90-90=180度。
交流:回顾以上3个三角形的内角和的探索过程,你发现了什么规律?
总结:通过测量计算、拼一拼和折一折的方法,我们可以消除心中的问号,肯定得说出所有三角形的内角和都是180度这一结论。
1、将一个大三角形剪成两个小三角形,每个小三角形的内角和是多少度?
2、在一个三角形中,根据两个内角的度数,求第三个内角的度数?
三角形的内角和的教案篇六
通过猜想、验证,了解三角形的内角和是180度。在学习的.过程中进一步激发学生探索数学规律的兴趣,初步感知计算多边形内角和的公式。
出示三角尺中的一个,提问:谁来说说三角尺上的三个角分别是多少度?
引导学生说出90度、60度、30度。
出示另一个三角尺,引导学生分别说出三个角的度数:90度、45度、45度。
提问:请同学们任选一个三角尺,算出他们三个角一共多少度?
学生计算后指名回答。
师:三角尺三个角的和是180度。
提问:是不是任一个三角形三个角的和都是180度呢?请同学们在自备本上任画一个三角形,量出它们三个角分别是多少度,再求出它们的和,然后小组内交流。
学生小组活动,教师了解学生情况,个别同学加以辅导。
全班交流:让学生分别说出三个角的度数以及它们的和。
提问:你发现了什么?
:任何一个三角形三个角的和都是180度。利用三角形的这一性质,我们可以解决许多问题。
要求学生先计算,再用量角器量,最后比较结果是否相同?让学生说说计算的方法。
教师说明:即使结果不完全一样,是因为测量的结果存在误差,我们还是以。
计算的结果为准。
完成想想做做的题目。
三角形的内角和的教案篇七
本节课的教学先通过计算三角尺的3个内角的度数的和,激发学生的好奇心,进而引发三角形内角和是180度的猜想,再通过组织操作活动验证猜想,得出结论。
1、让学生通过观察、操作、比较、归纳,发现三角形的内角和是180。
2、让学生学会根据三角形的内角和是180°这一知识求三角形中一个未知角的度数。
3、激发学生主动参与、自主探索的意识,锻炼动手能力,发展空间观念。
三角板,量角器、点子图、自制的三种三角形纸片等。
看了这2个算式你有什么猜想?
(三角形的三个角加起来等于180度)。
1、画、量:在点子图上,分别画锐角三角形、直角三角形、钝角三角形。画好后分别量出各个角的度数,再把三个角的度数相加。
老师注意巡视和指导。交流各自加得的结果,说说你的发现。
2、折、拼:学生用自己事先剪好的图形,折一折。
指名介绍折的方法:比如折的是一个锐角三角形,可以先把它上面的一个角折下,顶点和下面的边重合,再分别把左边、右边的角往里折,三个角的顶点要重合。发现:三个角会正好在一直线上,说明它们合起来是一个平角,也就是180度。
继续用该方法折钝角三角形,得到同样的结果。
直角三角形的折法有不同吗?
通过交流使学生明白:除了用刚才的方法之外,直角三角形还可以用更简便的方法折;可以直角不动,而把两个锐角折下,正好能拼成一个直角;两个直角的度数和也是180度。
3、撕、拼:可能有个别学生对折的方法感到有困难。那么还可以用撕的方法。
在撕之前要分别在三个角上标好角1、角2和角3。然后撕下三个角,把三个角的一条边、顶点重合,也能清楚地看到三个角合起来就是一个平角180度。
小结:我们可以用多种方法,得到同样的结果:三角形的内角和是180。
4、试一试。
三角形中,角1=75,角2=39,角3=()。
算一算,量一量,结果相同吗?
1、算出下面每个三角形中未知角的度数。
在交流的时候可以分别学生说说怎么算才更方便。比如第1题,可先算40加60等于100,再用180减100等于80。第2题则先算180减110等于70,再用70减55更方便。第3题是直角三角形,可不用180去减,而用90减55更好。
指出:在计算的时候,我们可根据具体的数据选择更佳的算法。
可先猜想:两个三角形拼在一起,会不会它的内角和变成1802=360°呢?为什么?
然后再分别算一算图上的这三个三角形的内角和。得出结论:三角形不论大小,它的内角和都是180°。
3、用一张正方形纸折一折,填一填。
4、说理:一个直角三角形中最多有几个直角?为什么?
一个钝角三角形中最多有几个直角?为什么?
第4、5题。
三角形的内角和的教案篇八
一、说课内容:北师大版义务教育课程标准实验教材小学数学四年级下册第二单元第三节----《三角形的内角和》一课。
二、教材分析:
在这一环节我要阐述四方面的内容:
1、三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,教材呈现教学内容时,安排了一系列的实验操作活动。让学生通过探索,发现三角形的内角和是180度。
2、学情分析:
学生已经知道了三角形的概念、分类,熟悉了各角的特点,掌握了量角的方法。也可能有部分学生知道了三角形内角和是180°的结论。
3、教学目标:
a、让学生亲自动手,发现,证实三角形的内角和等于180度。并能初步运用这一性质解决有一些实际问题。
b、在经历“观察、测量、撕拼、折叠”的验证的过程中培养学生观察能力,归纳能力、合作能力和创造能力。
4、教学重难点:
经历三角形的内角和是180度这一知识的形成,发展和应用的全过程。
5、教学难点:
让学生用不同方法验证三角形的内角和是180度。
三、教学准备:
在备课过程中,我阅读了农远光盘中多位名师的教学案例来完善自己的教学设计,并收集了农远光盘中的多媒体课件,用课件适时播放。
四、教法分析
为了使教学目标得以落实,谈谈本课的教法和学法。新课程标准强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。要激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索,解决数学问题,发现数学规律,获得数学经验;而教师只是学生学习的组织者、引导者和合作者。我采用了趣味教学法、情境教学法、引导发现法、合作探究法和直观演示法。
五、学法分析
在学法指导上,我把学习的主动权交给学生,引导学生通过动手、动脑、动口,积极参与知识形成的全过程。体现了学生动手实践、合作交流,自主探索的学习方式。
六:教学流程:
(一)猜迷激趣,复习旧知。,
兴趣是最好的老师,开课我出示了一则谜语。调动学生学习的积极性。
形状是似座山,稳定性能坚。三竿首尾连,学问不简单。(打一平面图形)
由谜底又得出了一个对三角形你们有哪些了解的问题,唤醒学生头脑中有关三角形的知识,同时很自然引出对“三角形内角和”一词的讲解,为后面的探索奠定基础。
(二)创设情境,巧引新知(课件出示)
(三)验证猜想,主动探究。
本环节是学生获取知识、提高能力的一个重要过程。我有目的、有意识的引导学生主动参与实践活动、经历知识的形成过程。
“你能运用已有的知识和身边的学具想办法验证你的猜想吗?”学生思考片刻后,我出示学习提纲:
a、先独立思考,你想怎样验证?
b、再小组合作探究,运用多种方法验证。
c、最后汇报,展示你的验证方法。
1.量角求和
这个验证方法应是全班同学都能想到的,因此,在这一环节我设计了小组活动的形式。让小组成员在练习本上任意地画几个三角形进行测量并记录。学生通过画、量、算,最后发现三角形的三个内角和都是180度。
2.拼角求和
通过讨论,有的小组可能会想到把三个角撕开,再拼在一起,刚好拼成了一个平角,由于学生在以前学过平角是180度,很快就发现这三个三角形的内角和都是180度。为了让全班学生能够真切,清晰地看到撕拼的过程,我利用了多媒体课件进行了演示。(课件出示)课件播放后学生一目了然,攻克了本课的一个教学重点。
3.折角求和
有的小组还可能想到把三个角折在一起,也刚好形成一个平角。但如何折才能够使三个内角刚好组成平角呢?这一验证方法是本课教学的一个难点。
在学生展示完验证方法后,我又让每位学生选择自己喜欢的方法,再去验证刚才的发现。最后归纳出结论:所有三角形的内角和都是180度。
(四)应用新知,解决问题。
数学离不开练习。本节课我把图像、动画等引入课件,使练习的内容具有简单的背景与情节,使学生对解题产生了浓厚的兴趣。
我设计了四个层次的练习:有序而多样。
1)基本练习:让学生通过这一习题,掌握求未知角的一般方法。
2)实践运用:这一习题的设计是为了让学生知道生活中到处都有数学,数学能解决生活实际问题,真切体验到学的是有价值的数学。
3)巩固提高:使学生了解在间接条件下求未知角的方法。
4)拓展延伸。让学生体会到数学中辅助线的桥梁作用,在潜移默化中渗透一个重要数学思想―――转化,为以后学习数学打下坚实的基础。
(五)全课小结完善新知
1、这节课我们学到了什么知识?2、你有什么收获?
通过学生谈这节课的收获,对所学知识和学习方法进行系统的整理归纳。
(六)板书设计
三角形的内角和
量角撕拼折角拼图
三角形的内角和是180度。
六、说效果预测:
本课中,学生通过动手操作,测量、撕拼、折叠等实验活动,得到的不仅是三角形内角和的知识,也使学生学到了怎么由已知探究未知的思维方式与方法,培养了他们主动探索的精神。促进学生良好思维品质的形成,达到预想的教学目的。使学生在探索中学习,在探索中发现,在探索中成长!
三角形的内角和的教案篇九
通过猜想、验证,了解三角形的内角和是180度。在学习的过程中进一步激发学生探索数学规律的兴趣,初步感知计算多边形内角和的公式。
课前准备:
电脑课件、学具卡片。
出示三角尺中的一个,提问:谁来说说三角尺上的三个角分别是多少度?
引导学生说出90度、60度、30度。
出示另一个三角尺,引导学生分别说出三个角的度数:90度、45度、45度。
提问:请同学们任选一个三角尺,算出他们三个角一共多少度?
学生计算后指名回答。
提问:是不是任一个三角形三个角的和都是180度呢?请同学们在自备本上任画一个三角形,量出它们三个角分别是多少度,再求出它们的和,然后小组内交流。
学生小组活动,教师了解学生情况,个别同学加以辅导。
全班交流:让学生分别说出三个角的度数以及它们的和。
提问:你发现了什么?
:任何一个三角形三个角的和都是180度。利用三角形的这一性质,我们可以解决许多问题。
要求学生先计算,再用量角器量,最后比较结果是否相同?让学生说说计算的方法。
教师说明:即使结果不完全一样,是因为测量的结果存在误差,我们还是以计算的结果为准。
三角形的内角和的教案篇十
1.使学生经历自主探索三角形的内角和的过程,知道三角形的内角和是180°,能运用这一规律解决一些简单的问题。
2.使学生在观察、操作、分析、猜想、验证、合作、交流等具体活动中,提高动手操作能力和数学思考能力。
三角形的内角和的教案篇十一
一堂好课不应是自始至终的高潮和精彩,也不必是高科技现代教育技术的集中展示。一堂好课不是看它的热闹程度,而在于学生从中得到了什么,它留给人们的应是思考、启示和回味。2月19日上午,在沈家门第一小学,我有幸聆听了赵斌娜老师执教的《三角形的内角和》一课,这就是一堂好课。
赵老师营造了宽松和谐的课堂气氛,让学生能主动参与学习活动,既关注了学生的个人差异和不同的学习需求,又注重了学生的个体感悟,强调情感体验的过程。确立了学生在课堂教学中的主体地位,使学生在学习过程中既调动了积极性,又激发了学生的主体意识和进取精神。学生在自主、合作、探究的学习方式中互相激励,取长补短,能团结协作,最终形成了相应能力;同时培养了学生刻苦钻研,事实求是的态度。
教学过程是一堂课关键中的关键,新课标提出数学教学是数学活动的教学,而数学活动应是学生自己建构知识的活动。教师让学生“在参与中体验,在活动中发展”。本节课有操作活动、自主探索与合作交流、应用活动三个方面,下面我重点谈谈操作活动。
1、在实践材料上下了工夫。
操作实践的材料是精心选择的,老师为学生准备了用卡纸制作的形状、大小、颜色不同的三角形各几个,这样学生在操作时候,便于选择、测量、拼摆、观察、思考问题,而且这些三角形颜色醒目、比较大,学生应用起来很得手,操作的材料和学生的动手实践配合恰当。
2、找准时机让学生进行实践操作。
本节课安排了两次操作活动:一是在得出三角形内角和规律前进行实践操作,促使学生在实践操作中探究新知识;二是在初步得出规律之后,让学生通过实践操作来验证新知识。帮助学生清楚地认识到第一次出现内角和偏差的原因是测量误差造成的。给学生提供的这两次动手实践的机会,不仅提高了操作的效果,更重要的使“听数学”变为“做数学”。促使学生在“做数学”的过程中对所学知识产生了深刻的体验,从中感悟和理解到新知识的形成和发展,体会了数学学习的过程与方法,获得数学活动的经验。
3、把实践操作和数学思维结合起来。
学生通过实践操作获得的认识是一种感性的认识,是外在的直观的印象。在本节课中赵老师在学生实践操作的基础上引导学生把动手实践和数学思维结合起来,先让学生思考出可以用量、撕和拼的方法来推导三角形内角和的度数,接着引导学生说出量的方法,最后让学生实际测量。采取边说边操作,边讨论边操作的方式,让手、脑、口并用,在操作和直观教学的基础上及时对三角形内角和规律进行抽象概括。做到边动手,边思考。同时学生获得了一种数学思想和方法,学会了解决一些类似的一系列的问题,提高了实践动手的有效性。
三角形的内角和的教案篇十二
遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。《数学课程标准》指出,让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生提出问题、分析问题和解决问题的探究能力。
三角形的内角和的教案篇十三
《三角形的内角和》是九年制义务教育人教版四年级下册第五章《三角形》的第二节内容,本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过一些活动得出“三角形的内角和等于180°”成立的理由,由浅入深,循序渐进,引导学生观察、猜测、实验,总结。逐步培养学生的逻辑推理能力。
“问题的提出往往比解答问题更重要”,其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是“知其然而不知其所以然”,所以我特别重视问题的提出,再让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法。
本课的重点就是要让学生知道“知其然还要知其所以然”,所以在第二环节里。鼓励学生亲自动手操作验证猜想。为此,我设计了大量的操作活动:画一画、量一量、剪一剪、折一折、拼一拼、撕一撕等,我没有限定了具体的操作环节,但为了节省时间,让学生分组活动,感觉更利于我的目标落实。但在分组活动中,我更注意解决学生活动中遇到了问题的解决,比如说画,老师走入学生中指导要领,因此学生交上来画的作品也非常的漂亮。学生观察能力得到了培养。再比如说折,有的学生就是折不好,因为那第一折有一定的难度,它不仅要顶点和边的重合,其实还要折痕和边的平行,这个认识并不是每个学生都能达到的。教师也要走上前去点拨一下。再比如撕,如果事先没有标好具体的角,撕后就找不到要拼的角了……所以在限定的操作活动中,既体现了老师的“扶”又体现了老师的“放”。做到了“扶”而不死,“伴”而有度,“放”而不乱。我还制作了动画课件,更直观的展示了活动过程,生动又形象,吸引学生的注意力。使学生感受到每种活动的特点,这对他认识能力的提高是有帮助的。在此环节增加了学生的合作探究精神培养。
在归纳总结环节,有意识地培养学生的说理能力,逻辑推理能力,增强了语言表达能力。
最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,为了强化学生对这节课的掌握,我除了设计了一些基本的已知三角形二个内角求第三个角的练习题外,还设计了几道习题,第一道是已知一个三角形有二个锐角,你能判断出是什么三角形吗?通过这一问题的思考,使学生明白,任意三角形都有二个锐角,因此直角三角形的定义是有一个角是直角的三角形叫直角三角形;钝角三角形的定义是有一个钝角的三角形叫钝角三角形;而锐角三角形则必须是三个角都是锐角的三角形才是锐角三角形的道理。这道题有助于帮助学生解决三角形按角分的定义的理解。第二道题是一个三角形最大角是60°,它是什么三角形?通过对此题的研究,使学生发现判断是什么三角形主要看最大角的大小,如果最大角是锐角,也可以判断是锐角三角形。同时加深了学生对等边三角形的特点的认识和理解。第三题我拓展延伸到三角形外角,第四题我设计了多边形的内角和的探究。
三角形的内角和的教案篇十四
学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道三角形的内角和是180度的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。
三角形的内角和的教案篇十五
本节课的教学先通过计算三角尺的3个内角的度数的和,激发学生的好奇心,进而引发三角形内角和是180度的猜想,再通过组织操作活动验证猜想,得出结论。
1、让学生通过观察、操作、比较、归纳,发现三角形的内角和是180。
2、让学生学会根据三角形的内角和是180 这一知识求三角形中一个未知角的度数。
3、激发学生主动参与、自主探索的意识,锻炼动手能力,发展空间观念。
三角板,量角器、点子图、自制的三种三角形纸片等。
看了这2个算式你有什么猜想?
(三角形的三个角加起来等于180度)
1、画、量:在点子图上,分别画锐角三角形、直角三角形、钝角三角形。画好后分别量出各个角的度数,再把三个角的度数相加。
老师注意巡视和指导。交流各自加得的结果,说说你的发现。
2、折、拼:学生用自己事先剪好的图形,折一折。
指名介绍折的方法:比如折的是一个锐角三角形,可以先把它上面的一个角折下,顶点和下面的边重合,再分别把左边、右边的角往里折,三个角的顶点要重合。发现:三个角会正好在一直线上,说明它们合起来是一个平角,也就是180度。
继续用该方法折钝角三角形,得到同样的结果。
直角三角形的折法有不同吗?
通过交流使学生明白:除了用刚才的方法之外,直角三角形还可以用更简便的方法折;可以直角不动,而把两个锐角折下,正好能拼成一个直角;两个直角的度数和也是180度。
3、撕、拼:可能有个别学生对折的方法感到有困难。那么还可以用撕的方法。
在撕之前要分别在三个角上标好角1、角2和角3。然后撕下三个角,把三个角的一条边、顶点重合,也能清楚地看到三个角合起来就是一个平角180度。
小结:我们可以用多种方法,得到同样的结果:三角形的内角和是180。
4、试一试
三角形中,角1=75,角2=39,角3=( )
算一算,量一量,结果相同吗?
1、算出下面每个三角形中未知角的度数。
在交流的时候可以分别学生说说怎么算才更方便。比如第1题,可先算40加60等于100,再用180减100等于80。第2题则先算180减110等于70,再用70减55更方便。第3题是直角三角形,可不用180去减,而用90减55更好。
指出:在计算的时候,我们可根据具体的数据选择更佳的算法。
可先猜想:两个三角形拼在一起,会不会它的内角和变成1802=360 呢?为什么?
然后再分别算一算图上的这三个三角形的内角和。得出结论:三角形不论大小,它的内角和都是180 。
3、用一张正方形纸折一折,填一填。
4、说理:一个直角三角形中最多有几个直角?为什么?
一个钝角三角形中最多有几个直角?为什么?
第4、5题
三角形的内角和的教案篇十六
课程标准这样描述:通过观察、操作了解三角形内角和是180。
分析教材内容,在上学期的学习中学生已经掌握了角的分类及度量的知识。在本课之前,学生又研究了三角形的特性、三边间的关系及三角形的分类等知识。积累了一些有关三角形的知识和经验,形成了一定的空间观念,可以在比较抽象的水平上进一步认识三角形,探索新知。教材中安排了学生对不同形状的、大小的三角形进行度量,再运用拼、折、剪等方法发现三角形的内角和是180°,学好它有助于学生理解三角形的三个内角之间的关系,也是进一步学习其他图形内角和的基础,同时为初中进一步论证做好准备。
课前我对学情进行了分析:
1、学生在学习本课前已经掌握了锐角、直角、钝角、平角和周角的度数,认识了三角形的基本特征及其分类,由于学生的数学知识、能力和思考问题的角度有一定的差异,因此比较容易出现解决问题策略的多样化。
2、已经有不少学生知道了三角形内角和是180度的结论,但是很可能都知其然不知其所以然。
通过对课程标准的认识,以及内容分析和学情分析,我制定了这样的学习目标:
1、通过量、拼、折、剪等方法探索和发现三角形的内角和等于180°并会应用这一规律解决实际的问题。
2、通过研究直角三角形进而研究锐角三角形、钝角三角形,初步认识、理解由特殊到一般的逻辑思辨方法。
针对这一目标的完成,我设计了一下评价方式:
1、交流式评价:通过师生、生生对话交流,在交流中对学生进行评价。
2、表现性评价:通过小组讨论表现、学生回答问题情况,适当对学生进行点拨。
1、通过3个练习题(1、做一做。2、说一说3、拼一拼、想一想)
检测学习目标1的掌握情况。
教具准备:课件、3个直角三角形,2个锐角三角形、2个钝角三角形、一张表格
学具准备:三角板、量角器.
这节课的教学我通过一下四个环节完成。
1、观察猜测,引入新知;
2、动手操作,探索新知;
3、巩固新知,拓展应用;
4、总结评价、延伸知识。
第一环节,观察猜测,引入新知。
由图形引入,让学生指出锐角三角形,直角三角形,钝角三角形的三个内角,发现在这些三角形中最大的内角是钝角。问:想看钝角三角形72变吗?我们一起来看一看。课件演示:
(1)钝角变小,另外两个角怎样变?
(2)钝角变大,另外两个角怎样变?
(3)钝角变大、变大、变大再变大,还能再大吗?发现再大就成平角了。平角多少度?这时把三角形三个内角的加起来,和可能多少呢?猜测:180度。
第二环节,动手操作,探索新知。
1、直角三角形的内角和。
(一)直角三角形内角和
先让学生观察一副三角板的内角和,发现都是180度,和猜测是一样的,是不是所有的直角三角形内角和都是180度呢?课件出示一些直角三角形,让学生用手中的工具验证你的猜测。
四人小组合作,拿出学具袋里三个红色的直角三角形和表格,用不同的方法验证猜测。学生可以“量一量”,也可以“剪一剪”,还可以“折一折”。汇报时要让学生说一说方法,同时在课件上展示。
这个环节引导学生通过量、拼、推理等实践操作活动,自主探究直角三角形的内角和是180度,体验解决问题策略的多样化。通过这些过程使学生明白:探究问题有不同的方法、途径,并且方法之间可以互为验证,达到结论的统一,从而使学生明白获得探究问题的方法比获得结论更为重要。
(二)、锐角三角形、钝角三角形的内角和
课件出示将锐角三角形、钝角三角形,问:你能利用我们刚才学到的知识来研究它们的内角和吗?动手试一试,可以同桌讨论。(学生操作,汇报,课件演示)让学生模仿老师操作说理。由此得到了锐角三角形和钝角三角形的内角和也是180度。我们就可以说所有三角形的内角和都是180度。这是三角形的一个特性。
这样引导学生通过直角三角形的内角和是180度来推导出锐角和钝角三角形的内角和是180度,使学生初步掌握由特殊到一般的逻辑思辨方法。
第三环节、巩固新知,拓展应用
用三角形的这一特性来解决一些问题
1、基本练习
通过做一做和说一说这两个练习来强化学生认知。
2、拓展练习
拼一拼、想一想
(1)两个三角形拼成大三角形,说出大三角形的内角和
(2)一个三角形去掉一部分
引导学生发现,无论三角形的形状或大小如何改变,内角和都是180度,看来三角形的内角和度数和他的大小形状都无关。
(3)再把这个三角形剪去一部分剪成一个四边形,它的内角和是多少度?
(4)如果变成五边形,你还能求出他的度数吗?
充分利用多媒体资源帮助学生理解、消化、新的知识,能够灵活的运用三角形的内角和等于180度。在此基础上渗透数学的“转化”思想和“分割”思想提高学生灵活运用和推理等各方面的能力。
第四环节、总结评价、延伸知识
通过这个环节让学生谈一谈自己的收获或感受,对本节课的知识进行拓展升华。
三角形的内角和
猜测(180度)
验证:测量、撕拼、折叠结论
三角形的内角和是180度
我的板书简明扼要,体现了本节课的重点,而且是对本节课学习方法的一个回顾。
三角形的内角和的教案篇十七
(1)知识与技能:
掌握三角形内角和定理的证明过程,并能根据这个定理解决实际问题。
(2)过程与方法:
通过学生猜想动手实验,互相交流,师生合作等活动探索三角形内角和为180度,发展学生的推理能力和语言表达能力。对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。逐渐由实验过渡到论证。
通过一题多解、一题多变等,初步体会思维的多向性,引导学生的个性化发展。
(3)情感态度与价值观:
通过猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,提高学生的学习数学的兴趣。使学生主动探索,敢于实验,勇于发现,合作交流。
三角形的内角和的教案篇十八
三角形的内角和定理及推论:
三角形的内角和定理:三角形三个内角和等于180°。
推论:
(1)直角三角形的两个锐角互余。
(2)三角形的一个外角等于和它不相邻的来两个内角的和。
(3)三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。
【本文地址:http://www.pourbars.com/zuowen/10618579.html】