高等数学教学总结(专业17篇)

格式:DOC 上传日期:2023-11-11 11:17:04
高等数学教学总结(专业17篇)
时间:2023-11-11 11:17:04 小编:QJ墨客

总结可以帮助我们发现问题,总结经验,提高自己的学习和工作效率。总结要注意语言简练,精准准确,避免冗长和啰嗦。希望这些总结范文能够给大家带来一些启发和帮助,引导大家写好自己的总结。

高等数学教学总结篇一

高等数学是民办高等院校课程设置中的重要内容,高等数学可以很好的培养学生的基本能力,使学生形成良好的数学思维,由于这个原因,我们十分有必要想办法提高民办高校高等数学的教学效果。本文简要的分析了我国现阶段大部分民办高等院校的的高等数学教学的现状,对民办高校高等数学的教学提出了一些合理化的建议。

民办高校的大部分学生的数学基础相对比较薄弱,民办高校的学生也没有很强的学习积极性,因此高等数学的教育工作者很难把握学生具体应该学习什么内容,学习什么样的程度,这就给老师进行因材施教带来了难度,民办高校的高等数学教师一般来说都是数学专业毕业的,对学生的专业课不太了解,这就导致了民办高校的老师在讲授高数课的时候不知道应该怎样凸显高数在学生专业课中的重要作用,从而使得学生学到的高等数学知识不能很好的运用到相应的专业课当中去。还有一点就是目前的民办高校教师在授课过程中,大部分采用传统的授课方式,大部分还是“填鸭式”的教学方式,这种教学方式非常不利于学生的学习,特别是不利于数学基础不好的同学进行数学的学习,这样一来就加剧了学生们对于高等数学课程的恐惧感,部分学生甚至会产生厌学情绪。

二、针对民办高校高数分层教学的实践。

民办高校的学生具有基础起点比较低、层次比较多、学生之间的差距比较大等特点,我们可以尝试采用下面的分层教学方案进行高等数学的教学工作:

在新生入学的时候,我们可以对学院里面的所有学生进行一次问卷调查,初步掌握学生的数学基础,或者参考新生入学时候的高考成绩,这样做可以为以后的分层教学做好准备。一个学院的学生,我们要保证他们所修课程的学分一致,在问卷调查和入学成绩的基础上根据学生的不同的学习能力以及态度,将学生按照一定的的比例分为a、b、c三个层次,然后在根据分层的情况进行高等数学的分层教学。

1.a层次的学生数学基础比较差,缺乏良好的数学思,理解数学知识的能力也不够强,a层次的学生对于学过的知识往往不能很好的掌握,所以他们的成绩一般来说不会太理想,因此,a层次的学生对于高数课的标准就仅仅限于及格就可以了,民办高校高等数学的任课教师在进行高等数学的教学过程中应该把课本中的基础知识作为重点内容,让学生们能够很好的完成基础题,加强学生对于高等数学基础知识的理解和记忆,让班级里的大部分学生能够通过模仿例题解答高等数学课程当中最基本的问题。

2.b层次的学生数学思想和基础以及学习态度都比较好,能够很好的掌握高等数学的基本知识,也具备良好的学习方法,但是这个层次的学生往往缺乏独立思考的能力和深入探究的兴趣!因此,对于b类学生来说,高等数学的授课教师在进行高等数学教学工作的时候,应该多多注意教学方法的创新,让课堂变得更加的丰富多彩。

3.c层次的学生数学思想和基础以及态度都非常好,有良好的学习习惯和强烈的学习积极性,这个层次的学生大部分都希望自己能够考上研究生到更好的院校进行学习,因此这类学生对于知识的需求量非常大。对于这个层次的学生,民办高校的高等数学授课老师在教学过程中应该更多的采用启发式教学,除此之外还应该更多的联系考研内容。

在学完一定的章节之后,我们要让学生进行一定的练习来巩固课堂教学效果,民办高校的高等数学教育工作者在布置作业的时候,就要考虑不同层次学生的接受能力,分层次布置作业,比如:给a层次的学生更多的布置基础题,这样能够很好的避免学生抄袭作业的现象,提高学生的学习积极性;b层次学生在做练习的时候应该把基础题作为主要的练习内容,在此基础上稍微的加入一点点提高的练习内容,这样可以很好的提高教学效果,c层次则应该把提高的题目作为主要的练习内容,积极地在作业中融入考研题型,为这个层次的学生将来的考研打下良好的基础,提高学生的数学能力。

三、结语。

在高等数学的教学工作中积极的实施分层次教学方式对民办高校来说还是比较新颖的的教学模式,机遇与挑战并存,与此同时我们应该意识到,在高等数学教学工作中实施分层次教学也对高等数学的授课老师提出了全新的、更高的要求,实施分层次教学的时候需要高等数学的授课教师不仅仅要具备良好的数学素养,而且要了解学生专业课的有关内容,从而有针对性的制定出不同专业所需的不同的高数教学计划,并在教学过程积极实践,这样可以使高等数学的教学工作升上一个新的台阶。

高等数学教学总结篇二

在成教的高等数学教学中,根据教学大纲的要求,适当对高等数学的教学内容进行修改,尤其是在讲课的方式中,对各个知识点的讲解要把握住“度”。比如,函数的概念在各个教材中对函数的定义写得都比较抽象,那么在面对成教学生的教学过程中可以强调学生们抓住函数定义的关键词“唯一”,对于自变量的任意一个取值,因变量必须有唯一的值与之对应,所以在理解函数定义的时候,最关键就是理解“唯一”两个字[3]。在授课过程中,把掌握基本知识、基本概念、基本定理放在首位,提高学生们解决问题、分析问题的能力,不必过分追求高等数学的严密性。又比如讲解导数定义时,可以引入物理学中速度的相关知识,从路程与速度之间的关系引入导数的定义,使学生们更容易理解导数的概念。教学中注重新旧知识之间的联系,帮助学生建立起知识体系,降低知识的难度。

当代的高等数学知识已应用于各个学科领域,比如工科、经济学、管理学,但是绝大多数高等数学教材重理论轻应用,对于高等数学在应用方面的重视程度不够。教师在高等数学的讲授过程中,应针对不同的专业讲授的侧重点不同,当然这对教师也提出了更高的要求,要求授课教师不仅仅掌握数学知识,对其他专业课的知识也应该有所涉猎。在讲授过程中,应尽量与该专业的专业知识相结合。比如对于经管类学生,当讲到函数单调性判别的时候,应把该节内容与价格策略的制定相结合,把经济学中价格弹性的概念与函数单调性的判别相结合,以此为根据,制定价格策略,并可以把此概念与生活中遇到的实际情况相结合。根据函数的单调性的相关知识可以得到结论,对于富有弹性的商品,如电脑、手机,应该适当地提高商品的价格,可以使总收益增加;对于缺乏弹性的商品,如粮食、商品房,应该适当地降低商品的价格,可以使总收益增加。即增加了课堂的趣味性,又能把抽象的数学知识与专业课知识相结合。

3.1.3把数学建模的相关知识运用于教学。

在高等数学的教学中,数学软件的应用已相当普遍,如matlab、lingo等,对于数学上繁琐的计算,借助于数学软件更容易实现。在实际的教学过程中,可以把数学建模的思想运用到成教的课堂上,并借助数学软件来实现,可以让学生们见识到数学强大的解决实际问题的力量。在面对成教学生的教学过程中,把数学建模的相关知识运用于教学,可以使学生们在学习数学知识的同时,掌握解决问题、分析问题的方法,培养学生的数学思维能力。

3.2.1培养学生的自学能力。

在教学方法上,应运用多元化的教学模式,不拘泥于传统的教学方法,除了课堂讲授外,还可以引导学生去思考学习,成立小组讨论等方法。根据笔者多年在成教授课的经验,多种教学方法的搭配,不仅增加了课堂活跃的气氛,也提高了学生们学习的兴趣,把被动学习变为主动学习,对于基础较差的成教学生,可以启发他们多思考,促进学生思维的发展。在学习方法上,强调自学的重要性,引导学生联想沟通各个概念、定理之间的关系,找到解决数学问题的办法。

3.2.2现代教学技术的应用。

在多媒体出现之前,高等数学的教学仅仅是黑板加粉笔的模式,多媒体的出现彻底地改变了这一教学模式,运用多媒体教学不仅丰富了课堂的内容,而且能够形象生动地讲解高等数学概念,比如导数的几何意义,仅仅借助于黑板加粉笔,并不能很好地表现,尤其是导数的定义本质上是一种极限,而极限是一个动态的变化过程,借助于多媒体手段可以很轻松地实现曲线的割线是如何随着自变量的改变量而趋向于零,使学生能够更形象地理解导数的几何意义。又比如定积分的概念,由于过去传统教学模式的局限性,完全靠教师的教学经验去描述定积分的几何意义,借助于多媒体设备,可以运用数学软件设计动画图像,动态地描述定积分的几何意义,可以更加深学生们对定积分定义的理解。多媒体教学使得教学更加直观生动,当然,传统的教学手段也不可少,在具体的教学实际中,应把多媒体教学与传统的教学手段相结合,这样会使教学效果更好。

3.2.3通过互联网建立答疑系统。

由于成教学生普遍基础较差,对抽象的高等数学知识理解起来会有一定的难度,这就要求授课教师能及时解答学生们提出的问题。在传统的教学过程中,很多教师往往只注重对题目的解释,而忽略解题的思维过程。通过互联网技术,将教师对题目的解答经验放在互联网上,建立解答系统,并定期更新,不断地丰富解答方法和思路,使学生们可以非常方便地获取相关知识,并建立“解答问题聊天室”或者是通过“yy语音”及时解答学生们提出的问题。在“解答问题聊天室”中有很多题目同学们通过相互间的讨论就可以得到答案,教师只需做适当的引导即可,这样不仅把教师从重复性劳动中解脱出来,而且还可以使得同学们通过讨论,加强对知识的理解。

高等数学分层次教学是因材施教原则在高等数学教学中的具体运用,它根据因材施教的原则,对不同成绩、不同基础的学生提出差异化的教学目标,运用不同的教学手段,通过不同的教学过程来实施高等数学的教学工作[4]。这种教学方法更适合于数学基础不同的学生,更符合学生的实际情况,可以有效地调动学生的学习积极性,尽可能地挖掘学生的潜力。在我国教育教学的很多学科中都有分层次教学的相关理论研究,但是对于如何将分层次教学运用于成人教育的高等数学教学中,相关的理论叙述很少。鉴于全日制学生和成教学生有很大的区别,如果直接把已有的相关理论和经验运用于成教高等数学教学中,未必会取得很好的效果,所以,必须结合成人教育的特殊情况,针对成教学生设计更适合的分层次教学方法。比如,针对不同数学基础的成人教育学生制定不同的教学目标,改革分班授课的传统模式,引入分级分班授课。

4结束语。

由于成人教育自身的特点,对于成教学生的高等数学教学是一个非常有必要深入研究的课题。不仅仅要因材施教,更重要的是,应该“因人施教”,成人教育中的高等数学教学需要与时俱进,不断调整教学方法来提高教学质量,达到教学目的。作为该课程的授课教师,应该始终将数学课程的教学方法与日常的教学科研紧密结合起来,不断地更新教学观念,为培养具有较高数学素质的科技人才做出应有的贡献。

【参考文献】。

[1]张芯蕊.浅谈成人高等数学的教学方法[j].高校教育研究,,(4):177—179.

[2]黄翔,李开慧.基于数学新课标的高师数学教育课程改革研究与实践[j].重庆师范大学学报(自然科学版),,(7):116—118.

[3]邵志强.提高高等数学教学质量的有效途径[j].福州大学学报(哲学社会科学版),,(9):36—37.

[4]冯保平.成人教育中高等数学分层次教学探索[j].现代企业教育,,(6):121—122.

高等数学教学总结篇三

(1)许多高等数学教师,在课件制作方面缺少自己的元素,甚至直接利用别人的课件,重复而缺乏创新,不能因材施教。在高等院校,尤其是财经类院校,各个专业的学生,数学基础差别很大,因此必须针对学生,设计出适合自己学生的课件。

(2)许多教师的课件多数用ppt,以展示为主,由原来的“书本灌输”转为“电子灌输”。对于《高等数学》的教学,在整个课堂上,都用ppt展示的话,讲课速度会很快,短时间内向学生传达较多的知识,对于基础薄弱的学生,在高容量、高效率的课堂上往往显得手忙脚乱,学习非常吃力。有些学生计算过程还不太清楚,课件已经转入下一页,想看上一页的内容,却无法看到,出现了衔接的问题。这样学生对下面的内容更是稀里糊涂,导致教学效果不好。这一点不像板书,整个黑板能展示很多内容,学生想看哪块知识点,都能看到。这样就要求板书与课件能很好地结合。

(3)现代化的教学手段也引起教师没有教案,有些教师离开课件,就无法授课的局面,往往对授课的难点和重点把握不好,条理不清楚,影响教学效果。而写教案是上好每节课的保障,这样可以让教师在上课的时候有总体思路,而且还能标注主题、重点、难点等。教师有了ppt,就忽视课前备课,讲课时经常出现页页间的衔接问题。同时,现代教学手段也使得许多学生不记笔记,而记笔记是参与教学的一种方式,通过记笔记去记忆、思索、提取重点、汇聚注意力等。

二、如何提高现代教育技术。

在《高等数学》教学中的应用针对上面存在的问题,结合笔者的教学经验,认为应该从以下几个方面进行改进:

(1)制作合理的课件高等数学教师应适当参考别人课件,吸取他们的优点,去掉缺点。重要的是要根据教学内容和学生的实际情况,对课件进行合理的调整和修改,制作出适合自己学生的课件。例如对金融专业的学生,针对教学内容,可以讲些关于金融方面的例题,这样既增加了实用性,也能激起学生的学习兴趣。同时,高等数学教师之间应该加强课件制作的交流与协作,讨论哪些内容应该写在课件里,争取把最优秀的课件展现在课堂上。

(2)多媒体和板书合理结合根据《高等数学》学科特点,不是所有内容都适合用计算机技术来表现的。在新概念的引入或一些比较抽象的缺乏直观性的内容上,例如:极限和导数的概念、定积分的概念、旋转体的体积、多元函数的图像等内容都适合用多媒体课件进行教学。这样可以使学生更能直观地理解抽象的概念。然而对于一些计算的内容,例如求极限、求导数、求不定积分等内容,用传统的板书更适合学生掌握解题思路,方便教师和学生的交流。如果解题步骤也通过多媒体展示,学生思考的时间比较少,会影响问题的理解。因此,这就要求教师在备课的过程中,一定要处理好哪些用课件展示,哪些用板书来教授,做到课件和板书的合理结合,从而达到最优的教学效果。

(3)充分利用网络平台可以通过学校的网站平台,上传整理的电子教案、典型习题解答、单元自测练习、知识难点解析,以及往年试卷、教学大纲,供教师和学生下载。建立教师辅导、答疑版块,使教师能和学生更好地交流,使得学生能及时解决问题。在我们系里,就建立了qq群,每天安排一个教师在线答疑,这样学生当天的问题可以及时地解决,可以很好地进行下面的学习。

三、结语。

总之,现代教育技术是教师专业发展的核心动力,是渗透教师专业发展各个层面的核心内容。因此在《高等数学》教学中,必须很好地结合现代教育技术,克服缺点,发扬优点,把《高等数学》和现代教育技术很好地结合在一起,从而促进《高等数学》的教学质量的提高。

高等数学教学总结篇四

经济学是考察社会经济现象、行为及其规律的学科,而计量经济学则是揭示经济学理论所考察的社会经济现象之间的数量规律。计量经济学的学习与应用能力,关键取决于能否运用经济学的思维方式观察理解经济现象,能否构建恰当的经济模型,能否准确进行参数估计与模型检验,使研究结论客观反映经济规律,进而为政策决策提供有意义的参考。目前,虽然计量经济学已被列为高等院校经管类各专业的重要课程,但我国计量经济学教学与研究与发达国家相比还有较大差距,进一步培养好计量经济学人才任重道远。为更好提升学生学习和应用能力,应着重从以下方面入手进行计量经济学人才的培养。

(一)有助于培养学生观察与分析经济现象的能力。

计量经济学重在培养学生基于经济学理论观察社会经济现象,勇于提出问题。譬如,在研究通货膨胀时,学生应回顾成本推动型、需求拉动型等通胀形成机制,思考这些理论能否解释现实。以始于下半年的通货膨胀为例,显然,每个人都经历与感知到了该轮通货膨胀对自身的影响,企业家感觉到原材料上涨,居民感觉到菜价上涨,学生发现食堂饭菜价格上升。对于计量经济学的学生来说,首先要思考此轮通胀的原因与货币供给过多是否相关,进而要思考此轮通胀与过去通胀是否存在相同特征。教师要将这些问题引入课堂,适时引导学生思考与研究社会经济现象,这实质就是培养学生学习与研究计量经济学的能力。

(二)有助于培养学生研究社会经济现象的能力。

计量经济学教学是引导学生应用经济学理论理解经济问题的过程。由于社会经济现象的形成机制非常复杂,对同一经济现象经济学家存在不同的看法。经济学理论和计量经济学方法发展日新月异,这种快速的知识更新使得师生需要不断学习与研究。此外,经济现象本身也伴随经济体制、运行机制与经济结构的变化而发生复杂变化,对这些日益复杂的现实经济现象的深入考察,也考验着我们运用计量经济模型的能力。因此,深刻理解经济现象及其背后的机制,重在能否正确应用计量经济学。仍以通胀现象为例,学生可能首先联想到的是货币需求函数,此时,教师可以引导学生比较分析消费价格指数(cpi)与广义货币(m2)的时间序列数据。通过观察,m2增速于20起快速下降,但与此同时,通胀却表现出持续上涨的态势。该现象提醒我们,若以非线性货币需求函数建模,则可以揭示通胀与货币需求间的复杂关系。为此,适时引导学生针对我国特定的数据,探索性研究通胀与货币需求间的复杂关系,能够培养其学习与解决问题的能力。

(三)有助于培养学生研究计量经济理论的能力。

高等教育的重要落脚点是开发学生创新能力。在计量经济学学习中,学生的创新能力体现于能否发展计量经济学理论。比如,通过引导学生观察通胀现象,逐步提出以下问题:如何检验通货膨胀与m2是否是平稳序列?这两个变量是否存在协整关系?该关系是否具有非对称、非线性的特征?怎样检验与估计非对称、非线性的长期均衡关系?要回答以上问题,必须学习与发展计量理论,这需要我们拓展既有非平稳时间序列分析的理论与方法。因此,在研究中准确理解与应用相关理论与方法,特别是针对数据特征拓展计量理论,是培养与提升学生学习与应用能力的重点。

现代计量经济学的主要内容有:单位根检验与基于非平稳变量的建模技术;描述经济现象复杂动态性的模型;使用面板数据建立的模型。这些理论与方法与之前的经典计量经济学相比存在较大区别,为使教学与现代计量经济学的发展相适应,许多教师从教材改革、教学方法创新、突出实验教学等角度思考了计量经济学的教学方法改革。基于培养学生能力这一角度,借鉴以往教学改革的有益建议,结合我国计量经济学教学的现实状况,在计量经济学教学实践中,尝试从以下方面践行教学活动。

(一)立足引导与启发。

首先要清晰讲授相关概念、理论和方法,梳理知识之间的内在联系,适时对学生提出问题,培养其智能。例如,在讲解参数估计量的线性无偏最小方差性质中,应分析估计量是被解释变量的线性样本组合,从而引导学生认识估计量的本质,在理解估计量为一个随机变量的基础上,提出其是否服从特定的分布,最终引导学生理解估计量的方差以及对备选估计量的方差分析比较。基于估计量的有效性,再讲解渐进无偏与渐进最优估计量。接下来,适时展示线性无偏最小方差估计量的仿真结果,以此引导学生理解基本的计量经济理论,把引导学生学习和“教会学生学习”一体化。

(二)贯穿“理论、方法和应用”三位一体。

在教学中因势利导,从经典计量经济学适当拓展到现代计量经济学,并据此阐释计量经济学的相关理论,注重学生的学习反应,清晰介绍相关前沿理论。培养学生学习与应用计量经济学的能力重在:一要阐释回归分析的产生背景及其内涵;二是要培养学生根据我国数据构建计量模型的能力;三是要根据学生的实际情况对讲授内容进行延伸。计量经济学前沿的理论与方法集中在文献中,应根据学生的知识基础与结构从教材延伸至文献中。比如,在讲授异方差时,适时引出arch模型及其应用;在讲授面板模型时,适时延伸到动态面板模型与广义矩估计,并结合我国各省市城镇居民收入的面板数据,介绍动态面板模型和广义矩估计的分析思路。这种适时适度地引申新的知识,不但使学生深入理解基础概念,还启发学生拓展知识进行应用研究。

(三)充分利用蒙特卡洛仿真技术。

针对学生对计量经济学理论望而生畏的现状,我们利用蒙特卡洛仿真技术,通过编程将计量经济学中晦涩难懂的估计与检验理论转化为仿真结果,使得学生对抽象数学公式的模糊认识,转化为对仿真图形直观深入的理解。比如,线性无偏有效估计量的统计含义,既是参数估计中最基础的知识,又是大多数学生难懂的部分。在教学中采用仿真实验和仿真图形,让学生对抽象的计量理论产生直观的认识。又如,模型的误设定(如随机误差项的异方差性)及其导致的相应后果,是学习传统线性计量模型基本假设的重点,由于需要较强的数理统计学基础,这部分内容不但学生难理解,也是教师难以诠释清楚的问题。通过仿真实验结果能够形象展示违背经典计量经济假设下所导致的结果,促进学生对设定正确模型的重要意义产生深刻理解。这种仿真实验的教学模式不仅避免数学方面繁杂的推导过程,防止学生对计量经济理论“望而生畏”,还培养了其创新性的学习与研究能力。

不断创新教学方法,培养学生对计量经济学的学习兴趣与解决问题的能力,是“学生主动学习”与“干中学”这种新型教学理念的出发点与落脚点。在教学实践中,我们采用如下策略。

1.在课堂讲授中有意识地提出问题,与学生互动,共同讨论问题,适时延伸问题,将学生引入到对相关前沿文献的学习。例如,为何采用标准差衡量估计量的精度?ols与广义gmm的估计原理区别在哪?单位根检验统计量的概率分布为何区别于常规分布?通过不断提出类似问题,与学生“互动式”讨论并且解答问题,不仅可以启发学生的思维向深度与广度发展,还有助于激发其学习积极性。

2.在课堂教学中协调理论讲授、案例分析、实验教学之间的关系。课堂教学的核心是模型设定、参数估计与假设检验等,案例分析和实验教学的目的在于帮助学生直观理解理论和方法,并促进其学以致用,能够进行经济学研究,但绝对不应以软件操作教学替代基础理论的教学。在讲解理论的基础上,适时操作相关的计量经济学软件,解释软件输出结果,是实现理论教学和实验教学融合的有效路径。

3.通过案例与数据分析,建立恰当的计量经济学模型,引导学生灵活运用。不管是经济学理论,还是计量经济学的研究,经济现象及其背后的运行规律是学生关注的问题。基于我国的实际例子讲授计量模型,容易激发学生对计量经济学的学习兴趣,能够有效促进学生应用所学知识解决现实经济问题的能力。针对计量经济学“难教、难学、难懂”,上述教学方法体现“学生主动学习”和“干中学”等先进教学理论的精神实质,不仅使学生带着浓厚的兴趣学习计量经济学,也开拓了其知识视野,培养学习、研究与应用计量经济学的能力。

高等数学教学总结篇五

我国是有着两千多年文明历史的国家,在不同的历史时期,教学形式各有不同。新中国成立以来,高等数学教育教学模式经历了多次改革的浪潮。新中国成立初期,受前苏联教育家凯洛夫教育理论的影响,数学课堂教学广泛采用的是“组织教学、复习旧课、讲授新课、小结、布置作业”五环节的传统教学模式,很多教学模式都是在它的基础上建立起来的。上世纪80年代,开始了新一轮高等数学教学方法的改革,这一时期教学模式的改革主要以重视基本知识的学习和基本能力的培养为主流,并带动了其他有关教学模式的研究与改革。近年来,随着现代技术的进步和高等数学教学改革的不断深入,对高等数学教学模式研究和改革呈现出生机勃勃的景象。从问题的解决到开放性教学;从创新教育到研究性学习;从高等数学思想和方法的教学到审美教学等,高等数学教学思想、方法和教学模式呈现出多元化的发展态势。现在比较提倡的教学模式有:数学归纳探究式教学模式;“自学—辅导”教学模式;“引导—发现”教学模式;“情境—问题”教学模式;“活动—参与”教学模式;“探究式教学模式”等。研究这些教学模式,能够学习和借鉴它们的研究思想和方法,为本文基于数学文化观的高等数学教学模式的建构提供方法论支持。

(1)“自学—辅导”教学模式,是指学生在教师指导下自主学习的教学模式。这一模式的特点不仅体现在自学上,而且体现在辅导上,学生自学不是要取消教师的主导作用,而是需要教师根据学生的文化基础和学习能力,有针对性的启发、指导每个学生完成学习任务。“自学—辅导”教学模式能够使不同认知水平的学生得到不同的发展,充分发挥学生各自的潜能。[3]当然,这一教学模式也有其局限性,首先,学生应当具备一定的自学能力,并有良好的自学习惯;其次,受教学内容的限制;此外,还要求教师有较强的加工、处理教材的能力。

(2)“引导—发现”教学模式,主要是依靠学生自己去发现问题、解决问题,而不是依靠教师讲解的教学模式。这一教学模式下的教学特点是,学习成为学生在教学过程中的主动构建活动而不是被动接受;教师是学生在学习过程中的促进者而不是知识的授予者。这一教学模式要求学生具有良好的认知结构;要求教师要全面掌握学生的思维和认知水平;要求教材必须是结构性的,符合探究、发现的思维活动方式。[3]运用这一教学模式就能使学生主动参与到高等数学的教学活动中,使教师的主导作用和学生的积极性与主动性都得到充分的发挥。

(3)“情境—问题”教学模式,该模式经过多年的研究,形成了设置数学情境;提出数学问题;解决数学问题;注重数学应用的较稳定的四个环节的教学模式,模式的四个环节中,设置数学情境是前提;提出数学问题是重点;解决数学问题是核心;应用数学知识是目的。[4]运用这一模式进行数学教学,要求教师要采取启发式为核心的灵活多样的教学方法;学生应采取以探究式为中心的自主合作的学习方法,其宗旨是培养学生创新意识与实践能力。

回顾我国高等数学传统教学模式可以发现,其主要的教学目标是知识与技能的培养,重视高等数学知识的传授多,与实际联系的少;关注学生数学知识点的学习,忽视数学素质的培养;强调了老师的主导作用,学生参与的少,使学生完全处于被动状态,不利于激发学生的学习兴趣。这不符合数学教育的本质,更不利于培养学生的创新意识和文化品质。

2.人文关怀失落。

我们不能否认,传统的高等数学教学模式有利于学生基础知识的传授和基本技能的培养,在这种课堂教学环境下,由于太过重视高等数学知识的传授,师生的情感交流就很缺乏,不仅学生的情感长期得不到关照,而且学生发展起来的知识常是惰性的,因而体会不到知识对经验的支撑。这就可能滋生对高等数学学习的厌恶情绪,导致学生对数学科学日益疏离,也造就了一些学生缺乏人文素养、创新素质的理性人格。[5]在这种数学课堂教学中,教师始终占据主导地位,尽管也在强调教学的启发性以及学生的参与,但由于注重外在教学目标以及教学过程的预设性,很少给教学目的的生成性留有空间。课堂始终按照教师的思路在进行,这种控制性数学教学是去学生在场化的教学行为,在这样课堂上,人与人之间完整的人格相遇永远退居知识的传递与接受之后。这无疑在一定程度上造成数学课堂教学中人文关怀的失落。

3.文化教育缺失。

高等数学文化知识不仅使学生了解数学的发展和应用,而且是学生理解数学的一个有效途径,从而提升学生的数学素质。数学素质是指学生学习了高等数学后所掌握的数学思想方法,形成的逻辑推理的思维习惯,养成的认真严谨的学习态度及运用数学来解决实际问题的能力等。[6]传统的高等数学教育过于注重传授知识的系统性和抽象性,强调单纯的方法和能力训练,忽略了数学的文化价值教育,对于数学发现过程以及背后蕴藏的文化内涵揭示不够;忽视了给数学教学创造合理的有丰富文化内涵的情境,缺少对学生数学文化修养的培养,致使学生数学文化素质薄弱。

数学是推动人类进步最重要的学科之一,是人类智慧的集中表达。学习数学的基本知识、基本技能、基本思想自然是数学教育目的的必要组成部分。数学的发展不同程度地植根于实际的需要,且广泛应用于其他很多领域,所以,数学的应用价值也是教育目的的一个重要部分。数学教育的目的,还有锻炼和提高学生的抽象思维能力和逻辑思维能力,使学生思维清晰、表达有条理。实现科学价值是数学教育一直不变的目标,但并不是唯一目标。数学的人文价值也是数学教育不可忽视的重要内容。在数学教育中,我们不仅要关心学生智力的发展,鼓励学生学会运用科学方法解决问题,而且也要关注培养有情感、有思想的人。同时,作为文化的数学,能够提升人的精神。[7]通过学习数学文化,能够培养学生正确的世界观和价值观,发展求知、求实、勇于探索的情感和态度。因此,笔者认为基于数学文化观的高等数学教育,就是要将其科学价值与人文价值进行整合。在数学文化教育的理论指导下,“基于数学文化观的高等数学教学模式”的教学目标为:以学生为基点,以数学知识为基础,以育人为宗旨,在传授知识,培育和发展智力能力的基础上,使学生体验数学作为文化的本质,树立数学作为一种既普遍又独特的与人类其他文化形式同等价值地位的文化形象,最终使学生达到对数学学习的文化陶醉与心灵提升,最终实现数学素质的养成。

分析上述高等数学教学模式发现,虽然现代教学模式已经打破了传统教学模式框架,但学生的情感态度、数学素质的培养不是其主要教学目标。学习和研究现代教学模式的研究思想和方法,使笔者认识到构建数学文化观下的高等数学教学模式,并不意味着对传统的教学模式的彻底否定,而是对传统的教学模式改造和发展。这是因为数学知识是数学文化的载体,数学知识和数学文化两者的教育没有也不应该有明确的分界线,因此数学知识的学习和探究是数学教学活动的重要环节。立足于对数学文化内涵的理解,围绕基于数学文化观的高等数学教学目的,通过对高等数学教学模式的的反思和借鉴,本人逐步从多年的教学实践中归纳形成了“经验触动———师生交流———知识探究———多领域渗透———总结反思”的教学模式。[8]这一教学模式就是在教与学的活动过程中充分渗透数学文化教学,教师活动突出表现为呈现———渗透———引导———评述;学生活动突出表现为体验———感悟———交流———探索。

(三)对本模式的说明。

(1)经验触动。学生的经验不仅是指日常的生活经验,还包括数学经验。数学经验是学习数学知识的经历、体验。要触动学生的日常生活经验和数学经验,教学中就要注重运用植根于文化境脉的数学内容设置教学情境,使学生从数学情境中获取知识、感受文化,促进数学理解,激发学生的学习兴趣和探究欲望。

(2)师生交流是指师生共同对数学文化进行探讨。数学文化教育的广泛性、自主探索与合作交流学习方式都要求师生之间保持良好的沟通。严格来说,“师生交流”不仅指教师和学生的交流,也包括学生和学生的交流。师生交流是模式实施的重点,当然,师生交流不会停留在这个环节,它会充斥于之后的整个课堂教学中。

(3)知识探究是数学文化教学的必要环节。数学知识是数学文化的载体,两者是相互促进、相互影响的。在感受数学文化的同时,对相关数学知识进行提炼、学习,就是从另一个角度学习和体悟数学文化,是对数学文化教育的一种促进。

(4)多领域渗透是指教师跨越当前的数学知识和内容,不仅建立和其他数学知识的内部联系,而且能够拓展教学内容,将之渗透到其他学科的各个领域,使学生感受数学与数学系统之外领域的紧密联系,从而使学生深刻地感悟到数学作为人类文化的本质。

(5)总结反思就是对整堂课做回顾总结,加深学生对所学数学知识的理解,加深对所体会的数学文化的印象,也为下次的数学学习积累经验,开创创新源泉。本教学模式是一种主要基于数学文化教育理论,以数学意识、数学思想、数学精神、数学品质为教学目标的教学模式。数学文化氛围浓厚的课堂、数学素养丰富的教师、学生学习方式的转变都是模式实施的必要条件。

在进行高等数学的教学设计和教学过程中,具有教学模式意识是对现代教师应有的基本要求,而对教学模式的选择,不是满足个人喜好的随意行为,而是根据教学对象和教学内容合理选择的结果。而根据教学对象和教学内容选择适当的教学模式,也不是生搬硬套,将某种教学模式简单地移植到教学中,将教学模式“模式化”,使教学模式变成僵死的条条框框,对教学模式的改造、创新和超越,才是创新教育的本质。[9]高等数学的课堂教学是一个开放的教学系统,课堂活动中学生的任何微小变化或不确定的偶然事件的发生,都可能导致课堂教学系统的巨大变化,这就需要教师实时、恰当的对教学方案做出调整。教学过程中的这种不确定性表明,教师需要运用教学模式组织教学,但更要超越教学模式。在教学过程中能灵活运用教学模式、并超越教学模式便是成熟、优秀的数学教师的重要标志。因此,成功的选择、组合、灵活运用教学模式,不受固定教学模式的制约,超越教学模式,走向自由教学,最终实现“无模式化”教学,就是优秀的高等数学教师追求的最高境界。

作者:刘慧工作单位:北方民族大学信息与计算科学学院。

高等数学教学总结篇六

1.1从教学内容上看。

尽管大部分高职院校已经意识到高等数学与专业紧密结合的重要性,但由于受传统高等数学教学思想的影响,部分院校的教学内容还是以微积分为主,理论内容多于实践知识,各专业学生学习的高等数学课程内容大体相似。

1.2从教学方法上看。

近几年高等数学课程的教学方法和手段已有很大改进,但仍有部分高职院校高等数学的讲授仍以传统的课堂授课为主,教师基本采用黑板或者ppt讲授内容,学生自主学习较少,师生交流较少。

1.3从课时量上看。

目前部分院校高等数学的课时量一再缩减,由于高等数学的内容具有连贯性等特点,很多内容还未深入便已结束,还有部分内容甚至无法讲授。部分学生感到学习难度较大,反映不爱上高等数学课,认为这是一门枯燥的课程,因此学生的学习兴趣和积极性受到了较大的影响,制约了后续课程的学习。

部分院校高等数学的教学往往保留高等数学的所有知识点[1]。但这些内容一般偏于理论,部分内容与后续专业课程脱节较为严重,各专业学生学习的高数学内容几乎千篇一律,已无法满足个性化需求。教学内容与现实需求的差距,影响了学生学习该课程的积极性。

随着互联网技术与计算机技术的飞速发展,高等数学的教学模式也进入了信息化时代,各种新的教学手段、教学方式层出不穷。部分院校完全使用“教师在讲台上讲,学生在课堂上学”这种传统的教学方式,容易使得学生陷入了被动的局面[1],抑制了学生的学习兴趣,影响了学习主动性,难以跟上时代的发展。

2.3部分院校高等数学的课时量与后续应用需求存在矛盾。

部分院校对高等数学课程的课时进行了缩减,而后续的专业课对高等数学知识的要求却没有降低。在有限的课时内,完成与过去相同甚至更多的学习内容,达到预期的学习目标,完全依靠课堂教学已经较难实现。上述问题是部分高职院校在高等数学教学中迫切需要解决的。以j校为例,数学教研室的教师针对这些情况做了大量的调查与研究:定期组织数学教研室的教师参加交流研讨会,与各兄弟院校的同行进行深入交流;参加j省大学生数学竞赛等活动,与全省的高职院校数学老师在高等数学教学改革方面进行经验探讨。在信息化这个大环境下,对高等数学的教学手段进行了一系列的改革,将世界大学城空间教学平台与超星学习通等教学软件引入了常规教学当中,基本解决了上述问题。

高等数学教学总结篇七

为适应我国教育多元化发展的趋势,国家加大了成人教育在高等教育中的比重。在成人教育中,无论是在理工类专业,还是在经管类专业,高等数学都占有非常重要的地位,是非常重要的一门专业基础课,但同时高等数学也是成人教育中的难点。因此,在成人教育中,做好高等数学教学工作显得尤为重要。

1.1成人教育学生的复杂性。

在成人教育各个专业的学生中,学生的基础普遍较差,学习水平参差不齐,很多学生本身还有自己的工作,来自于各行各业,在年龄上也有很大的区别。所以,教学时,必须分析成人学生的特点,认真研究适合成人教育的高等数学教材,根据成人教育的特点,运用适合于成人教学的特有的教学方法进行教学,如果仍然按照传统的,就像面对全日制学生的教学方法进行教学,则教学效果就会大打折扣。

各个成教专业开设高等数学课的目的是为了把数学应用于专业课的学习中,主要目的是应用,尤其是在成教专业中,所以如何平衡严密的数学理论体系和数学知识的应用之间的矛盾是成人教育数学教师亟需解决的问题,在讲课中如何吸引成教学生,如何把数学知识与专业课知识相结合,提高学生的学习兴趣显得尤为重要[1]。现在的很多成教学院所开设的高等数学课程所选用的教材,普遍理论性较强,绝大多数是全日制专业所选用的教材,理工科专业绝大多数选用的高等数学教材是同济大学数学系编写的教材,经管类专业选用的是中国人民大学出版社出版的赵树嫄主编的教材,这些教材逻辑理论性非常强,成教学生在学习过程中很难熟练掌握教材中的基本知识、定理,在学习中遇到很大的障碍。对于成教学生来说,全日制专业所选用的教材在难易程度、知识容量方面不太适合成教学生,很多成教学生是从中专或是高职升上来的,数学基础普遍较差,对于理解高等数学的非常严密的逻辑理论体系有很大的困难。虽然任课老师在讲授高等数学课程的时候会根据学生的特点做出一些调整,但由于学习时间少,基础较差,也没有办法把所有的时间都运用于学习中,因此大部分学生面对苦涩难懂的高等数学教材只能选择放任自流了,放弃自学。

2成教学生在学习高等数学过程中的心理障碍。

2.1消极心理。

很多成教学生之所以选择成人教育,其首要目的并不是为了工作,很多学生本身就有工作,甚至有一些还是在其他人看来“不错”的工作,绝大多数成教学生学习的目的并不是为了学习文化知识,更主要的是为了文凭,因而,他们的学习态度也不是很积极,在听课的时候经常无精打采,即使面对不会的问题,也不会积极主动地向老师请教。再加上高等数学作为基础课,表面上看来好像和专业课的关系不大,所以很多成教学生在学习高等数学的过程中就更不积极,因此教师在讲授高等数学的过程中,一定要把高等数学知识和专业课知识相结合,比如,在讲授微分概念的时候,可以把微分概念和经济学中边际的概念相结合,举例说明边际成本、边际收益、边际利润的经济学含义,不仅使学生们加深对微分概念的理解,而且对专业课知识中的相关概念有了更深的理解。

2.2成教学生在学习高等数学的过程中信心不足。

成教学生在学习高等数学时,普遍信心不足,笔者在多年从事成人高等数学教学的过程中,发现很多学生都反映从小数学基础较差,对高等数学的学习信心不足,焦虑情绪很重。焦虑不仅影响着学习动机,更影响到学生的学习效果。在很多成教学生的心目中,认为自己是学不好高等数学的,慢慢地形成了一个思维定式,总认为成教学生不可能学好高等数学[2]。在这种思维定式下,一旦遇到较抽象的概念,或者是比较难以理解的定理,就会退缩,这就要求任课教师在讲课过程中,多鼓励学生,当遇到学生们不理解所讲解内容时,不要挖苦、讽刺学生,不要打击成教学生学习的积极性,要循序善诱,引导学生,建立学生学好高等数学的信心。

2.3闭锁心理。

很多研究成人教育的专家认为,成教学生普遍有闭锁心理,闭锁心理指的是成教学生在和老师、同学交流的过程中,总是避免“暴露自己”,尽力“扬长避短”,在学习上也是一样,在学习过程中容易把自己限制在自己的保护层中。这就要求任课教师平时多和成教学生交流,在平时的讲课过程中,面带微笑,善意地、有耐心地解释学生们提出的各种问题,建立起学生对教师的信任。

2.4学习能力较弱。

很多成人教育的学员都有自身的工作,平时工作繁重,只是在周末或假期参加成人教育学习,由于学习时间少,学习能力普遍偏弱。再加上年龄偏大,记忆力一般也比较差,即使在课堂上理解了高等数学的相关知识,课下也没有太多时间去复习,经常出现学了后面忘了前面的状况,这就要求高等数学的任课教师在传授知识时,一定要结合成教学生的特点进行授课,对各个知识点应多解释,尽量用通俗的语言来解释抽象的数学知识,弱化定理的证明,重点从几何意义的角度解释高等数学的相关概念,高等数学尤其是微积分部分最重要的学习方法就是数形结合,而且微积分的很多知识点都是有几何意义的,在讲解的过程中,可以先解释几何意义,再分析数学上的表达,因为几何意义给学生的感觉非常直观,在先理解几何意义的前提下,再去理解抽象的数学概念,相对来说会简单很多,尤其是对成教学生。

高等数学教学总结篇八

在数学教学实践中,数学教师应把对学生学习能力的培养、开发学生智力以及使教学更好地适应学生的心理发展作为重要的教学内容。下面是本站带来的高等数学教学。

开云官网app下载安装手机版 。

欢迎欣赏阅读。

高等数学是我院财务管理、工程管理、国际贸易、商管等相关专业的基础课,主要讲述了一元函数与多元函数的微积分学,针对不同专业的实际情况,结合“双考大纲”,高等数学又分为《高等数学a》、《高等数学b》、《高等数学c》,充分掌握高等数学的基本知识,对今后专业课的学习,继续深造,从事金融行业、建筑行业以及个人的逻辑思维等方面有很多大帮助。但是这门课程具有高度的抽象性、严密的逻辑性和广泛的应用性,知识一环扣一环,结构既有严密的内在联系同时又呈曲线跳跃式发展,对于各高校的学生来说,都是一门难学的课程。因此,在教学过程当中,尽可能的采取灵活多样的教学方法,让学生充分的理解、掌握所学知识。作为一名新入职的教师,一方面很是感激校方对于我的信任,另一方面也深知作为年轻老师教学经验还有待进一步提高,但是我在西北大学现代学院这仅仅半年时间就让我受益匪浅,在这里谈一下自己的感受:

首先要认真备课,仔细撰写。

教案。

上课时要说课这节课大家需要掌握什么(教学大纲的要求考试要考的知识)重点、难点是什么使学生清楚这节课堂目的做到有的放矢同时还要时而去走进其他老师的课堂认真听听他们的讲课向有经验的教师学习反思自己的教学过程并不断完善自己的教案和教学方法。对于教案的认真撰写须不断地向其他优秀老师学习这样才会不断地完善自己的教学提高自己的能力。

其次,上课要突出重点,做到张弛有度,结合我院学生的特点,尽量用简单通俗的语言,图形描述讲解抽象的定理,推论等,比如在讲解定积分及其性质、多元函数求导运算。具体到知识点的时候,重点是在分析,考察哪个知识点,要我们做什么,完成这个工作,需要几个步骤,每个步骤的工作又是什么,跟学生讲明白,体现层次感,每堂课对于一个知识点,至少一道题目要有完整的板书,便于学生做笔记,模仿,要及时讲解作业,多与学生交流,了解学生,深入到学生中去。

再次,教会学生学习的方发:听课要学会“抓大放小”,抓住主要思路,主要思想,主要的脉路,不要在小问题上纠缠,课后自己动手去解决,实在不懂再问老师、同学,因为高数的技巧性很强,这样也提高了学生学习的兴趣。另外,上课的内容要有所拓展,在难度上要照顾想考研的学生,这些跟学生说清楚。

最后,就是基本素质,所谓“学高为师,身正为范”,教师的言行举止也在潜移默化中影响着学生。因此,我们要着装大方得体、讲课的语速要适中,提前几分钟到教室,上课带教案、教材、教学手册,尊重学生,所言所行符合高校教师职业道德。

高等数学这门课程本质上决定了它的枯燥无味,在教学过程中,要不断摸索,总结,依靠课堂魅力去感染学生,影响学生,让学生喜欢这门课程。

高等数学是工科、经管类等专业核心课程之一,是后续专业基础课和专业课学习的重要工具,也是对学生的思维能力、思维方法及创新能力培养的重要手段,因此学好高等数学是很重要的。但随着高等教育的大众化,学历教育的层次和办学模式的多样化,作为基础课的数学,教学班一般多为大班授课,加之学生基础往往参差不齐,学习方法差异较大,这就给数学课的教学增加了难度。下面就这些年自己的教学实践,谈谈怎样搞好高等学校数学课的课堂教学。

一、重视绪论课,激发学生对高等数学的学习热情:

二、通过教学使学生逐步树立学好高等数学的信心。

近几年来我主要从事自考院高等数学的教学工作,针对学生的数学基础比较薄弱,过关率不高,有很多学生一开始就对学好高等数学没有信心等情况。我决定,必须因材施教,在课堂上应尽可能的用通俗易懂的语言来描述数学概念,让学生逐步明白学习高等数学不是简单地从“高三”到“高四”,更主要是思维方式的转变。使学生明白基础不好未必就学不好高等数学,只要方法得当是可以学好高等数学的。

三、注重教学效果。

加强对学生的了解与交流,建立良好的师生关系,有助于将单纯的教育教学过程变成师生平等对话、合力互动、教学相长的友好合作的过程。心理学认为:满足人们对理解、尊重和追求的需要,就能激发人的潜能,使人有一股内在的动力,朝所期望的目标前进。因此教师要树立以学生为主体的生本教育观念,要尊重学生、赏识学生、鼓励学生、相信学生,达到激发学生学习兴趣的目的。另外,教师要注意调控好个人的情绪,不能随意把自己的喜怒哀乐带进教室。良好的教学情绪,积极的教学情感,能唤醒学生愉快的情绪体验,使之精力充沛,兴趣盎然。

好的提问方式常常能激起学生的求知欲和探索欲,引发辩论,引导学生全身心地投入到深层次的思维活动中,从而增强学生的学习兴趣。为此,可以通过以下两个途径:

1、重视预习。预习是学习过程中很重要的一个环节,一方面让学生带着问题来听课,以提高听课的效率。更重要的是逐步培养学生的自学能力。在我看来,大学教育的主要的目的之一就是培养学生的自学能力。教师在每次授课结束时明确提出下次授课的具体内容和预习要求,让学生对将要学习的内容有问可提,才真正达到预习的目的。

2、引导学生分析归纳所提的问题,并学会做出恰当的评价。以鼓励为主,学生提的问题越是多样就表明他们预习效果越好,然后鼓励他们把这些问题分类,教师因势利导地再提出新的问题,并在讲解过程中逐步使学生理解所提问题的价值,分析问题之间的关系,了解其中的含义。

四、重视数学概念和定理的讲述。

在讲叙数学概念和定理时,不仅要向学生传授这些知识,还要向他们传授这种抽象、概括问题的思维方法,让学生学会从具体内容中抽象概括,找出事物的本质。例如,在建立定积分概念时,通过对两个具体问题一一曲边梯形的面积和变速直线运动的路程的计算,可以看到:前者是几何量,后者是物理量,实际意义并不相同,但它们的数学思想和计算方法是相同的。排除其具体内容,抽出其本质特征,即单从数量关系看,都具有一种相同结构的特定形式,从而抽象概括出定积分的普遍性定义。

五、要重视习题课?

1、首先应注重培养学生的逻辑思维能力。逻辑思维能力包括抽象与概括的能力、分析与综合的能力和归纳与演绎的能力。习题课上教师通过具体的例题对高等数学中的概念、定理和法则进行梳理,使学生加深对各个知识点的联系。

2、此外,在习题课上,对所学的基本定理、基本概念要重点强调它们的条件、应用范围及其相互关系,使其在学生思维中形成一个完整有机的知识体系,为培养学生的创造性思维创造有利条件。新旧知识要联系着讲,不仅仅要讲这一单元的知识,也要注重对以前单元知识的复习。随着时间的推移,有些知识可能会遗忘,若在讲题的过程中,把以前单元的知识也捎带着复习一下,不仅可以增加学生的记忆效果,还会加深学生对本单元知识的理解,起到温故而知新的作用。?总之,数学学科自身的特点决定了要学好它就必须对它产生兴趣。为此,需要教师在教学过程的各个环节中,根据学生的具体情况和心理特点,因材施教,采用多样化的教学方法和技巧,有计划、有目的地培养和激发学生的学习兴趣,最终达到较好的教学效果。

1、我认为应该讲实数的完备性的六大定理及其证明,在证明这六大定理彼此等价的过程中,肯定对同学们也是数学素质的培养。可能你们认为同学们接受不了,所以应该放弃。我不认为交大的学生会这么差,你们的第18题都有人做得出来,充分说明他们潜质无限,你们还有什么好担心的?而且,没有这六大定理,你怎么证明连续函数的性质?别告诉我连续函数的性质不重要,因为这是常识,是最基础的东西。当然,的确有人无论如何也学不会,但数学本身就不是任何人都可以玩的游戏,就像篮球一样,不是每个人都有姚明的天赋。

2、函数项级数的绝对收敛有一个重要的结论,就是可以任意交换项的顺序而不改变收敛性和收敛值。这个结论的证明并不复杂,也没用到经典的极限理论。思想方法也很值得借鉴。但我不明白我们的课本里却没有。当你告诉同学们一个结论的时候,你却不能提供证据,这样,时间长了同学们带着困惑去听课,会越听越糊涂,云山雾罩,最终失去了对数学的热爱。讲课者也无法向学生展示数学的美。

至于时间不够的问题我认为根本就不存在。我的处理方式就是,仔细讲述涉及到的数学的概念和定理证明,至于计算题我就只讲一讲方法,他们回去做作业完全可以看着例题照着葫芦画瓢。

我们原来使用的微积分课本题目难度很大,可以说达到了一定的境界,但理论部分实在是难以恭维。这样的培养目标究竟是什么我真的不好讲,似乎是准备参加数学竞赛。但对数学素质的培养并没什么太大帮助,也没有培养出同学们学会思考问题的习惯,自学能力也得不到提升,对后续课程的学习也很不利。因为不知道为什么,学了也很容易忘掉。

总之,我建议大规模修改课本,增加系统的理论。非数学系的教学摆在我们面前的就是如何通俗地讲解数学理论,而不是放弃数学理论。原来这个课本千万不要再用了,简直就是误人子弟。

高等数学教学总结篇九

立体化教材在国外称为“integratedtextbook/coursebook”,在国内最早则出现在教育部《关于加强高等学校本科教学工作提高教学质量的若干意见》中,也叫“一体化教材”或“多元化教材”。立体化教材相对传统纸质教材是指以计算机和网络为支撑平台,运用多种多元化教学工具,将教学内容、教学方法、教学重点和教学效果进行整合,按照先进的一体化思路设计出适合于多元化教学的系统化教学材料。近年来,立体化教材得到了快速的发展,以网络和多媒体为代表的现代信息技术的发展给立体化教材的发展提供了契机。

立体化教材越来越体现其优越性。它在主干教材的基础上开发多种辅助教学资源,实现人机对话,交互性强;它表现形式灵活,课程设置更符合学生的认识规律和思维过程,更大程度地帮助学生知识的建构和拓展;它直观形象,通过实验演示等方式展示课程的相关定义、定理和方法;它操作简单,可反复观看教学课件和视频等,不受时间和次数的局限;同时其趣味性和艺术性有利于促进学习者的学习兴趣。

由于高等数学其具有抽象性、系统性及应用广泛性的特点,因而其立体化教材的构建和设计只有符合本身的特点和规律,才能较大成效地发挥立体化教材的作用。一般地,立体化教材的设置应该包含:主干教材、课程方案、学习指导、电子教案、课件、教学视频、数学实验、习题库、学习辅导答疑、学习论坛讨论等。本文在立体化教材设置上,重点考虑高等数学立体化教材的几种主要组成要素:教材(即传统的纸质教材,与立体化教材的开发网站相配套)、教案、课件、教学视频、数学实验、习题库等,并讨论它们之间的关系。

一、立体化教材应该以教材为中心,做到四个“体现”。

1、教学视频是对教材内容的可视化传递。

教学视频是指把要传授给学习者的知识、技能等内容按照教学大纲的要求,经由教师或专业制作人员运用技术手段,整合图、文、声、像等各种信息,生成视频文件并发布供广大学习者学习使用的教学资源。相对于静态的文字教材,视频教材的优势非常明显。它不仅在教学过程中对知识传递和表达,诱导学习者思考,提高学习的高效性,而且还集合了知识性、教育性、科学性、艺术性和趣味性。视频教材已经是我国教育教学模式的重要形式。正如萨尔曼可汗在ted的预言“视频重塑教育”那样,视频教材正在不断地促进我国教育教学手段现代化进程。

然而“万变不离其宗”,教学视频最终所体现的核心部分仍然是教材的内容,即教材的知识性。因而,高等数学教学视频的基本组织形式应该注重对每一章的每一节课(或一个知识点)的教学过程进行录制和教学设计。高等数学教学视频的设计单位就是课堂教学设计。课堂教学设计应根据课程标准规定的总教学目标,对教学内容进行分解,对教学对象进行认真分析,在此基础上得出每个章节、单元的教学目标和各知识点同时选择教学策略,制定教学过程,最终进行视频录制。

2、教案、课件应体现教材内容的系统性和思想性。

保持课程应有的系统性是指教案、课件的组织过程应该遵循教材的组织规律。相对于其它课程,高等数学的教学内容是稳定的。教学内容的组织总是从“函数与极限”开始,然后是“连续”与“导数”,再而是“微分及中值定理”……从微分到积分,从不定积分到定积分,从一元微积分再到多元微积分。因而,教案及教学课件的内容及其织组顺序上,应保持课程应有的`系统性。

保持课程应有的思想性是指教案、课件应该正确保持定义的阐述、定理的证明、知识间逻辑关系,同时对内容的增删应该适当有度。高等数学的抽象思维占主导地位,它的各个章节、各知识块间内在的联系紧密,教案的设计要思路清晰明白。传统的教案和课件的使用者都是教师,但立体化教材的教案和课件将面对学生,因而教案和课件的内容更应该与教材相呼应,紧扣教材的内容,通过多媒体课件,把规范的、理论性的教材语言,转换成学生容易理解、较易接受、喜爱的媒体语言的表达形式,通过媒体语言来激活教材语言。在立体化教材设计上,教案、课件仍是源于教材,还原于教材。

3、数学实验应该融入教材,数学实验应体现教材的实验要求。

一本成熟的高等数学教材必须包含实验环节,实验内容由浅入深,理论与实验相辅,突出高等数学的基础理论知识在实践中的应用。为了让学生更好地理解基本概念、基本原理,并将其应用到实践当中去,在高等数学的课堂教学中必须实验课时。学生通过数学软件(例如matlab),实现对极限、微积分、级数等基本概念的可视化,化抽象为形象,化无形为有形,既增加了高等数学趣味性和形象性,又增加了对其理解性和应用性。

高等数学立体化教材的实验部分一般分两个层次,第一个层次是结合课本内容进行实验,第二个层次是运用以数学实验为介质进行数学建模。前者是基础实验,针对每个章节的内容进行相应的实验设计,达到理论理实验的统一。例如在了解单叶双曲面和马鞍面都是直纹面这一结论的同时,如若再用实验加以验证,这种教学效果是显著的。后者是我们所熟悉的数学建模,它要求学生有较高的综合素质,包括理论基础、分析水平和实验水平。数学建模已经在大学教育中逐步开展,许多院校正在将数学建模与教学改革相结合,将数学建模作为《高等数学》的教学改革和培养应用型科技人才的一个重要方面。因而,《高等数学》教学实验应该体现立体化教材这两方面的要求:一方面,让学生更好地理解基本概念、基本原理;另一方面,让学生学会“建模”动手解决实际问题,以加深对所学过的知识的理解,使学生充分感受、领悟“数学实验”中最本质的内涵。

4、习题库应体现教材的基础性和重难点。

习题库是立体化教材的重要部分,它可以提高教材的利用率,为教材用户提供良好的服务,与制作学习辅助材料光盘不同,教材配套题库系统应该提供练习和测试的功能。特别是对自学要求较强的对象,他们可能利用碎片时间进行学习,或者在课堂上知识接受能力较差,需要自主学习或补习完成课程教学任务。因而,设计针对这类自学型学生的课程习题库变得尤为重要。

习题库应体现教材的基础性是指习题库应该提供整本教材的资料,接照每个章节设置各种类型的习题。同时应该提供这些习题的答案以供自习的学生进行参考。习题库的测试功能体现在能根据不同学生的知识层次、学习进度、兴趣倾向等提供相应的试卷。习题库应该能够实现人工选题的功能,按章节或类型选题以及题量的多少进行自主或随机选择,同时对测试的结果自动生成并附带参考答案。习题库应体现教材的重难点是指习题的总体难度应该与教材的总体难度保持一致,尽量减少难偏题的数量。

二、立体化教材的核心技术是“立体化”,做到四个“一致”。

1、教学视频与教案、课件的一致。

教学视频是对教学内容的传达。视频教学以教案、课件为依据,制定教学过程结构方案及录制步骤。教学视频应该从四方面进行把握:

(1)视频教学内容的编排应该按照教案的顺序;

(2)教学视频的重难点应体现教案的要求;

(3)用于录制教学视频的课件应该与立体化教材中的课件一致;

(4)教学视频的组织形式应与课件保持一致。

2、教学视频与习题库的一致。

教学视频不仅是理论课的视频,同时应该有习题课的视频。在习题课视频的典型习题应该为习题库的例题,与习题库保持一致。但并不是习题库所有的习题都制作成视频,这样习题库就失去意义。习题的教学视频,能更好地帮助学生进行自主学习,举一反三,达到知识的内化。另一方面,习题库为视频教学提供练习、学习、测试功能,两者在题型、重难点上保持一致。

3、数学实验与教案、课件的一致。

数学实验与教案、课件的一致是指:

(1)教案、课件中的实验例子应该与数学实验的例子内容上一致;

(2)数学实验的编排顺序应该与教案、课件的设计顺序一致;

(3)数学实验的重难点应该与教案的要求保持一致。

4、数学实验与习题库的一致。

一方面,教学实验应有典型的习题例题。例如极限、两个重要极限、导数、定积分、不定积分、反常积分、曲面与方程、偏导数、重积分、级数等等。另一方面,习题库中应该有数学实验部分,两者在题型、重难点上应该保持一致。

三、立体化教材的最终效果是实现学生的个性化学习。

个性化学习是一种旨在挖掘学习者自身的智慧和潜能、从而最大化地体现学习者的自我价值的学习模式。立体化教材为个性化学习提供了支持,它打破了统一起点、统一进度、统一内容的局限性,使学习者能够按自己的进度选择合适的学习资源开展学习。基于立体化教材的学习可以使学习者在学习内容的选择和学习过程的操控方面获得极大的自由度,能够对不同类型的学生提供个性化的支持服务,彰显关注个体、崇尚个性的价值观。学生借助网络终端在任何时间、任何地点开展学习。强调在有限时间内学习短小的、松散连接的信息单元,是当今社会人们按照自己的需要和兴趣学习知识的新途径。

立体化教材借助广泛普及的多媒体技术和网络平台,渗透到学生个性化学习当中。学习者可以反复观看或随时暂停视频,结合课件及教案,使用强大功能的习题库,获得高等数学的知识。这种教学模式有助于实现学生的个性化学习。随着现代教育技术的不断发展,运用立体化教材进行教学,将逐步成为实施高等数学教学改革的一种有效手段。

高等数学教学总结篇十

“微课”可满足不同学习者对学习时间、学习内容、学习方法的碎片化要求,应用灵活度高。根据各专业对高等数学内容学习的不同要求,例如:机械类专业对三角函数、微积分、解析几何、简单的拉式变换等要求较高;电子信息类专业对函数、微积分、线性代数要求较高等[2],将高等数学的学习内容由整体分割为若干个小知识点,以课件的形式展示出来,并利用录屏软件录制成10分钟左右的小视频上传至网络教学平台,可以较好地帮助学生查漏补缺,有目的性、针对性地学习。“微课”还可用于课后答疑、教师课后教学反思以及同行间的交流学习等,为各位老师提供了相互学习的平台,教师和学生在这种交互的学习情境中可以增强教师的专业基础能力,提高学生的思维能力、学习效率。当然,“微课”教学也有其不足之处。主要体现在其知识的片段性,没有形成系统性。“微课”的特点在于将知识碎片化,但同时知识点的连贯性也难以把握。这就需要教师做大量调查,与专业课教师进行探讨,根据各学科的特点、要求,将高等数学与专业紧密结合起来,进一步细化知识模块、设计教学内容,保证微课教学的系统性与连贯性。

3.2利用信息化学习的平台,提高学习积极性。

目前j校正在使用的信息化平台为:世界大学城空间与超星学习通。世界大学城以互联网远程教育为核心,综合了网络办公、通讯、媒体、个性化图书馆、空间慕课等功能。超星泛雅平台以泛在教学与混合式教学为核心,集教学互动、资源管理、精品课程建设、教学成果展示、教学管理评估于一体。在新一代网络教学模式下,高等数学的教学初步实现了因材施教,打破了传统的教学模式,让学习者可以根据自身的需求,随时随地地体验网络教学所带来的高效和便利。世界大学城空间的“空间慕课”与超星学习通中“我的课程”均可建设一门或多门课程。教师在教学平台上开设网络课程,学生可自主选择学习的课程。在教学的过程中,将“微课”视频、ppt与世界大学城空间、超星学习通联合应用,实现翻转课堂教学模式。翻转课堂教学是一种以学生为中心的教学方法,其核心理念是学生的个性化学习[3]。教师可将教学过程分为三个阶段[4]:课前,教师将预习要求、授课ppt、相关内容的微课视频、习题作业、课程拓展资源等放在授课平台上,学生可以在电脑上利用大学城空间或者手机上的超星学习通软件进行预习,并记录遇到的难点、问题;课堂中,教师利用超星学习通软件进行签到,节约了点名时间。随堂利用智能手机随时发布测验题,学生当场测试,教师根据答题情况进行反馈,通过这个讨论的过程,学生可以逐步提高自主学习的能力、培养良好的学习习惯,增强课堂的互动性,提高学生的学习效率;课后,学生利用大学城空间或超星学习通提交作业,教师将学生作业中遇到的典型问题发布在活动专区,鼓励学生进行讨论。另外网络平台的教学视频也是课堂教学的有利补充,学生可根据自身的学习情况,选择需要的视频内容观看,查漏补缺,达到因材施教、阶梯性教学的目的。为了使学生能够顺利使用信息化平台,数学教研室的老师为各专业学生增设了matlab课程,将课堂讲授与上机练习结合起来,教会学生利用电脑编辑数学公式,使用信息化平台提交作业。且秉持高职高专高等数学学习中“必须”、“够用”的原则,对于复杂的计算问题,借助matlab软件解决,帮助学生真正将数学当作工具使用起来。同时,为了培养出一支信息化教学的教师队伍,更好地掌握信息化平台的使用方法,学校不定期开设有关信息化平台使用的培训课程,请研发组的专家、使用平台熟练且教学效果突出的同行做讲座,大家集思广益,共同探讨如何发挥信息化平台的最大效用。

3.3使用多媒体教学,提高课堂效率。

传统的教学模式需要老师大量的板书,抄写概念、定理,不仅浪费时间,而且对于一些概念的介绍,如极限、定积分、二次曲面等概念,光靠黑板讲授比较抽象、难懂[5]。将这些内容通过多媒体,用图形、动画的形式生动地展现出来,再配合教师的讲解,使知识点化难为易、化繁为简,帮助学生更加直观、形象、生动地理解。成功突破了教学难点、节约了时间,提高了课堂的学习效率,教学效果好。与传统的教学模式相比,同样的课时,多媒体授课可以讲授更多的内容。但多媒体教学由于其自身的特点,也存在一些劣势。与传统的教学模式相比,多媒体教学包含更多的知识内容,课堂节奏明显加快,学生学习起来比较吃力。且有些例题的推导、计算,完全利用多媒体手段很难反映出来。相比之下,传统的课堂教学板书在此方面更具有优势。因此,在高等数学的教学中,信息化教学与传统课堂应相辅相成。

3.4利用现代化信息交流工具,辅助答疑。

数学教研室的教师每周有固定时间给学生们答疑,但情况并不理想,答疑的学生较少。对此情形,教师在世界大学城空间和超星学习通软件发起话题讨论,广泛征询了学生的意见和建议。主要是学生们深受手机与网络的影响,趋向于便捷式交流,他们反映,老师办公室距离学生宿舍较远,来回跑麻烦;有的学生则是因为个性羞涩不好意思当面问老师。为了解决这些问题,老师们利用现代化的交流软件,加入学生的qq班级群或者微信好友圈,学生在学习中遇到问题可以随时提问。这些软件还支持拍照、语音功能,无法用文字描述的问题还可使用其他途径解决,为教师和学生搭建了一个课后交流的平台。

4结语。

将信息化手段引入高等数学教学课堂,突破了传统课堂中“教师讲、学生听”这样固化的教学模式,提高了学生的学习兴趣,也缓解了缩减课时与现实需求之间的矛盾。教师利用信息化手段将高等数学的“教”与“学”融合起来,启发学生将数学思维和数学方法应用到自己的专业领域中去,才能体现高等数学学习的最高价值。在今后的教学中,老师们还应不断努力探索,力求发挥信息化教学的最大优势,达到最佳学习效果。

【参考文献】。

[5]孙海娜,方国娟.基于信息化技术的高等数学教学方法改革[j].高。

高等数学教学总结篇十一

摘要:高等数学作为一门基础性学科,在高校教学中具有举足轻重的地位。从基本概念讲解和知识的综合应用两个方面介绍了在本科生高等数学教学中的体会与思考。

关键词:高等数学;基本概念;综合应用能力。

高等数学是高校教学中的一门重要课程,也是大多数刚踏入大学校园的本科生必修的一门课程。随着高校规模的进一步扩大,学生的素质和水平参差不齐,而高等数学又是一门理论性强、具有严密逻辑思维性的基础学科,因此要求每位高等数学教师要切实重视这门课的教学。要想学生真正喜欢上这门课,并且很好地掌握这门课,就需要不断提高教师的教学质量。

高等数学基础性强、理论性强、逻辑性强,它的推理、证明、数据演算等必须经得起推敲,容不得半点虚假。为了避免出现“一听就会,一做就错”、生搬硬套、遇到实际问题不会分析的状况,在高等数学的课堂教学中要从基本概念、基础知识出发,逐步培养学生的分析、推理能力和综合应用能力。

一、注重基本概念的讲解。

数学概念是人类对现实世界的空间形式和数学关系的简明概括,它是推导定理、公式、法则的出发点,是建立理论体系的着眼点,是数学教学的核心内容。但是许多学生在学习高等数学的过程中不注重课堂教师概念的讲解,只偏重于解题。一看到题目,如果题目曾经见过,不管条件如何就开始生搬硬套;如果题目没有见过就发呆愣神,根本不会分析推理。因此,在课堂教学中,一定要注重概念的理解,而不是将一个个抽象的概念“冰冷冷”地放在那儿,教师应该将知识体系很好地连贯起来,同时将所学内容与实际生活结合起来,能够生动形象地组织教学。

基本概念的引入和数学史结合。

在讲解基本概念的时候,穿插一些数学史的内容,一方面可以加深学生对数学的兴趣,另一方面也可以加深对概念的理解。例如,在讲解“导数”概念的时候,首先引入一些数学史的内容。

到了17世纪,有许多问题需要解决,这些问题也就是促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是求即时速度问题;第二类是求曲线的切线问题;第三类是求函数的最大值与最小值问题;第四类是求曲线长、曲线围成的面积、曲面围成的体积、物体重心的问题。这些问题在当时得到广泛的关注,许多著名的数学家、物理学家、天文学家都提出了许多很有建树的理论,为微积分的创立作出了贡献。

17世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作,他们最大的功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。

牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼兹却侧重于几何学来考虑。

这一段数学史的讲解,首先为紧接着引入“导数”概念时给出两个引例(直线运动的速度和曲线的切线)做好了铺垫,也引入导数概念的出发点——直观的无穷小量,与上一章的极限概念结合起来。其次,17世纪要解决的前三个问题,也就是导数这一部分重点要解决的问题,开篇就把该章的主要框架给出。第四个问题为后面积分学的引入埋下了伏笔。介绍牛顿和莱布尼兹的主要贡献,为定积分求解公式称为牛顿-莱布尼茨公式给出了合理的解释。

一段数学史的引入既让学生了解了微积分的发展,调动了学生学习兴趣,也可以更好地衔接课堂内容,何乐而不为呢?2.基本概念和实际相结合在讲解级数这一部分内容时,学生总觉得枯燥、抽象,感觉就是一些运算,并没有什么实际的应用。

当achilles再花b秒时间跑完b米时,乌龟又向前爬了c米,……这样的过程可以一直继续下去,因此achilles永远也追不上乌龟。

显然这一结论有悖于常理,是绝对荒谬的,可是如何用数学语言解释清楚呢?这样一个悖论可以调动学生积极思考。在思考的过程中,引入级数的概念。接着讲解级数的一些基本性质,从而再给出一些级数在实际中的应用,例如:一慢性病人需每天服用某种药物,按医嘱每天服用0.05mg,设体内的药物每天有20%通过各种渠道排泄,问长期服药后体内药量维持在怎么样的水平?通过对于级数的计算可以得到长期服药后体内药量近似为:0.0510.25mg54545423#8++`j+`j+gb=而在实际病例中,医生往往根据病人的病情,考虑体内药量水平的需求,确定病人每天的服药量。如一慢性病人需长期服药,按照病情,体内药量需维持在0.2mg,设体内药物每天有15%通过各种渠道排泄掉,问该病人每天的服药剂量应该为多少?[2]这样声情并茂、理论联系实际的一节课就可以让学生既思考了问题,又可以掌握基本知识,同时还激发了学生对抽象数学的兴趣,收到事半功倍的效果。

二、注重知识的综合应用。

高等数学现行教材中的很多例题,由于篇幅原因一般只有题目的解答过程却没有思考过程,因此爱问问题的学生往往会问,如果是自己解题的话,怎么会这样想呢?这个疑问就是授课教师在讲解题目时重点要解决的。也就是说,授课教师不但要把解题的过程讲解清楚,还要从解题思路方面进行引导,指导学生怎样运用所学知识独立寻找解题思路,也就是逻辑思维能力的培养。

例如在讲中值定理这一节时,有例题:设在区间i上恒有:f(x)f(x)2xx,x,xi1212212-g-!证明此函数在i上为常数函数。

学生本来对证明题就有一种畏难情绪,一见到是抽象函数的证明题,更是无从下手,一头雾水了。这时教师不能直接讲解题过程,而是要逐步分析、理解,让学生给出解题过程。

首先帮助他们分析题意,引导学生逐步思考。要想证明一个函数为常数函数,由拉格朗日中值定理可知,“如果函数在区间i上的导数恒为零,那么函数在区间i上是一个常数”,因此只要证明“在区间i上,函数的导数均为零”。

讲到此处,给学生一个思考的余地,让他们试着去选择方法,看看如何证明函数的导数为零。于是学生在思路的引导下会进一步考虑。很多学生会选择拉格朗日中值定理,将左边函数值的差转化为和导数相关的量。此时教师就可以趁势鼓励他们想着要去转化左边的式子,非常正确。但是转化的过程要利用拉格朗日中值定理,那么条件满足吗?在拉格朗日中值定理中要求所考虑的函数在闭区间内连续,对应的开区间上可导,定理中的两个条件缺一不可,而这个题目中并没有给出函数的连续性和可导性。那要怎么处理呢?如果想出现导数形式,就可以从导数的基本定义出发进行分析。导数是差商的极限,反映的是变化率。

左端只给出了函数值的差,那么自然想着要和自变量的差结合,出现差商形式,将所给等式变形为:()xxfxfx2xx121212g---而导数是一种极限形式,进而不等式两边取极限,利用夹逼准则结合极限的性质,所证结论成立。

通过逐步分析,问题就迎刃而解了。这个分析题的过程既有学生的参与,也有教师的讲解,利用条件和基本概念逐步分析就是对学生推理思维训练的过程。对学生来说收获更大。由这个题目的分析求解过程可以发现这是一道综合性较强的题目,需要学生对每个知识点——拉格朗日中值定理、导数定义、夹逼准则以及极限的性质必须要熟练掌握,然后才会融会贯通。

数学的题目千变万化,永远做不完。这就要求学生对基本概念掌握扎实,每个知识点要理解清楚。在题目的分析过程中,对基本概念和知识点融会贯通,逐步培养自己的逻辑分析、综合思维的能力。那么无论碰到什么样的题目类型都可以独立思考,逐步分析,寻找合适的解题方法。

总而言之,高等数学的教学是需要一个过程的,在这个过程中,教师只有不断提高自己的数学素养和教学能力,才能把高等数学这门课讲好,才能逐步激发学生学习的兴趣和乐趣,达到教与学的双赢。

参考文献:

[1]卡茨.数学史通论[m].李文琳,等,译.北京:高等教育出版社,.

[2]陈纪修,於崇华,金路.数学分析(下册)[m].北京:高等教育出版社,.

[3]同济大学数学教研室.高等数学(上册)[m].北京:高等教育出版社,2007.

高等数学教学总结篇十二

1.1学生缺乏学习兴趣。

在当今这个信息高速发展的年代,人们开始利用电子产品来便利自己的生活,遇到问题求助于百度,一切的问题在手指流动间就有了答案。时代的高效快捷导致人们的思想懒惰。毫无疑问,我们的大学生也同样受其影响,遇事不喜思考,只想尽快得到答案。在学习过程中,不去独立思考课程内容的前因后果,只图快速寻求答案。而高等数学传统的教学方式已无法满足学生的学习需求,也不能适应时代发展。传统的教学模式使得课堂呆板无趣,难以激发学生的学习兴趣,更无学习动力可言。

1.2学生未能正确处理专业课与高等数学课程的关系。

进入大学学习高等数学的学生都是大一新生,初入大学,对于大学的学习生活还处于适应阶段。有很多学生没有树立明确的学习目标,对所学专业缺乏应有的了解,感到十分迷茫。很多大一新生都心存疑惑:我究竟是学什么的?学习这些课程和专业有何关联?我应不应该花费大量的时间去学习这些课程(包括高等数学)?对于这些疑问,他们往往会向高年级学长学姐求助,而学长学姐们的学习态度直接影响大一学生对高等数学的认识。很多学生都认为高等数学与自己所学专业的联系很少,能用得上的内容微乎其微,学习目的只是应付考试,顺利拿到学分而已。个别认真学习的同学也仅限于考研的需要。这些问题使得高等数学偏离了原有的教学轨道,失去了高等数学教学的意义。

1.3未能恰当使用教材。

目前,同济大学出版的高等数学教材被公认为所有教材中最好的,也是全国大多数高校的首选教材。后来因为专业学科的不同,同济大学出版的.教材作为理工科专业的首选,文科、经管类的教材则采用相对简单,习题难度不大的一些高等数学教材。由于数学学科的严谨性,无论是哪一类教材,其内容安排上都大同小异,无外乎是从定义-定理-性质-证明-例题的一套流程。在例题的举证上仍以物理的一些实例作为举证说明,而这些举证对于学生而言,往往难以接受与理解。

1.4学生的学习心理亟需调整。

从身心的成熟度来讲,大学生已是成人。但由于缺乏人生阅历,加之目前生活条件优越,学生的抗压能力、吃苦耐劳的精神都较弱。从中学时期过渡到大学时期,他们往往难以适应新的学习生活。他们若无人指导,往往难以自觉合理安排大学学习生活。在学习遇到困难时,往往选择逃避,消极对待学习。由于自主意识的缺乏,盲从过来人的经验成为当前大学生的普遍状态。很多学生没有个体差异的概念,一味寻求大众化的表现,因而缺乏明确的学习目标,没有足够的学习动力。要么过于体现个体差异,在学习态度上标新立异,展现异样的学习状态。学生的学习心理若不加以适当调整,势必制约高等数学教学成效。

2应对措施。

2.1以新时代信息技术为依托,丰富教学手段。

当代,电子产品日新月异,信息技术高度发达,信息传播的高效快捷,使得人们获取信息的途径丰富多样。高等数学教学也应顺应这种变化,将信息技术作用发挥在教学上,利用先进的信息技术和多媒体改善教学。利用网上精品课程,提供在线授课教案及习题解答。也可建立与课堂匹配的mooc,将好的授课内容广泛传播,让更多的人享受到优秀的教学资源。同时让同行可针对同一问题进行对比和交流,进一步促进教师的教学。也可开展翻转课堂,利用学生对电子产品的热爱,将所授课内容提前布置给学生,让学生自主学习相应的知识,利用在线视频、网络论坛等平台帮助学生理解所学知识,对于无法解答的问题,留在课堂上与老师、同学们面对面交流。这样一来,提高了学生的主观能动性,同时兼顾了学生的个体差异,有助于教师因材施教。

众所周知,数学一直在人们心目是一种圣神而又神秘的学科,有点让人高不可攀。这一切均源于它抽象的理论,让人难以看到它的应用价值。在学习中又总是强调定义、定理、求解技巧等,从而让学生学习起来感到困难重重。实际上,对于大多数学生而言,主要是将数学用于其专业学习中,只要知道对应问题的结果就可以了。不需要去仔细了解其理论的来龙去脉。但作为教学,除了让学生学会应用数学知识,还要考虑少数学生的长远发展。所以在高等数学教学中可以在讲授理论、强化技巧时,穿插实践应用性教学。可将理论与实践的授课时数以4:1的方式进行。现在很多高等数学教材都会提供关于极限、积分、方程的matlab软件的求解方式,这对于数学基础差的学生而言,无疑是激励其继续学习的好方法。

2.3从专业视角出发,改善教学导入内容。

每一位进入高校就读的学生,都会分属于不同院系专业,对待公共基础课程,他们往往会认为这些课程应该要为自己的专业学习服务。例如就读计算机专业的学生,会认为所学的科目都应为计算机专业服务。那么对于这类专业,我们在开设高等数学课程时,可在教学内容引入的实例中,添加计算机编程中所使用到的高等数学知识。利用一个小型的计算机程序,简单地对知识的应用加以说明,进而激发学生的学习兴趣。就像李尚志教授在其“数学大观”公开课中就谈到利用等比数列进行编程可以编译出一首歌曲,现场的展现让学生真切体会到数学的魅力,意识到学习数学的重要性。所以在授课当中我们要善于以学生的专业定位为切入口,实时恰当地在高等数学教学中列举高等数学知识点在其专业中的应用实例为导入,激发学生的学习潜能。

2.4做好心理疏导工作,转换教学方式。

许多学生是害怕高等数学这门课程的,因此,在教学中做好学生的心理疏导工作是十分必要的。在李尚志教授的公开课——“数学大观”中就提到:“我们没有办法让学生喜欢数学,那么能减少学生对数学的仇恨就算是一种成功。”如何才能做到减少对课程的仇恨,应该从哪些方面来化解学生由来已久的心理问题?首先,考虑学生远离家乡,要适应完全陌生的环境,教师可在课余时间跟学生聊天,拉近师生间的距离。其次,要让学生明确读书的目的是什么,不要被不良风气所影响。这看似与教学无关,却能让学生明确自己的学习目标,从而激发其学习动力。再次,教师应该放下自己的架子,勇敢地在学生面前适当展示自身的不足,承认在授课中出现的瑕疵,让学生明白知识积淀的重要性,同时明确教学过程是师生共同探讨的过程。

3结束语。

数学教学和其它学科教学一样,都应该是师生互动、共同进步、携手共进的过程,通过老师的教学,帮助学生能轻松理解和掌握知识点,从而让学生能更好地应用所学知识。而学生的学习过程也在不断地帮助老师更深刻地理解教学内容,改进教学手段,提高教学质量。在新时代,掌握学生的学习动态,实施先进的教学策略,让学生学得轻松,老师教得轻松,从而实现数学教学改革目标。

参考文献。

[7]李尚志.我思我行我mooc[j].中国大学教学,2014.12:4-6.

[9]许波,工程数学应用[m].北京:清华大学出版社,2000.

高等数学教学总结篇十三

高等数学是工科、经管类等专业核心课程之一,是后续专业基础课和专业课学习的重要工具,也是对学生的思维能力、思维方法及创新能力培养的重要手段,因此学好高等数学是很重要的。但随着高等教育的大众化,学历教育的层次和办学模式的多样化,作为基础课的数学,教学班一般多为大班授课,加之学生基础往往参差不齐,学习方法差异较大,这就给数学课的教学增加了难度。下面就这些年自己的教学实践,谈谈怎样搞好高等学校数学课的课堂教学。

一、重视绪论课,激发学生对高等数学的学习热情:

二、通过教学使学生逐步树立学好高等数学的信心。

近几年来我主要从事自考院高等数学的教学工作,针对学生的数学基础比较薄弱,过关率不高,有很多学生一开始就对学好高等数学没有信心等情况。我决定,必须因材施教,在课堂上应尽可能的用通俗易懂的语言来描述数学概念,让学生逐步明白学习高等数学不是简单地从“高三”到“高四”,更主要是思维方式的转变。使学生明白基础不好未必就学不好高等数学,只要方法得当是可以学好高等数学的。

三、注重教学效果。

加强对学生的了解与交流,建立良好的师生关系,有助于将单纯的教育教学过程变成师生平等对话、合力互动、教学相长的友好合作的过程。心理学认为:满足人们对理解、尊重和追求的需要,就能激发人的潜能,使人有一股内在的动力,朝所期望的目标前进。因此教师要树立以学生为主体的生本教育观念,要尊重学生、赏识学生、鼓励学生、相信学生,达到激发学生学习兴趣的目的。另外,教师要注意调控好个人的情绪,不能随意把自己的喜怒哀乐带进教室。良好的教学情绪,积极的教学情感,能唤醒学生愉快的情绪体验,使之精力充沛,兴趣盎然。

好的提问方式常常能激起学生的求知欲和探索欲,引发辩论,引导学生全身心地投入到深层次的思维活动中,从而增强学生的学习兴趣。为此,可以通过以下两个途径:

1、重视预习。预习是学习过程中很重要的一个环节,一方面让学生带着问题来听课,以提高听课的效率。更重要的是逐步培养学生的自学能力。在我看来,大学教育的主要的目的之一就是培养学生的自学能力。教师在每次授课结束时明确提出下次授课的具体内容和预习要求,让学生对将要学习的内容有问可提,才真正达到预习的目的。

2、引导学生分析归纳所提的问题,并学会做出恰当的评价。以鼓励为主,学生提的问题越是多样就表明他们预习效果越好,然后鼓励他们把这些问题分类,教师因势利导地再提出新的问题,并在讲解过程中逐步使学生理解所提问题的价值,分析问题之间的关系,了解其中的含义。

四、重视数学概念和定理的讲述。

在讲叙数学概念和定理时,不仅要向学生传授这些知识,还要向他们传授这种抽象、概括问题的思维方法,让学生学会从具体内容中抽象概括,找出事物的本质。例如,在建立定积分概念时,通过对两个具体问题一一曲边梯形的面积和变速直线运动的路程的计算,可以看到:前者是几何量,后者是物理量,实际意义并不相同,但它们的数学思想和计算方法是相同的。排除其具体内容,抽出其本质特征,即单从数量关系看,都具有一种相同结构的特定形式,从而抽象概括出定积分的普遍性定义。

五、要重视习题课?

1、首先应注重培养学生的逻辑思维能力。逻辑思维能力包括抽象与概括的能力、分析与综合的能力和归纳与演绎的能力。习题课上教师通过具体的例题对高等数学中的概念、定理和法则进行梳理,使学生加深对各个知识点的联系。

2、此外,在习题课上,对所学的基本定理、基本概念要重点强调它们的条件、应用范围及其相互关系,使其在学生思维中形成一个完整有机的知识体系,为培养学生的创造性思维创造有利条件。新旧知识要联系着讲,不仅仅要讲这一单元的知识,也要注重对以前单元知识的复习。随着时间的推移,有些知识可能会遗忘,若在讲题的过程中,把以前单元的知识也捎带着复习一下,不仅可以增加学生的记忆效果,还会加深学生对本单元知识的理解,起到温故而知新的作用。?总之,数学学科自身的特点决定了要学好它就必须对它产生兴趣。为此,需要教师在教学过程的各个环节中,根据学生的具体情况和心理特点,因材施教,采用多样化的教学方法和技巧,有计划、有目的地培养和激发学生的学习兴趣,最终达到较好的教学效果。

高等数学教学总结篇十四

摘要:高等数学作为一门基础性学科,在高校教学中具有举足轻重的地位。从基本概念讲解和知识的综合应用两个方面介绍了在本科生高等数学教学中的体会与思考。

高等数学是高校教学中的一门重要课程,也是大多数刚踏入大学校园的本科生必修的一门课程。随着高校规模的进一步扩大,学生的素质和水平参差不齐,而高等数学又是一门理论性强、具有严密逻辑思维性的基础学科,因此要求每位高等数学教师要切实重视这门课的教学。要想学生真正喜欢上这门课,并且很好地掌握这门课,就需要不断提高教师的教学质量。

高等数学基础性强、理论性强、逻辑性强,它的推理、证明、数据演算等必须经得起推敲,容不得半点虚假。为了避免出现“一听就会,一做就错”、生搬硬套、遇到实际问题不会分析的状况,在高等数学的课堂教学中要从基本概念、基础知识出发,逐步培养学生的分析、推理能力和综合应用能力。

一、注重基本概念的讲解。

数学概念是人类对现实世界的空间形式和数学关系的简明概括,它是推导定理、公式、法则的出发点,是建立理论体系的着眼点,是数学教学的核心内容。但是许多学生在学习高等数学的过程中不注重课堂教师概念的讲解,只偏重于解题。一看到题目,如果题目曾经见过,不管条件如何就开始生搬硬套;如果题目没有见过就发呆愣神,根本不会分析推理。因此,在课堂教学中,一定要注重概念的理解,而不是将一个个抽象的概念“冰冷冷”地放在那儿,教师应该将知识体系很好地连贯起来,同时将所学内容与实际生活结合起来,能够生动形象地组织教学。

基本概念的引入和数学史结合。

在讲解基本概念的时候,穿插一些数学史的内容,一方面可以加深学生对数学的兴趣,另一方面也可以加深对概念的理解。例如,在讲解“导数”概念的时候,首先引入一些数学史的内容。

到了17世纪,有许多问题需要解决,这些问题也就是促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是求即时速度问题;第二类是求曲线的切线问题;第三类是求函数的最大值与最小值问题;第四类是求曲线长、曲线围成的面积、曲面围成的体积、物体重心的问题。这些问题在当时得到广泛的关注,许多著名的数学家、物理学家、天文学家都提出了许多很有建树的理论,为微积分的创立作出了贡献。

17世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作,他们最大的功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。

牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼兹却侧重于几何学来考虑。

这一段数学史的讲解,首先为紧接着引入“导数”概念时给出两个引例(直线运动的速度和曲线的切线)做好了铺垫,也引入导数概念的出发点——直观的无穷小量,与上一章的极限概念结合起来。其次,17世纪要解决的前三个问题,也就是导数这一部分重点要解决的问题,开篇就把该章的主要框架给出。第四个问题为后面积分学的引入埋下了伏笔。介绍牛顿和莱布尼兹的主要贡献,为定积分求解公式称为牛顿-莱布尼茨公式给出了合理的解释。

一段数学史的引入既让学生了解了微积分的发展,调动了学生学习兴趣,也可以更好地衔接课堂内容,何乐而不为呢?2.基本概念和实际相结合在讲解级数这一部分内容时,学生总觉得枯燥、抽象,感觉就是一些运算,并没有什么实际的应用。

当achilles再花b秒时间跑完b米时,乌龟又向前爬了c米,……这样的过程可以一直继续下去,因此achilles永远也追不上乌龟。

显然这一结论有悖于常理,是绝对荒谬的,可是如何用数学语言解释清楚呢?这样一个悖论可以调动学生积极思考。在思考的过程中,引入级数的概念。接着讲解级数的一些基本性质,从而再给出一些级数在实际中的应用,例如:一慢性病人需每天服用某种药物,按医嘱每天服用0.05mg,设体内的药物每天有20%通过各种渠道排泄,问长期服药后体内药量维持在怎么样的水平?通过对于级数的计算可以得到长期服药后体内药量近似为:0.0510.25mg54545423#8++`j+`j+gb=而在实际病例中,医生往往根据病人的病情,考虑体内药量水平的需求,确定病人每天的服药量。如一慢性病人需长期服药,按照病情,体内药量需维持在0.2mg,设体内药物每天有15%通过各种渠道排泄掉,问该病人每天的服药剂量应该为多少?[2]这样声情并茂、理论联系实际的一节课就可以让学生既思考了问题,又可以掌握基本知识,同时还激发了学生对抽象数学的兴趣,收到事半功倍的效果。

二、注重知识的综合应用。

高等数学现行教材中的很多例题,由于篇幅原因一般只有题目的解答过程却没有思考过程,因此爱问问题的学生往往会问,如果是自己解题的话,怎么会这样想呢?这个疑问就是授课教师在讲解题目时重点要解决的'。也就是说,授课教师不但要把解题的过程讲解清楚,还要从解题思路方面进行引导,指导学生怎样运用所学知识独立寻找解题思路,也就是逻辑思维能力的培养。

例如在讲中值定理这一节时,有例题:设在区间i上恒有:f(x)f(x)2xx,x,xi1212212-g-!证明此函数在i上为常数函数。

学生本来对证明题就有一种畏难情绪,一见到是抽象函数的证明题,更是无从下手,一头雾水了。这时教师不能直接讲解题过程,而是要逐步分析、理解,让学生给出解题过程。

首先帮助他们分析题意,引导学生逐步思考。要想证明一个函数为常数函数,由拉格朗日中值定理可知,“如果函数在区间i上的导数恒为零,那么函数在区间i上是一个常数”,因此只要证明“在区间i上,函数的导数均为零”。

讲到此处,给学生一个思考的余地,让他们试着去选择方法,看看如何证明函数的导数为零。于是学生在思路的引导下会进一步考虑。很多学生会选择拉格朗日中值定理,将左边函数值的差转化为和导数相关的量。此时教师就可以趁势鼓励他们想着要去转化左边的式子,非常正确。但是转化的过程要利用拉格朗日中值定理,那么条件满足吗?在拉格朗日中值定理中要求所考虑的函数在闭区间内连续,对应的开区间上可导,定理中的两个条件缺一不可,而这个题目中并没有给出函数的连续性和可导性。那要怎么处理呢?如果想出现导数形式,就可以从导数的基本定义出发进行分析。导数是差商的极限,反映的是变化率。

左端只给出了函数值的差,那么自然想着要和自变量的差结合,出现差商形式,将所给等式变形为:()()xxfxfx2xx121212g---而导数是一种极限形式,进而不等式两边取极限,利用夹逼准则结合极限的性质,所证结论成立。

通过逐步分析,问题就迎刃而解了。这个分析题的过程既有学生的参与,也有教师的讲解,利用条件和基本概念逐步分析就是对学生推理思维训练的过程。对学生来说收获更大。由这个题目的分析求解过程可以发现这是一道综合性较强的题目,需要学生对每个知识点——拉格朗日中值定理、导数定义、夹逼准则以及极限的性质必须要熟练掌握,然后才会融会贯通。

数学的题目千变万化,永远做不完。这就要求学生对基本概念掌握扎实,每个知识点要理解清楚。在题目的分析过程中,对基本概念和知识点融会贯通,逐步培养自己的逻辑分析、综合思维的能力。那么无论碰到什么样的题目类型都可以独立思考,逐步分析,寻找合适的解题方法。

总而言之,高等数学的教学是需要一个过程的,在这个过程中,教师只有不断提高自己的数学素养和教学能力,才能把高等数学这门课讲好,才能逐步激发学生学习的兴趣和乐趣,达到教与学的双赢。

参考文献:

[1]卡茨.数学史通论[m].李文琳,等,译.北京:高等教育出版社,2006.

[2]陈纪修,於崇华,金路.数学分析(下册)[m].北京:高等教育出版社,2004.

[3]同济大学数学教研室.高等数学(上册)[m].北京:高等教育出版社,2007.

高等数学教学总结篇十五

高等数学课程在高职院校课程建设体系中占有特殊重要的地位,随着社会经济的不断发展,高等数学的应用已渗透到自然科学、工程技术、生命科学、社会科学、经济管理等众多领域,成为解决各种实际问题的工具,特别是在经贸领域的应用已日益广泛。

高职院校各专业主要培养高等技术应用型专业人才,高等数学课程是一门十分重要的公共基础课,对人才培养质量起着举足轻重的作用,已成为处理经济技术领域专业问题的关键。

二、课程性质、目的和任务。

1.课程性质:高等数学是高等院校工科及经管本科各专业最重要的基础课之一,其内容历史悠久,在思想和方法上有显著的特点,具有向学生传授有关连续变量的数学知识、培养学生解决问题的能力及提高学生数学素质的重要作用,为学习后续课程做好准备。高等数学课程的作用是其它课程所不能替代的。

2.课程目的和任务:通过本课程的学习,使学生掌握有关一元函数和多元函数微积分、级数、常微分方程的概念、基本理论和基本方法,培养学生的抽象思维能力、逻辑思维能力、空间想象能力、计算能力、综合运用知识分析解决问题的能力以及新数学知识的自学能力。

限、连续;第二章一元函数微分法;第三章一元函数积分法;第四章多元函数微分法;第五章多元函数积分法;第六章无穷级数;第七章常微分方程。所用教材是2008年西南交通大学出版社出版的《高等数学》,连续在第一学年中的第一和第二学期开课,计划课时数为80节,学分为5个。

三、课程教学基本情况。

1.课堂讲授:在讲授的时候,我们尽量采取小班教学;采用黑板加粉笔的课堂讲授与课件配合使用,使学生从中学到本课程的基本内容,并学会逻辑推理的方法。在课程实施方面,我们一直在摸索提高,从过去的重视单纯知识的传授,转变为学生能力的培养;从重视理论推导技能的强化,转变为实际应用训练数学思想的培养;从以教师的讲授为主,转变为学生学习主动性的培养。通过努力,成效明显,学生反映很好。

2.作业方面:布置习题的目的有两点:一是加深同学对基本概念的理解;二是强化计算方法。习题数量基本上每次课(2学时)布置2~5个题。作业对象为教材课后的习题,从a组题中选择学生的必做题,b组题中选择学生的选做提高题。

3.考核方式及评价标准:考试形式以笔试形式,题型有选择题、填空题、计算题和证明题。为了更全面地考核所教知识点,我们建立了完整的试题库。最终考核综合参考平时表现(平时到勤情况以及作业情况),加期末考试成绩来进行。平时成绩占总评的30%,期末卷面成绩占总评的70%。

四、课程建设规划。

1、课程不足。

(1)教学方法与手段不够多元化,“讲授法”占主导,学生“学习疲劳”现象较严重。

(2)课程资源建设滞后,课程内容选取的针对性、应用性不够,缺乏与专业的有机联系。

(3)课程教学设施严重缺乏,既无教学机房,又缺乏教具、学具。

2、课程建设目标。

(1)1年内将高等数学建设成为院级精品课程;

(4)保持历年来参加数学建模竞赛的成绩,努力在获奖数量上提增。

3、建设措施。

(1)深入学生及专业调研,准确把握课程标准;

(2)加强教学内容的选取突出基础性、针对性与应用性,逐渐实施以专业为限的分层教学;积极开展实践性教学,提高学生的学习兴趣。

(3)通过数学相关选修课,以及数学建模竞赛等第二课堂,扩展课程空间;

(4)通过开展教师相互听课、评课活动;组织教师业务学习等措施加强教师队伍建设。

高等数学教学总结篇十六

工作计划实际上有许多不同种类,它们不仅有时间长短之分,而且有范围大小之别。以下是本站小编为大家精心搜集和整理的,希望大家喜欢!

数学教研室紧紧围绕以提高教学质量,抓好内涵建设为中心,以优化教师业务素质,不断提高教师的教学、教研水平和提高学生运用数学解决实际问题的能力为基本点;始终以应用为目的,以为专业服务为教学重点,充分发挥数学课程在高职教育特色中的基础作用。

1.组织好数学补考以及试卷的批改和成绩上报工作;。

2.配合基础部作好正常的教学及管理工作;。

3.按学院和教务处教学要求完成正常的教学,如听课、公开课听课评课任务,集体备课等活动.

(1)深入开展各专业对高等数学知识点需求的研讨会,真正做到数学为专业课服务;。

(3)为充分调动学生学习《高等数学》课程的积极性,组织一次全院数学调研。

5.定期召开教研室会议,坚持高职高专教育理论的学习与研究,吸收先进的教学理念与教学经验,改进自己的教学方法、教学思想。要求撰写一篇教学或教研论文。

6.搞好院级研究课题;。

课件。

8.做好教研室本学期的总结、下学期计划等工作;。

9.配合基础部做好一些临时性工作。

周次。

时间。

教学活动内容。

8月28至9月30日。

教案。

的撰写),要求教师上好每一堂课,确保教育教学质量,并要求没课的教师随机听取有课老师的课。做好学生的补考工作。

6

10月1日至10月7日。

国庆放假,假期间认真备课,撰写论文。

7

10月8日至10月14日。

确定教师举行公开课、组织安排数学教研室教师参加听课、评课活动。检查教案、教学计划的撰写情况。

8

10月17日至10月21日。

组织数学教师召开专题会议:针对学生数学基础差,如何上好高等数学课,如何体现为专业课服务。

9

10月24日至10月28日。

高等数学院级精品课程以及校本教材的进一步完善,公开课按计划开展。教师集体备课。

10。

10月31日至11月4日。

要求每位教师撰写一篇教学或教研论文。作业抽查、公开课、观摩课等活动的监督与实施。

11。

11月7日至11月11日。

期中教学检查,教案检查、作业批改情况抽查,做好数学教研室期中工作小结。

12。

11月14日至11月18日。

组织安排数学调研。

13。

11月21日至。

11月25日。

组织教师集体备课。

14。

11月28日。

至12月2日。

继续开展公开课、观摩课等活动,并召开专题会议:如何提高学生学习高等数学的兴趣;如何提高教学教研质量。

15。

12月5日至。

教案、作业随机抽查,教学进度、教学效果的反馈,做好总结工作.

16。

12月12日至。

12月16日。

根据高数为专业课服务的原则,进一步做好高等数学课程教学改革,上好数学实验课。

17。

12月19日。

至12月23日。

讨论、交流教学心得,总结成功与不足。

18。

12月26日至。

12月30日。

开展教学、教研交流活动;检查实践教学的落实。

19。

公开课、观摩课等教研。

活动总结。

院级课题落实情况的检查与反馈有关实验、实践教学落实情况的总结安排期末考试试卷的编制、保密、阅卷注意事项等事宜;本学期教学工作总结。

20。

元月9日至元月13日。

做好数学考试试卷分析与总结;做好本学期教研室工作总结以及下学期教研室工作计划。试卷装订情况检查,并做好有关资料的收集与整理并归档。

第一学期该教研室所开设的课程有《高等数学》,《经济数学基础(一)》,上课教师有班云、赵建萍、贺志雄、申玉红、田维、孙玉平、宋加友、方又超、杨合松。本学期具体工作如下:

1.组织至少4次教研活动,积极开展课程教学研究和学生现状研究。其中,在第一周组织一次教研活动,协调安排教学计划;期中教学检查一次;期末总结一次;根据教学情况在期中前后组织1-2次教研活动。

2.审核本教研室教师的教学计划,撰写期中教学检查总结,

;负责期中/末的考试安排、试卷审核等工作。

3.互听课,教研室主任听本教研室老师的课至少5人次。

4.督促并协助《高等数学》校级优质课负责人贺志雄老师进行课程建设,并配合数学系、教务处做好优质课课程的验收工作。

5.配合数学系推荐学校青年教师课堂教学微课竞赛工作。

6.做好下学期该教研室课程的教学任务安排,并协助教学秘书做好下学期教材征订工作。

7.组织编写《高等数学》练习题,初步建立该门课程的习题库。

8.配合数学系开展省级质量工程项目的建设。

9.完成系领导安排的其他工作。

高等数学教学总结篇十七

经济学是考察社会经济现象、行为及其规律的学科,而计量经济学则是揭示经济学理论所考察的社会经济现象之间的数量规律。计量经济学的学习与应用能力,关键取决于能否运用经济学的思维方式观察理解经济现象,能否构建恰当的经济模型,能否准确进行参数估计与模型检验,使研究结论客观反映经济规律,进而为政策决策提供有意义的参考。目前,虽然计量经济学已被列为高等院校经管类各专业的重要课程,但我国计量经济学教学与研究与发达国家相比还有较大差距,进一步培养好计量经济学人才任重道远。为更好提升学生学习和应用能力,应着重从以下方面入手进行计量经济学人才的培养。

(一)有助于培养学生观察与分析经济现象的能力。

计量经济学重在培养学生基于经济学理论观察社会经济现象,勇于提出问题。譬如,在研究通货膨胀时,学生应回顾成本推动型、需求拉动型等通胀形成机制,思考这些理论能否解释现实。以始于2009年下半年的通货膨胀为例,显然,每个人都经历与感知到了该轮通货膨胀对自身的影响,企业家感觉到原材料上涨,居民感觉到菜价上涨,学生发现食堂饭菜价格上升。对于计量经济学的学生来说,首先要思考此轮通胀的原因与货币供给过多是否相关,进而要思考此轮通胀与过去通胀是否存在相同特征。教师要将这些问题引入课堂,适时引导学生思考与研究社会经济现象,这实质就是培养学生学习与研究计量经济学的能力。

(二)有助于培养学生研究社会经济现象的能力。

计量经济学教学是引导学生应用经济学理论理解经济问题的过程。由于社会经济现象的形成机制非常复杂,对同一经济现象经济学家存在不同的看法。经济学理论和计量经济学方法发展日新月异,这种快速的知识更新使得师生需要不断学习与研究。此外,经济现象本身也伴随经济体制、运行机制与经济结构的变化而发生复杂变化,对这些日益复杂的现实经济现象的深入考察,也考验着我们运用计量经济模型的能力。因此,深刻理解经济现象及其背后的机制,重在能否正确应用计量经济学。仍以通胀现象为例,学生可能首先联想到的是货币需求函数,此时,教师可以引导学生比较分析消费价格指数(cpi)与广义货币(m2)的时间序列数据。通过观察,m2增速于2009年起快速下降,但与此同时,通胀却表现出持续上涨的态势。该现象提醒我们,若以非线性货币需求函数建模,则可以揭示通胀与货币需求间的复杂关系。为此,适时引导学生针对我国特定的数据,探索性研究通胀与货币需求间的复杂关系,能够培养其学习与解决问题的能力。

(三)有助于培养学生研究计量经济理论的能力。

高等教育的重要落脚点是开发学生创新能力。在计量经济学学习中,学生的创新能力体现于能否发展计量经济学理论。比如,通过引导学生观察通胀现象,逐步提出以下问题:如何检验通货膨胀与m2是否是平稳序列?这两个变量是否存在协整关系?该关系是否具有非对称、非线性的特征?怎样检验与估计非对称、非线性的长期均衡关系?要回答以上问题,必须学习与发展计量理论,这需要我们拓展既有非平稳时间序列分析的理论与方法。因此,在研究中准确理解与应用相关理论与方法,特别是针对数据特征拓展计量理论,是培养与提升学生学习与应用能力的重点。

二、计量经济学教学实践改革路径。

现代计量经济学的主要内容有:单位根检验与基于非平稳变量的建模技术;描述经济现象复杂动态性的模型;使用面板数据建立的模型。这些理论与方法与之前的经典计量经济学相比存在较大区别,为使教学与现代计量经济学的发展相适应,许多教师从教材改革、教学方法创新、突出实验教学等角度思考了计量经济学的教学方法改革。基于培养学生能力这一角度,借鉴以往教学改革的有益建议,结合我国计量经济学教学的现实状况,在计量经济学教学实践中,尝试从以下方面践行教学活动。

(一)立足引导与启发。

首先要清晰讲授相关概念、理论和方法,梳理知识之间的内在联系,适时对学生提出问题,培养其智能。例如,在讲解参数估计量的线性无偏最小方差性质中,应分析估计量是被解释变量的线性样本组合,从而引导学生认识估计量的本质,在理解估计量为一个随机变量的基础上,提出其是否服从特定的分布,最终引导学生理解估计量的方差以及对备选估计量的方差分析比较。基于估计量的有效性,再讲解渐进无偏与渐进最优估计量。接下来,适时展示线性无偏最小方差估计量的仿真结果,以此引导学生理解基本的计量经济理论,把引导学生学习和“教会学生学习”一体化。

(二)贯穿“理论、方法和应用”三位一体。

在教学中因势利导,从经典计量经济学适当拓展到现代计量经济学,并据此阐释计量经济学的相关理论,注重学生的学习反应,清晰介绍相关前沿理论。培养学生学习与应用计量经济学的能力重在:一要阐释回归分析的产生背景及其内涵;二是要培养学生根据我国数据构建计量模型的能力;三是要根据学生的实际情况对讲授内容进行延伸。计量经济学前沿的理论与方法集中在文献中,应根据学生的知识基础与结构从教材延伸至文献中。比如,在讲授异方差时,适时引出arch模型及其应用;在讲授面板模型时,适时延伸到动态面板模型与广义矩估计,并结合我国各省市城镇居民收入的面板数据,介绍动态面板模型和广义矩估计的分析思路。这种适时适度地引申新的知识,不但使学生深入理解基础概念,还启发学生拓展知识进行应用研究。

(三)充分利用蒙特卡洛仿真技术。

针对学生对计量经济学理论望而生畏的现状,我们利用蒙特卡洛仿真技术,通过编程将计量经济学中晦涩难懂的估计与检验理论转化为仿真结果,使得学生对抽象数学公式的模糊认识,转化为对仿真图形直观深入的理解。比如,线性无偏有效估计量的统计含义,既是参数估计中最基础的知识,又是大多数学生难懂的部分。在教学中采用仿真实验和仿真图形,让学生对抽象的计量理论产生直观的认识。又如,模型的误设定(如随机误差项的异方差性)及其导致的相应后果,是学习传统线性计量模型基本假设的重点,由于需要较强的数理统计学基础,这部分内容不但学生难理解,也是教师难以诠释清楚的问题。通过仿真实验结果能够形象展示违背经典计量经济假设下所导致的结果,促进学生对设定正确模型的重要意义产生深刻理解。这种仿真实验的教学模式不仅避免数学方面繁杂的推导过程,防止学生对计量经济理论“望而生畏”,还培养了其创新性的学习与研究能力。

三、计量经济学教学创新策略。

不断创新教学方法,培养学生对计量经济学的学习兴趣与解决问题的能力,是“学生主动学习”与“干中学”这种新型教学理念的出发点与落脚点。在教学实践中,我们采用如下策略。

1.在课堂讲授中有意识地提出问题,与学生互动,共同讨论问题,适时延伸问题,将学生引入到对相关前沿文献的学习。例如,为何采用标准差衡量估计量的精度?ols与广义gmm的估计原理区别在哪?单位根检验统计量的概率分布为何区别于常规分布?通过不断提出类似问题,与学生“互动式”讨论并且解答问题,不仅可以启发学生的思维向深度与广度发展,还有助于激发其学习积极性。

2.在课堂教学中协调理论讲授、案例分析、实验教学之间的关系。课堂教学的核心是模型设定、参数估计与假设检验等,案例分析和实验教学的目的在于帮助学生直观理解理论和方法,并促进其学以致用,能够进行经济学研究,但绝对不应以软件操作教学替代基础理论的教学。在讲解理论的基础上,适时操作相关的计量经济学软件,解释软件输出结果,是实现理论教学和实验教学融合的有效路径。

3.通过案例与数据分析,建立恰当的计量经济学模型,引导学生灵活运用。不管是经济学理论,还是计量经济学的研究,经济现象及其背后的运行规律是学生关注的问题。基于我国的实际例子讲授计量模型,容易激发学生对计量经济学的学习兴趣,能够有效促进学生应用所学知识解决现实经济问题的能力。针对计量经济学“难教、难学、难懂”,上述教学方法体现“学生主动学习”和“干中学”等先进教学理论的精神实质,不仅使学生带着浓厚的兴趣学习计量经济学,也开拓了其知识视野,培养学习、研究与应用计量经济学的能力。

将本文的word文档下载到电脑,方便收藏和打印。

【本文地址:http://www.pourbars.com/zuowen/10692663.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map