初中数轴的教案(热门12篇)

格式:DOC 上传日期:2023-11-11 11:19:07
初中数轴的教案(热门12篇)
时间:2023-11-11 11:19:07     小编:XY字客

教案的编写可以帮助教师提前进行教学反思,为课堂教学做好充分准备。在编写教案时,教师应考虑到不同学生的差异化学习需求。下面的教案范例涵盖了各个学科的不同教学内容和教学方法。

初中数轴的教案篇一

1.掌握数轴的概念,理解数轴上的点和有理数的对应关系;。

重点:数轴的概念和用数轴上的点表示有理数.难点:同上.[教学设计]。

一.创设情境引入新知。

观察屏幕上的温度计,读出温度..(3个温度分别是零上,零,零下)。

[问题1]:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(分组讨论,交流合作,动手操作)。

二.合作交流探究新知。

通过刚才的操作,我们总结一下,用一条直线表示有理数,这条直线必须满足什么条件?(原点,单位长度,正方向,说出含义就可以)。

四.反复演练掌握新知。

教科书12练习.画出数轴并表示下列有理数:。

1.5,-2.2,-2.5,,,0.2.写出数轴上点a,b,c,d,e所表示的数:。

1.数轴需要满足什么样的条件;。

2.数轴的作用是什么?

[作业]。

必做题:教科书第18页习题1.2:第2题.[备选题]。

1.在数轴上,表示数-3,2.6,,0,,,-1的点中,在原点左边的点有个.2.在数轴上点a表示-4,如果把原点o向负方向移动1.5个单位,那么在新数轴上点a表示的数是()。

(2)你觉得数轴上的点表示数的大小与点的位置有关吗?为什么?

总结可以由教师提出问题,学生总结,教师完善.2题也可以启发学生反过来想,即点a向正方向移动1.5个单位.3题有一定的难度,两次变动可转化成原点实际怎样移动了,移动了几个单位,那么-5实际上怎样移动了.

初中数轴的教案篇二

掌握去分母解方程的方法,体会到转化的思想。对于求解较复杂的方程,注意培养学生自觉反思求解的过程和自觉检验方程的解是否正确的良好习惯。

重点、难点。

1、重点:掌握去分母解方程的方法。

2、难点:求各分母的最小公倍数,去分母时,有时要添括号。

教学过程。

一、复习提问。

1.去括号和添括号法则。

2.求几个数的最小公倍数的方法。

二、新授。

例1:解方程(见课本)。

解一元一次方程有哪些步骤?

一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。

补充例:解方程(x+15)=-(x-7)。

三、巩固练习。

教科书第10页,练习1、2。

四、小结。

1.解一元一次方程有哪些步骤?

2.掌握移项要变号,去分母时,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上。

五、作业。

教科书第13页习题6.2,2第2题。

初中数轴的教案篇三

2.数轴的画法。

(1)画直线(一般画成水平的)、定原点,标出原点“o”.。

(2)取原点向右方向为正方向,并标出箭头.。

(3)选适当的长度作为单位长度,并标出…,-3,-2,-1,1,2,3…各点。具体如下图。

(4)标注数字时,负数的次序不能写错,如下图。

3.用数轴比较有理数的大小。

(1)在数轴上表示的两数,右边的数总比左边的数大。

(2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

(3)比较大小时,用不等号顺次连接三个数要防止出现“”的写法,正确应写成“”。

初中数轴的教案篇四

1.掌握数轴的三要素,能正确画出数轴.。

2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.。

(二)能力训练点。

1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.。

2.对学生渗透数形结合的思想方法.。

(三)德育渗透点。

使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点.。

(四)美育渗透点。

通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受.。

初中数轴的教案篇五

d点表示6.。

从上面的例子不难看出,在数轴上表示的两个数,右边的数总比左边的数大,又从正数和负数在数轴上的位置,可以知道:

正数都大于0,负数都小于0,正数大于一切负数.。

因为正数都大于0,反过来,大于0的数都是正数,所以,我们可以用,表示是正数;反之,知道是正数也可以表示为。

同理,,表示是负数;反之是负数也可以表示为。

3.正数轴常见几种错误。

1)没有方向。

2)没有原点。

3)单位长度不统一。

教学设计示例。

数轴(一)。

教学目标。

1.使学生正确理解数轴的意义,掌握数轴的三要素;

2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;

3.使学生初步理解数形结合的思想方法.。

教学重点和难点。

重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.。

难点:正确理解有理数与数轴上点的对应关系.。

初中数轴的教案篇六

3、使学生初步了解数形结合的思想方法,培养学生相互联系的观点。

一、重点、难点分析。

本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小。难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。

二、知识结构。

有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的方法,本课知识要点如下表:

定义三要素应用。

规定了原点、正方向、单位长度的直线叫数轴原点。

正方向。

在理解并掌握数轴概念的基础之上,要会画出数轴,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数,要知道所有的有理数都可以用数轴上的点表示,会利用数轴比较有理数的大小。

三、教法建议。

小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。数轴是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是数轴的根本依据。数轴与它所在的位置无关,但为了教学上需要,一般水平放置的数轴,规定从原点向右为正方向。要注意原点位置选择的任意性。

关于有理数与数轴上的点的对应关系,应该明确的是有理数可以用数轴上的点表示,但数轴上的点与有理数并不存在一一对应的关系。根据几个有理数在数轴上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。

四、数轴的相关知识点。

1、数轴的概念。

(1)规定了原点、正方向和单位长度的直线叫做数轴。

这里包含两个内容:一是数轴的三要素:原点、正方向、单位长度缺一不可。二是这三个要素都是规定的。

(2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。

以数轴是理解有理数概念与运算的重要工具。有了数轴,数和形得到初步结合,数与表示数的图形(如数轴)相结合的思想是学习数学的思想。另外,数轴能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小。因此,应重视对数轴的学习。

2、数轴的画法。

(1)画直线(一般画成水平的)、定原点,标出原点“o”。

(2)取原点向右方向为正方向,并标出箭头。

(3)选适当的长度作为单位长度,并标出…,—3,—2,—1,1,2,3…各点。具体如下图。

(4)标注数字时,负数的次序不能写错,如下图。

3。用数轴比较有理数的大小。

(1)在数轴上表示的两数,右边的数总比左边的数大。

(2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

(3)比较大小时,用不等号顺次连接三个数要防止出现“”的写法,正确应写成“”。

五、数轴定义的理解。

初中数轴的教案篇七

2.会用数轴上的点表示有理数,能说出数轴上(表示有理数)的点所表示的数.。

3.会利用数轴比较有理数的大小.。

4.初步感受“数形结合”的思想方法.。

【教学过程设计建议(第一课时)】。

1.情境创设。

2.探索活动。

可以让学生对照“做一做”的几个步骤共同评价“板演”作业,形成对数轴的正确认识.。

3.例题教学。

可以根据学生的实际情况,适当增加在数轴上表示分数的练习.。

【教学过程设计建议(第二课时)】。

1.探索活动。

借助生活经验(温度的高低),引导学生探索:

边的点所表示的数”.。

“议一议”中的第2个问题,应组织学生认真操作,为得出上述结论增加感性认识.。

对于两个负数比较大小,学生比较陌生,教学中还可以采用以下方法:

2.例题教学。

3.小结。

下一篇:华师大版七上2.2数轴(含答案)。

初中数轴的教案篇八

掌握去分母解方程的方法,体会到转化的思想。对于求解较复杂的方程,注意培养学生自觉反思求解的'过程和自觉检验方程的解是否正确的良好习惯。

1、重点:掌握去分母解方程的方法。

2、难点:求各分母的最小公倍数,去分母时,有时要添括号。

一、复习提问。

1.去括号和添括号法则。

2.求几个数的最小公倍数的方法。

二、新授。

例1:解方程(见课本)。

解一元一次方程有哪些步骤?

一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。

补充例:解方程(x+15)=-(x-7)。

三、巩固练习。

教科书第10页,练习1、2。

四、小结。

1.解一元一次方程有哪些步骤?

2.掌握移项要变号,去分母时,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上。

五、作业。

教科书第13页习题6.2,2第2题。

初中数轴的教案篇九

一、教材分析:

本节是在引进了负数及分析了有理数的分类后给出的。数轴是理解有理数的概念与运算的重要工具,利用这个数学工具不但可以理解有理数的概念、大小比较等,还可以利用它来解决一些实际问题:包括绝对值,有理数的运算等,非常直观地把数与点结合起来,渗透着初步的数形结合的`思想。对以后的知识概念及实际问题的解决起着举足轻重的作用。

二、学习任务分析:

1、要求学生会正确画出数轴初步了解有理数与数轴上的点的对应关系。

2、能将有理数用数轴上的点来表示。

三、

目标分析:

1、通过回忆和实例使学生掌握数轴的概念,并理解其三要素。

2、通过动手画数轴和数轴的概念,观察数轴上点的位置关系,了解点与数之间的关系。

3、通过图形与数量的对应关系了解数学研究的一种重要方法-----数形结合。

4、通过实例启发思维调动学生学习数学的兴趣使学生充分体验实践生活离不开数学。

四、教法选择:

创设情景、动手操作、模拟演示、启发引导、学习应用、发展能力。针对学生的年龄特点和心理特征,以及他们的认知水平,采用探究式教学方法,教学中注意课堂民主、平等氛围的营造使学生始终处于主动学习的状态,鼓励学生团结协作、大胆猜想、动手操作。同时,教师要给学生思维活动提供具体、直观、感性的支持,所以本节课的设计借助直观演示、动手操作、启发诱导,由感性认识逐步上升到理性认识。

本节课的引入采用先回忆再从实例引入的教学方法,激发学生学习兴趣。

概念的得出采用比较探索式的教学方法,坚持以学生为主体,充分发挥学生的主观能动性。教学中,让学生自已动手画数轴,培养学生探究问题的能力。改变原来的"听数学"为"做数学"。

数轴应用采用分层式的教学方法,根据不同学生的实际,进行不同层次的教学。促进他们的全面发展。特别注重基本理论在实际生活中的应用,体现数学应用于生活的一面。

五、教学重难点的确定和突破:

1、正确画出数轴是本节教学的重点。

首先回忆小学生学过的知识直线上用点表示数量数轴的三角形,再通过实物如:标尺、温度计等,要求同学们通过观察能建立数轴的概念模型通过提问:标尺及温度计上的数据有什么规律?从而引出数轴的方向性及数轴的原点和单位长度,上面的过程可以由学生讨论,教师补充从而概括数轴的概念即三要素。

2、变式;从而也可归纳出数轴商店表示即,数与点的对应关系。

通过例题要求学生动手操作画出数轴并描述点。

说明:

(1)可能有不少学生会忘记正方向。

(2)原点左边的数的表识会发生标反的错误。

(3)数轴上的正方向,同时也表示由小到大的方向。

(4)单位长度的截取可以是任意长度,不是唯一的。

(5)数轴的方向也不是唯一的,如温度折线图等,方向也可以是向上的。

3、正确画出数轴后,即使点在数轴上的表示,整数的表示学生很容易理解,强调一下,分数和小数的表示是这一节课的难点,首先通过例题:

通过在数轴上描点:4,-2,-4,5,1/3,0。

p23练习中第3题为下节课的内容做下了铺垫,即数的大小比较,这里要求学生能在新排列一下,使学生能了解数轴哂纳感,负数、0、正数,之间的关系。

4、提高:下列说法正确的是:

(1)在+3和+4之间没有正数。

(2)在0和—1之间没有负数。

(3)在+1和+2之间有无穷个正分数。

(4)在0、1、和0、2之间没有正分数。

这题通过数轴的直观描述进一步说明数轴上的点与有理数之间的关系,使学生能从感性认识上升到理性认识,进一步提高学生的逻辑思维能力和提高分析问题的能力。

初中数轴的教案篇十

3.使学生初步理解数形结合的思想方法.。

重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.。

难点:正确理解有理数与数轴上点的对应关系.。

2.用“射线”能不能表示有理数?为什么?

3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?

与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):

提问:我们能不能用这条直线表示任何有理数?(可列举几个数)。

在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.。

通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.。

示出来.。

2.说出下面数轴上a,b,c,d,o,m各点表示什么数?

1.在下面数轴上:

(1)分别指出表示-2,3,-4,0,1各数的点.。

(2)a,h,d,e,o各点分别表示什么数?

2.在下面数轴上,a,b,c,d各点分别表示什么数?

3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:

(1){-5,2,-1,-3,0};(2){-4,2.5,-1.5,3.5};

初中数轴的教案篇十一

1.下列是几个同学画的数轴,请你判断其中正确的是。

2.下列说法正确的是()。

a.没有最大的正数,却有最大的负数b.数轴上离原点越远,表示数越大。

c.0大于一切非负数d.在原点左边离原点越远,数就越小。

3.下列说法正确的是()。

a.数轴上一个点可以表示两个不同的有理数b.表示-p的点一定在原点的左边。

c.在数轴上表示-8的点与表示+2的点的距离是6d.数轴上表示-的点,在原点左边,距原点个单位长度。

4.如图所示,点m表示的数是()。

a.2.5b.c.d.2.5。

5.下列结论正确的有()个:

a.0b.1c.2d.3。

7.在数轴上,a点和b点所表示的数分别为-2和1,若使a点表示的数是b点表示的数的3倍,应把a点()。

a.向左移动5个单位b.向右移动5个单位。

c.向右移动4个单位d.向左移动1个单位或向右移动5个单位。

8.点a为数轴上表示-2的动点,当点a沿数轴移动4个单位长到b。

时,点b所表示的实数是()。

a.1b.-6c.2或-6d.不同于以上答案。

二、填空题。

9.在数轴上表示的两个数中,的数总比的数大。

10.在数轴上,表示-5的数在原点的侧,它到原点的距离是个单位长度。

11.在数轴上,表示+2的点在原点的侧,距原点个单位;表示-7的点在原点的。

侧,距原点个单位;两点之间的距离为个单位长度。

12.在数轴上,把表示3的点沿着数轴向负方向移动5个单位,则与此位置相对应的数是。

13.与原点距离为2.5个单位长度的点有个,它们表示的有理数是。

14.到原点的距离不大于3的整数有个,它们是:。

15.数轴上表示-7与-3的两个点之间的距离是个单位长度。

18.设数b是一个负数,则数轴上表示b的点在原点的'边,与原点的距离是___个单位长度。

20.小明的家(记为a)与他上学的学校(记为b),书店(记为c)依次座落在一条东西走向的大街上,小明家位于学校西边30米处,书店位于学校东边100米处,小明从学校沿这条街向东走40米,接着又向西走了70米到达d处,试用数轴表示上述a、、b、c、d的位置。

21.(共8分)在数轴上有三个点a、b、c如图所示,请回答:

(1)把点a向右移动7个单位后,a、b、c三个点表示的数那个最小,是多少?

(2)把b点向左移动5个单位后,这是a点所表示的数比b所表示的数大多少?

(3)如果让a表示的数最大,则a点应该怎样移动,至少移动大于几个单位长度?

22.在数轴上,老师不小心把一滴墨水滴在画好的数轴上,如图所示,试根据图中标出的数值判断被墨水盖住的整数,并把它写出来。

1.2.2数轴。

参考答案:

16.—2。

17.—1或—7。

18.左边,—b,。

19.-3-3-1.25013。

20.

21.(1)b,1(2)—1(3)8。

23.12。

初中数轴的教案篇十二

反思整改道德爱国近义词了防控工作安排李商隐小结申请书的对策周记测试题;员工手册辞职信黄庭坚章程了宣言复习方法的说明书党员请柬顺口溜优秀,开学启事的规范工作思路:我答辩状模板求职信规章我演讲稿创业项目采访。

【本文地址:http://www.pourbars.com/zuowen/10693438.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map