初中数学直角三角形教案(优秀15篇)

格式:DOC 上传日期:2023-11-11 11:51:13
初中数学直角三角形教案(优秀15篇)
时间:2023-11-11 11:51:13 小编:HT书生

编写教案的过程也是教师自身专业发展的一个重要环节。教案要与教材内容和学生背景相结合,形成有机连接。需要参考教案的老师们可以看看下面的范文,有助于提升教学设计能力。

初中数学直角三角形教案篇一

是边的长、和是由用不同方式来决定的三角函数值,它们都是实数,但它与代数式的不同点在于三角函数的值是有一个锐角的数值参与其中.中,,求。

bc。

边的长.

画出图形,可知边。

ac。

bc。

和三个元素的关系是正切函数(或余切函数)的定义给出的,所以有等式。

由于,它实际上已经转化了以。

bc。

为未知数的代数方程,解这个方程,得。

即得。

bc。

的长为.中,,求这个三角形的未知的边和未知的角(如图)。

这是一个锐角三角形的解法的问题,我们只需作出。

bc。

边上的高(想一想:作其它边上的高为什么不好.),问题就转化为两个的问题.可由解时求出,那时,它也将转化为可解的直角三角形,问题就迎刃而解了.解法如下:

解:作于。

d

在rt中有是正。

n

边形的。

n

oam。

oa。

是半径,

om。

是边心距,

ab。

是边长的一半,锐角.的长为。

-->

-->

-->

-->

-->

-->

-->

-->

-->

-->

-->

-->

-->

-->

-->

-->

-->

-->

-->

-->

-->

-->

-->

-->

-->

-->

-->。

初中数学直角三角形教案篇二

《解直角三角形》,是前面学过的相似及函数问题的`延续和综合应用,同时也是开云KY官方登录入口 继续学习解斜三角形的重要预备知识。它的学习还蕴含着数学建模和转化化归的数学思想,所以,本节内容无论在本单元,还是整个初中教材甚至中考中都具有重要的地位。

2、学习目标。

由于本节课是第一课时,主要是使学生理解直角三角形的边角关系,并能运用关系解直角三角形和与之相关的实际问题,所以我参考课标提出的阶段性要求,确立本节的教学目标是:

(2)通过对解直角三角形的学习,我们能感知未知元素与已知元素的关系,体会知识点之间的内在联系。

(3)培养学生问题意识,渗透转化思想和数学建模意识。

3、本节课重点是解直角三角形,这是因为它和相似等知识一样,是以后会解题的重要工具,将被广泛的应用。

难点是选择合适的边角关系。这是因为在解直角三角形时,需要学生根据已知条件,结合图形,经过分析,选择准确简单的关系式,而学生刚学三角函数,应用还不灵活,所以感到困难。

本节课我选用了引导发现法和归纳总结法,并应用了媒体教学。这是因为课标提出“教学活动是师生之间,学生之间交往互动与共同发展的过程,教师是教学活动的引导者与合作者。”这两种方法可以让老师成为导演,学生扮演演员,充分发挥学生的主体地位。而媒体的使用可以满足学生的好奇心,课堂容量增大,最大限度的提高课堂效率。

为了充分发挥导学案的以案导学的作用,在学案中我根据学习内容的需要,增加了“老师温馨提示”栏目,让学生在课前预习时降低学习难度,能够跳一跳,摘到桃子。在教学时,我注意引导学生养成及时归纳、总结规律方法,有目的学习的好习惯。

本节课的教学我按照学案导学的“学——研——展——教——达”的教学模式展开。

1、在学这个教学环节,我在课前下发学案,让学生在学案的引领下,充分感知本节课要学习的内容,记录预习疑惑,及查阅相关资料。及时发现自身学习本节内容的不足之处,在上课时能够积极思考,合作,交流,展示。

2、在研这个环节,我精心设计问题,将本节的唯一知识点———解直角三角形,遵照“由特殊到一般”的原则转变为探索性问题的问题点、能力点,既学案中第二个大问题的里4个小问题,通过对知识点的教师设疑、学生质疑、解释、归纳总结等一系列师生研讨活动,得出解直角三角形的定,挖掘出它的内涵和外延,从而激发学生主动思考,逐步培养学生探究精神以及对教材的分析,归纳,演绎的能力,让学生学会看书,学会自学,进而突出本节重点。

3、在展这个环节我以本节例题即学案中的例1为基础,采用变式训练,逐渐增加问题难度,让学生在不同的问题中,多角度领悟本节重点知识——解直角三角形问题的实质,通过“兵教兵,兵强兵,兵练兵”的方法,让学生充分展示和反馈,帮助学生理解解直角三角形的注意事项,及怎样选择合适的边角关系式,怎样引辅助线,怎样写解题过程等问题,达到突破本节难点的目的。

4、在教这个环节我在学生理解解直角三角形方法的基础上,应用它解决生活中的实际问题,即学案上拓展提升问题,它实质也是本节例题的一个变式训练,培养学生一题多变,一题多解的思维方式,让学生体会数学知识的螺旋上升美。并且我精选了贴近学生生活情境的实际背景,寓德育与数学一体,生活与数学一体。激发学生的学习兴趣,提升学生的创新思维和合作意识,让数学思维好的同学吃的饱,使不同的人在数学上有不同的发展。

5、通过达标检测这个环节,及时反馈本节学生存在的问题,当堂点评,充分发挥小组的合作精神。

6、作业紧紧围绕巩固本节所学内容展开,有一定的梯度,让不同程度的学生都有所收获。板书设计本着重点突出的原则,让学生对本节课的主要知识一目了然,加深印象。

在设计本节课时,我力求让学生意识到:要解决老师课堂上提出的问题,看书不看详细不行,只看书不思考不行,思考不深不透还不行,如本节的复习提问部分,我虽然在导学案中给出了,但我在提问时却换了一个方式提问,目的让学生真正理解学案内容。而不是照着学案念,在讲授本节课时,我尽量实现自己角色的转变,让自己从讲台走下来,成为“平等中的首席”。

总之,我尽量创设适当和适合的教育情境,因为我知道,如果将15克盐放在我面前,无论如何都难以下咽,但是,把它放在鲜美的汤中,在享受佳肴时,15克盐早已被吸收。情境之余知识,犹如汤之余盐,盐要溶入汤中,才能被吸收;知识需要溶入情境中,才能显示出活力和美感!

初中数学直角三角形教案篇三

根据《数学课程标准》和素质教育的要求,结合学生的认知规律及心理特征而确定,即:七年级的学生对身边有趣事物充满好奇心,对一些有规律的问题有探求的欲望,有很强的表现欲,同时又具备了一定的归纳、总结表达的能力。因此,确定如下教学目标:

(1).知识技能目标。

让学生掌握多边形的内角和的公式并熟练应用。

(2).过程和方法目标。

让学生经历知识的形成过程,认识数学特征,获得数学经验,进一步发展学生的说理意识和简单推理,合情推理能力。

(3).情感目标。

激励学生的学习热情,调动他们的学习积极性,使他们有自信心,激发学生乐于合作交流意识和独立思考的习惯。。

2、教学重、难点定位。

教学重点是多边形的内角和的得出和应用。

教学难点是探索和归纳多边形内角和的过程。

1、教材的地位与作用。

本课选自人教版数学七年级下册第七章第三节《多边形的内角和》的第一课时。本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。

2、联系及应用。

本节课是以三角形的知识为基础,仿照三角形建立多边形的有关概念。因此。

多边形的边、内角、内角和等等都可以同三角形类比。通过这节课的学习,可以培养学生探索与归纳能力,体会把复杂化为简单,化未知为已知,从特殊到一般和转化等重要的思想方法。而多边形在工程技术和实用图案等方面有许多的实际应用,下一节平面镶嵌就要用到,让学生接触一些多边形的实例,可以加深对它的概念以及性质的理解。

学生对三角形的知识都已经掌握。让学生由三角形的内角和等于180°,是一个定值,猜想四边形的内角和也是一个定值,这是学生很容易理解的地方。由几个特殊的四边形的内角和出发,譬如长方形、正方形的内角和都等于360°,可知如果四边形的内角和是一个定值,这个定值是360°。要得到四边形的内角和等于360°这个结论最直接的方法就是用量角器来度量。让学生动手探索实践,在探索过程中发现问题"度量会有误差"。发现问题后接着引导学生联想对角线的作用,四边形的一条对角线,把它分成了两个三角形,应用三角形的内角和等于180°,就得到四边形的内角和等于360°。让学生从特殊四边形的内角和联想一般四边形的内角和,并在思想上引导,学习将新问题化归为已有结论的思想方法,这里学生都容易理解。课堂教学设计中,在探究五边形,六边形和七边形的内角和时,让学生动手实践,设置探究活动二,为了让学生拓宽思路,从不同的角度去思考这个问题,这个活动对学生的动手能力要求进一步提高了,学生对这个问题的理解稍微有些难度,但学生可根据自己本身的特点来加以补充和完善。在教学设计中,要求根据小组选择的方法探索多边形的内角和。首先,小组内各个成员对所选择的方法要了解,能够把掌握的知识运用到实践中;再者,小组内各个成员需要分工协作,才能够顺利的把任务完成;最后,学生还需要把自己的思维从感性认识提升到理性认识的高度,这样就培养了学生合情推理的意识。

本节课借鉴了美国教育家杜威的"在做中学"的理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"的思想,我确定如下教法和学法:

1、教学方法的设计。

我采用了探究式教学方法,整个探究学习的过程充满了师生之间,学生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

2、活动的开展。

利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

3、现代教育技术的应用。

我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。探究活动在本次教学设计中占了非常大的比例,探究活动一设置目的让学生动手实践,并把新知识与学过的三角形的相关知识联系起来;探究活动二设置目的让学生拓宽思路,为放开书本的束缚打下基础;培养学生动手操作的能力和合情推理的意识。通过师生共同活动,训练学生的发散性思维,培养学生的创新精神;使学生懂得数学内容普遍存在相互联系,相互转化的特点。练习活动的设计,目的一检查学生的掌握知识的情况,并促进学生积极思考;目的二凸现小组合作的特点,并促进学生情感交流。

以上是我对《多边形的内角和》的教学设计说明。

初中数学直角三角形教案篇四

1、等腰梯形同一底上的两个内角相等。

2、两腰相等,两底平行,对角线相等。

3、由托勒密定理可得等腰梯形abcd,有ab×cd+bc×ad=ac×bd。

4、中位线长是上下底边长度和的一半。

5、两条对角线相等,是轴对称图形,只有一条对称轴,过上下两底中点的.直线就是它的对称轴。

6、两条对角线将等腰梯形分成的八个三角形中,有3对全等形,1对相似形。

7、等腰梯形的面积公式:s=(上底+下底)×高×1/2。

8、特殊面积计算:当对角线垂直时:s=(bd×ac)/2。

初中数学直角三角形教案篇五

一学期的工作结束了,可以说紧张忙碌却收获多多。回顾这学期的工作,我教九(4)班的数学,我总是在不断地摸索和学习中进行教学,工作中有收获和快乐,也有不尽如人意的地方,为了更好地总结经验,吸取教训,使以后的工作能够有效、有序地进行,现将教学所得总结如下:

在上课前我总是查阅很多教参、教辅,力求深入理解教材,准确把握难重点,总是要经过深思熟虑之后才写教案,力争做到熟知知识要点,心中有数。

在课堂教学中我一直注重学生的参与。让学生参与到课堂教学中来,让他们自主的去探究问题,发现知识。波利亚说:“学习任何知识的最佳途径都是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的内在规律、性质和联系。”只有充分发挥学生的主体作用,让学生人人参与,才能最大限度地促进学生的发展。但还是难免受传统教学观念的影响,加之经验不足,不太敢放手,怕完成不了当趟课的教学任务。后来在学校“”的教学模式下,才开始进一步尝试,并在不断的尝试中总结经验。

1)、教材挖掘不深入。

2)、教法不灵活,不能吸引学生学习,对学生的引导、启发不足。

3)、新课标下新的教学思想学习不深入。对学生的自主学习,合作学习,缺乏理论指导。

4)、差生末抓在手。由于对学生的了解不够,对学生的学习态度、思维能力不太清楚。上课和复习时该讲的都讲了,学生掌握的情况怎样,教师心中无数。导致了教学中的盲目性。

1)、加强学习,学习新教学模式下新的教学思想。

2)、熟读初一到初三的数学教材,深入挖掘教材,进一步把握知识点和考点。

3)、多听课,学习老教师对知识点的处理和对教材的把握,以及他们处理突发事件方法。

4)、加强转差培优力度。

5)、加强教学反思,加大教学投入。

一学期的教学工作即将结束,这半年的教学工作很苦,很累,但在不断的摸索中,自己学到了很多东西。今后我会更加努力提高自己的业务水平。

初中数学直角三角形教案篇六

1、理解并掌握三角形中位线的概念、性质,会利用三角形中位线的性质解决有关问题。

2、经历探索三角形中位线性质的过程,让学生实现动手实践、自主探索、合作交流的学习过程。

3、通过对问题的探索研究,培养学生分析问题和解决问题的能力以及思维的灵活性。

4、培养学生大胆猜想、合理论证的科学精神。

探索并运用三角形中位线的性质。

运用转化思想解决有关问题。

创设情境——建立数学模型——应用——拓展提高。

情境创设:测量不可达两点距离。

活动一:剪纸拼图。

操作:怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形。

观察、猜想:四边形bcfd是什么四边形。

探索:如何说明四边形bcfd是平行四边形?

活动二:探索三角形中位线的性质。

应用。

练习及解决情境问题。

例题教学。

操作——猜想——验证。

拓展:数学实验室。

小结:布置作业。

初中数学直角三角形教案篇七

今天,老师在数学课上出了这么一道题:一个等腰直角三角形的斜边长是8厘米,求面积。老师刚说完题目,同学们就议论纷纷,时间一分一秒地过去了,可还是没有一个人举手,我忽然灵机一动,想到了一种解法,我便举起手。老师见了连忙让我回答;我说:“作等腰直角三角形斜边上的高,这个等腰三角形既然有一个角是直角,那么这个角是90度,另外两个角分别是45度,度数之间的关系是倍数关系。则斜边与斜边上的高也是倍数关系;可知斜边上的高是斜边的一半。即高就是8÷2=4(厘米)。然后再根据三角形的面积公式求等腰直角三角形的面积。算式是8×4÷2=16(平方厘米)。老师听了满意地笑了,忽然我不知哪来的灵感又想了一种解法,于是,我鼓起勇气对老师说还有一种方法,老师听了高兴地说:“说吧”。“把这个等腰直角三角形对折后再打开,沿折痕剪开,将两个小等腰直角三角形拼成一个正方形,边长是原等腰直角三角形斜边的一半,即8÷2=4(厘米)。这个正方形的面积就是原等腰直角三角形的面积”。算式是4×4=16(平方厘米)。我刚说完教室里响起了一片热烈的'掌声。

老师听了我说的两种方法神秘地说:“还有什么方法。”大家听后想莫非这道题还有其它解法;正在大家苦思暝想网的时候,班长小红把手举得高高的,老师请她站起来说:“还可以用两个这样的等腰直角三角形拼成一个大等腰直角三角形,这个大等腰直角三角形的直角边就是原等腰直角三角形斜边的长8厘米,原等腰直角三角形的面是拼成大等腰直角三角形面积的一半,算式是:8×8÷2÷2=16(平方厘米)。还可以用四个这样的等腰直角三角形拼成一个正方形,正方形的边长是等腰直角三角形斜边的长8厘米,正方形面积的四分之一就是这个等腰直角三角形的面积,算式是8×8÷4=16(平方厘米)。对这精彩的回答,周围又响起了一阵热烈的掌声。

初中数学直角三角形教案篇八

(2)掌握一元二次方程的一般形式,会判断一元二次方程的二次项系数、一次项系数和常数项。

(2)会用因式分解法解一元二次方程。

(一)创设情景,引入新课。

由学生说出这几个方程的共同特征,从而引出一元二次方程的概念。

(二)新授。

1:一元二次方程的概念。(一个未知数、最高次2次、等式两边都是整式)。

练习。

2:一元二次方程的一般形式(形如ax+bx+c=0)。

任一个一元二次方程都可以转化成一般形式,注意二次项系数不为零。

3:讲解例子。

4:利用因式分解法解一元二次方程。

5:讲解例子。

6:一般步骤。

练习。

(三)小结。

(四)布置作业。

(2)掌握一元二次方程的一般形式,会判断一元二次方程的二次项系数、一次项系数和常数项。

(2)会用因式分解法解一元二次方程。

(一)创设情景,引入新课。

由学生说出这几个方程的共同特征,从而引出一元二次方程的概念。

(二)新授。

1:一元二次方程的概念。(一个未知数、最高次2次、等式两边都是整式)。

练习。

2:一元二次方程的一般形式(形如ax+bx+c=0)。

任一个一元二次方程都可以转化成一般形式,注意二次项系数不为零。

3:讲解例子。

4:利用因式分解法解一元二次方程。

5:讲解例子。

6:一般步骤。

(三)小结。

(四)布置作业。

板书设计。

初中数学直角三角形教案篇九

今天小编为大家精心整理了一篇有关初中数学教案之公式的相关内容,以供大家阅读!

1.了解公式的意义,使学生能用公式解决简单的实际问题;

2.初步培养学生观察、分析及概括的能力;

3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

重点:通过具体例子了解公式、应用公式.

难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

(一)知识教学点

1.使学生能利用公式解决简单的实际问题.

2.使学生理解公式与代数式的关系.

(二)能力训练点

1.利用数学公式解决实际问题的能力.

2.利用已知的公式推导新公式的能力.

(三)德育渗透点

数学来源于生产实践,又反过来服务于生产实践.

(四)美育渗透点

1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点

2.学生学法:观察分析推导计算

1.重点:利用旧公式推导出新的图形的计算公式.

2.难点:同重点.

3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.

1课时

投影仪,自制胶片。

(一)创设情景,复习引入

板书:公式

师:小学里学过哪些面积公式?

板书:s=ah

(出示投影1)。解释三角形,梯形面积公式

【教法说明】让学生感知用割补法求图形的面积。

(二)探索求知,讲授新课

师:下面利用面积公式进行有关计算

(出示投影2)

例1如图是一个梯形,下底(米),上底,高,利用梯形面积公式求这个梯形的面积s。

2.题中“m”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作等)

学生口述解题过程,教师予以指正并指出,强调解题的规范性.

(出示投影3)

例2如图是一个环形,外圆半径,内圆半径求这个环形的面积

2.本题实际上是由圆的面积公式推导出环形面积公式.

3.进一步强调解题的规范性

测试反馈,巩固练习

(出示投影4)

1.计算底,高的三角形面积

3.已知圆的半径,,求圆的周长c和面积s

4.从a地到b地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。

(1)求a地到b地所用的时间公式。

(2)若千米/时,千米/时,求从a地到b地所用的时间。

【教法说明】面向全体,分层教学,能照顾两极,使所有的同学有所发展.

(一)填空

1.圆的半径为r,它的面积________,周长_____________

(一)必做题课本第xx页x、x、x第xx页x组x

(二)选做题课本第xx页xx组x

初中数学直角三角形教案篇十

理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,能解决一些与分式乘除有关的实际问题。

(2)技能目标。

经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。

(3)情感态度与价值观。

教学中让学生在主动探究,合作交流中渗透类比转化的思想,使学生在学知识的同时感受探索的乐趣和成功的体验。

重点:运用分式的乘除法法则进行运算。

难点:分子、分母为多项式的分式乘除运算。

(一)提出问题,引入课题。

俗话说:“好的开端是成功的一半”同样,好的引入能激发学生兴趣和求知欲。因此我用实际出发提出现实生活中的问题:

问题1:求容积的高是,(引出分式乘法的学习需要)。

问题2:求大拖拉机的工作效率是小拖拉机的工作效率的倍,(引出分式除法的学习需要)。

从实际出发,引出分式的乘除的实在存在意义,让学生感知学习分式的乘法和除法的实际需要,从而激发学生兴趣和求知欲。

(二)类比联想,探究新知。

从学生熟悉的分数的乘除法出发,引发学生的学习兴趣。

解后总结概括:

(1)式是什么运算?依据是什么?

(2)式又是什么运算?依据是什么?能说出具体内容吗?(如果有困难教师应给于引导,学生应该能说出依据的是:分数的乘法和除法法则)教师加以肯定,并指出与分数的乘除法法则类似,引导学生类比分数的乘除法则,猜想出分式的乘除法则。

(分式的乘除法法则)。

乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母。

除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(三)例题分析,应用新知。

师生活动:教师参与并指导,学生独立思考,并尝试完成例题。

p11的例1,在例题分析过程中,为了突出重点,应多次回顾分式的乘除法法则,使学生耳熟能详。p11例2是分子、分母为多单项式的分式乘除法则的运用,为了突破本节课的难点我采取板演的形式,和学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法。

(四)练习巩固,培养能力。

p13练习第2题的(1)、(3)、(4)与第3题的(2)。

师生活动:教师出示问题,学生独立思考解答,并让学生板演或投影展示学生的解题过程。

通过这一环节,主要是为了通过课堂跟踪反馈,达到巩固提高的目的,进一步熟练解题的思路,也遵循了巩固与发展相结合的原则。让学生板演,一是为了暴露问题,二是为了规范解题格式和结果。

(五)课堂小结,回扣目标。

引导学生自主进行课堂小结:

1、本节课我们学习了哪些知识?

2、在知识应用过程中需要注意什么?

3、你有什么收获呢?

师生活动:学生反思,提出疑问,集体交流。

(六)布置作业。

教科书习题6.2第1、2(必做)练习册p(选做),我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。

板书设计。

在本节课中我将采用提纲式的板书设计,因为提纲式—条理清楚、从属关系分明,给人以清晰完整的印象,便于学生对教材内容和知识体系的理解和记忆。

初中数学直角三角形教案篇十一

3,体验分类是数学上的常用处理问题的方法。

正确理解有理数的概念。

问题1:观察黑板上的9个数,并给它们进行分类.。

学生思考讨论和交流分类的情况.。

例如,

对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)。

按照书本的说法,得出“整数”“分数”和“有理数”的概念.。

看书了解有理数名称的由来.。

“统称”是指“合起来总的名称”的意思.。

学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会。

练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.。

2,教科书第10页练习.。

此练习中出现了集合的概念,可向学生作如下的说明.。

思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

也可以教师说出一些数,让学生进行判断。

集合的概念不必深入展开。

创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?

教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

有理数这个分类可视学生的程度确定是否有必要教学。

课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

1,必做题:教科书第18页习题1.2第1题。

2,教师自行准备。

本课教育评注(课堂设计理念,实际教学效果及改进设想)。

1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。

2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

初中数学直角三角形教案篇十二

从文体和表述方式上看,论文是以说理为目的,以议论为主;案例则以记录为目的,以记叙为主,兼有议论和说明。也就是说,案例是讲一个故事,是通过故事说明道理。

从写作的思路和思维方式来看,论文写作一般是一种演绎思维,思维的方式是从抽象到具体;案例写作是一种归纳思维,思维的方式是从具体到抽象。

教案和教学设计都是事先设想的教学思路,是对准备实施的教学措施的简要说明;教学案例则是对已经发生的教学过程的反映。一个写在教之前,一个写在教之后;一个是预期达到什么目标,一个是结果达到什么水平。教学设计不宜于交流,教学案例适宜于交流。

案例与教学实录的体例比较接近,它们都是对教学情景的描述,但教学实录是有闻必录,而案例则是有所选择的,教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断或理性思考)。

——真实性:案例必须是在课堂教学中真实发生的事件;。

——典型性:必须是包括特殊情境和典型案例问题的故事;。

——浓缩性:必须多角度地呈现问题,提供足够的信息;。

——启发性:必须是经过研究,能够引起讨论,提供分析和反思。

从文章结构上看,数学案例一般包含以下几个基本的元素。

(1)背景。案例需要向读者交代故事发生的有关情况:时间、地点、人物、事情的起因等。如介绍一堂课,就有必要说明这堂课是在什么背景情况下上的,是一所重点学校还是普通学校,是一个重点班级还是普通班级,是有经验的优秀教师还是年青的新教师执教,是经过准备的“公开课”还是平时的“家常课”,等等。背景介绍并不需要面面俱到,重要的是说明故事的发生是否有什么特别的原因或条件。

(2)主题。案例要有一个主题:写案例首先要考虑我这个案例想反映什么问题,例如是想说明怎样转变学困生,还是强调怎样启发思维,或者是介绍如何组织小组讨论,或是观察学生的独立学习情况,等等。或者是一个什么样的数学任务解决过程和方法,在课程标准中数学任务认知水平的要求怎么样,在课堂教学中数学任务认知水平的发展怎么样等等。动笔前都要有一个比较明确的想法。比如学校开展研究性学习活动,不同的研究课题、研究小组、研究阶段,会面临不同的问题、情境、经历,都有自己的独特性。写作时应该从最有收获、最有启发的角度切入,选择并确立主题。

(3)情节。有了主题,写作时就不会有闻必录,而要是对原始材料进行筛选。首先需要教师对课堂教学中师生双方(外显的和内隐的)活动的清晰感知,然后是有针对性地向读者交代特定的内容,把关键性的细节写清楚。比如介绍教师如何指导学生掌握学习数学的方法,就要把学生怎么从“不会”到“会”的转折过程,要把学习发生发展过程的细节写清楚,要把教师观察到的学生学习行为,学习行为反映的学生思想、情感、态度写清楚,或者把小组合作学习的突出情况写清楚,或者把个别学生独立学习的典型行为写清楚。不能把“任务”布置了一番,把“方法”介绍了一番,说到“任务”的完成过程,说到“掌握”的程度就一笔带过了。

(4)结果。一般来说,教案和教学设计只有设想的措施而没有实施的结果,教学实录通常也只记录教学的过程而不介绍教学的效果;而案例则不仅要说明教学的思路、描述教学的过程,还要交代学生学习的结果,即这种教学措施的即时效果,包括学生的反映和教师的感受等。读者知道了结果,将有助于加深对整个过程的内涵的了解。

(5)反思。对于案例所反映的主题和内容,包括教育教学指导思想、过程、结果,对其利弊得失,作者要有一定的看法和分析。反思是在记叙基础上的议论,可以进一步揭示事件的意义和价值。比如同样是一个学困生转化的事例,我们可以从社会学、教育学、心理学、学习理论等不同的理论角度切入,揭示成功的原因和科学的规律。反思不一定是理论阐述,也可以是就事论事、有感而发,引起人的共鸣,给人以启发。

新课程理念下的初中数学教学案例,可从以下六方面选择主题:

(1)体现让学生动手实践、自主探究、合作交流的教学方式;。

(4)体现数学与信息技术整合的教学方法;。

(5)体现教师在教学过程中的组织者、引导者与合作者的作用;。

(6)体现教学中对学生情感、态度的关注和评价,以及怎样帮助不同的人在数学上获得不同的发展,等等。

初中数学直角三角形教案篇十三

创设情境导入新课

-->引导学生欣赏鲁迅纪念馆的照片,简单介绍鲁迅其人其事,进行爱国主义教育和乡土文化教育,激发学生的自豪感,并请学生做导游,点出这节课的主线:边参观鲁迅纪念馆边学习身边的数学.

-->。

沿参观旅程依此遇到下列问题:。

3、在参观时了解到了纪念馆的一些情况:。

初中数学直角三角形教案篇十四

3、通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

重点:通过具体例子了解公式、应用公式。

难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

1、对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2、在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

3、在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

初中数学直角三角形教案篇十五

《垂线》选自义务教育课程标准实验教科书《数学》(华东师大版)七年级上册第四章相交线。垂线是平面几何所要研究的基本内容之一,是七年级上册第四章“图形的初步认识”的主要内容。垂线的概念、画法和性质是重要的基础知识,是进一步学习空间里的垂直关系、三角形的高、切线的性质和判定以及平面直角坐标系等知识的基础,与其他数学知识一样,它在现实生活中有着广泛的应用。垂线的概念和性质,蕴含着“从一般到特殊”的认识规律,是培养学生思维能力的重要内容之一。它作为学习几何的基础内容,对以后学生利用准确合理的构造画出垂线来分析几何关系、解决几何综合问题及相关实际问题具有重要意义。

实验教材将本节内容分两课时,与九年义务教育教材相比,虽然缩短了一课时,但更注重对学生实际操作能力的培养,更注重渗透变换的思想。“做一做”这种探究性活动,为培养学生的参与意识和创新意识提供了机会。垂线的画法是学生学习本节内容的一个难点。结合学生所学的知识及生活实际,有效地引导学生认知和感受知识的发生发展过程;精心设计投影片和变式训练,并恰到好处地利用运动变化,体现画垂线的思维过程,在掌握垂线概念的基础上,使学生顺利自然地突破画垂线的难点。

我校属农村城镇中学,学生全部享受九年义务教育,实行电脑随机分班,未进行筛选。学生智力水平参差不齐,基础和发展均不平衡。经过一学期的实践,学生基本上适应了以学习小组方式参与探究活动与班级学习方式相结合的学习方法,不同程度地享受到了数学知识来源于实践操作的成功体验,从而愿意在教师的指导下主动与同学探索、发现、归纳数学知识。

针对教材内容和学生实际,组织学生实践、感悟出两直线互相垂直的概念,引导学生分析解决问题,使学生在自己动手的基础上,发现垂线的性质,又借助于教具、实物、图形、幻灯等,从直观的感性认识发现抽象的概念,使学生成为探求知识的主体。同时利用问题探究式的方法让学生对新课加以巩固理解。在探究垂线的性质时,采取小组学习形式,可增强学生之间的合作互助,弥补教师在大班额教学中对弱势学生关注的不足。初步探索在农村中学中如何进行研究性学习。

1.了解两条直线互相垂直的概念;知道过一点有且仅有一条直线垂直于已知直线,会用三角尺或量角器过一点画一条直线的垂线。

2.培养提高观察、理解能力,几何语言能力,画图能力,抽象思维能力和运用知识解决实际问题的能力。

3.培养辩证唯物主义思想及不断发现、探索新知识的精神。

4.通过创设情境,利用变式训练和多种教学手段来激发学生学习兴趣,给学生创造成功的机会,使他们爱学、会学、学会,营造学生可持续发展的氛围。

两直线互相垂直的有关性质。

过直线上(外)一点作已知直线的垂线。

课前准备教具:多媒体、投影仪、自制的可旋转的两根木条等。

生活经验准备:旗杆与旗台边线线的垂直关系;红十字会标志。

以往知识准备:两条直线相交,产生两对对顶角,且对顶角相等。

一、创设问题情境。

师:这是两幅草坪的图案。在绿色的草坪上,画着两条交叉的道路。你觉得甲图、乙图哪一幅更漂亮、更匀称?这是什么原因?(教师用多媒体或投影仪展示。)。

(学生众说纷纭,教师应给予充分的肯定。)。

师:图甲是两条直线相交的一种特殊情况,它在生活、生产实际中应用比较广。请你再举一些类似的例子。

生:……。

师:让我们共同探索图甲这种特殊情况。

二、回顾再现。

对顶角相等两条直线相交只有一个交点。如图1,直线ab和cd相交,交点为点o,有四个小于平角的角,且。

三、提高。

教师演示自制教具,要求学生观察当一根木条绕着另一根木条旋转时的变化情况,并用数学语言进行描述。

【教师应鼓励学生大胆描述自己的观察结果,并及时予以肯定。】。

生:……。

师:你们的依据是什么?

生:……。

(学生的答案很丰富:用度量的方法;利用对顶角相等;互补的概念……学生回答过程中,只要有道理就应予以鼓励。)。

【这里希望在感性认识的基础上进行抽象概念的教学,培养学生的抽象思维能力。】。

四、提升。

教师引导学生归纳出:两条直线互相垂直,两条直线相交所构成的四个角中有一个角是直角时,称这两条直线互相垂直。

师:(1)如图2,直线ab和cd相交,交点为o,,记为,垂足为点o。“”读作“ab垂直于cd”或“cd垂直于ab”。

(2)两条直线,垂足为点o,则。

五、再探究。

师:请同学们举一些日常生活中互相垂直的直线的例子;

生:……。

【希望实现将数学知识在实际生活中的运用,并为后继学习数学知识增加感性认知。】。

师:请同学们用三角尺或量角器:

(1)经过直线。

ab。

外一点。

p

画直线与已知直线。

ab。

垂直,且讨论这样的直线有几条。

(2)设这一点在直线。

ab。

上,重作上述过程。

【学生分组或独立探索,教师巡视指导。】。

教师引导学生归纳结论:在同一平面内,经过直线外或直线上一点,有且只有一条直线与已知直线垂直。

师:请同学们互相交流且简单描述一下,上述结论用三角尺的作法过程和“有且只有”的含义。

(学生讨论交流,教师巡视)。

教师引导归纳出:

(1)靠已知直线??找待过定点??画已知直线的垂线(一靠、二过、三垂直)。

(2)有一条并且只有一条,没有第二条。

师:如图5,请同学们相互比试,谁能更快地过直线cd上一点p作直线ab的垂线。并在小组间进行交流。

六、学生探索。

学生分小组测量,讨论,归纳。如图6所示,点a与直线dc上各点的距离长短一样吗?谁最短?它具备什么条件?(抽小组代表发言。)。

七、总结归纳。

教师总结归纳:只有线段ab最短,且当ab与dc垂直时,才最短。

提高:线段ab的长度就是点a到直线dc的距离。

思考:点a到直线dc的距离与点a到点c的距离有什么区别?

点a到直线dc的距离:线段ab的长度,a为直线外一点,b为过a向直线dc所引的垂线的垂足;点a到点c的距离:两点之间线段的长度。

八、较量(练习)。

1.第170页第1、2、3题。

2.应用。

(1)某村庄在如图7所示的小河边,为解决村庄供水问题,需把河中的水引到村庄a处,在河岸cd的什么地方开沟,才能使沟最短?画出图来,并说明道理。

(2)教材第170页“做一做”。

(3)体育课上怎样测量跳远成绩。

【学以致用,学生做个小小设计师.兴趣盎然,把这节课引入高潮。】。

学生重温“两条直线互相垂直的概念”和“如何过已知直线上或已知直线外的一点作惟一的垂线”两个知识点。

3.第174页第1、2题。

4.学校的位置如图8所示,请设计出学校到两条公路的最短距离的方案,并在图上标出来,并说明理由。

1.本节课主要采用了“问题探究式”的教学方法,鼓励学生去发现、分析并解决问题,使学生在自己动手的基础上,发现垂线的性质,又借助于教具、实物、图形、幻灯等,从直观的感性认识中发现抽象的概念,使他们成为探求知识的主体,同时还利用学生较量形式让他们对学习内容加以巩固理解。并设计了变式训练习题和开放性习题,来帮助学生逐步树立转化的思想和发展性思维,这对提高学生的能力是非常重要的。学生是课堂的主人,教师从引导学生设疑??感知??概括??应用的每一个环节,注意学生的积极参与、积极思维,使学生从被动的学习到主动探索和发现的转化中感受到学习与探索的乐趣,适合七年级学生的认知心理。

2.本节课采用不同的反馈手段和反馈练习。(1)设计变式习题、图形、开放性习题。每次较量主要解决一个重点问题,同时使教师及时了解学生对数学知识的掌握情况,及时发现问题并及时矫正,扫清后续学习的障碍。(2)较量方法。如:笔答、口答、板演、快速抢答等,以增加反馈层面。通过练习较量使大多数学生的学习情况都能及时反馈给教师,使教师心中有数。(3)及时矫正。对每次较量情况进行小组评定和教师点评,对学生中的创新解答及时给予肯定。创造了轻松、愉悦的学习环境。

3.但笔者根据上述设计进行教学后,认为“点到直线的距离”放在这里,值得商榷。这是因为:(1)此部分内容与小学距离过大。在小学学习中,对于“点到直线的距离”,学生仅通过一些特殊图形有了一点感性认识,并未上升到点到线的距离的高度。(2)在本节内容教学中,让学生参与实践、体验,其难度较大。其理由是:本节教学内容量大;设计了较多的动手实践活动;作为学生课后实践探索的习题,如能充分利用学生资源(如与家长、同伴),在实际生活中交流、感悟,收效会更好。

摘自海南出版社《新课标优秀教学设计与案例》。

【本文地址:http://www.pourbars.com/zuowen/10704570.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map