教案需要根据学生的学习能力和需求进行个性化的调整和修改。在编写教案时,应充分考虑学生的思维方式和认知发展规律,选择适合他们的教学方法。推荐阅读以下教案范文,帮助大家更好地理解教案的编写方法和技巧。
反比例函数教案篇一
具体分析本节课,首先简单的用几分钟时间回顾一下反比例函数的基本理论,“学习理论是为了服务于实践”的一句话,打开了本节课的课题,过渡自然。本节课用函数的观点处理实际问题,主要围绕着路程、工程这样的实际问题,通过在速度一定的条件下路程与时间的关系,认识到反比例函数与实际问题的关系,在讲解这几个例子的时候,创设了学生熟悉的情境,简单的一句话引出问题,这样更能引起学生的兴趣,使学生更积极地参与到教学中来,因为情境熟悉,也能快速地与学生产生共鸣。
创设了轻松和谐的教学环境与氛围,师生互动较好,这样能使学生主动开动思维,利用已有的知识顺利的解决这几个问题。在讲解例题的同时,试着让学生利用图象解决问题,培养学生数形结合的思想,并提示学生注意自变量在实际情境中的取值范围问题。而后,给学生几分钟的思考时间,让他们通过平时对生活的细心观察,生活中有关反比例函数的有价值的问题,说出来与全班共同分享。这一环节的设置,不仅体现新教改的合作交流的思想,更主要的培养他们与人协作的能力。更好的发展了学生的主体性,让他们也做了一回小老师,展示他们的个性,这样有益于他们健康的人格的成长。最后在总结中让学生体会到利用反比例函数解决实际问题,关键在于建立数学函数模型,并布置了作业。从总体看整个教学环节也比较完整。
反比例函数教案篇二
知识与技能:
1、进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。
2、体会函数的三种表示方法的相互转换,对函数进行认识上的整合。
3、培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。
过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力。
情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。
教学难点。
1)重点:画反比例函数图象并认识图象的特点。
教学关键教师画图中要规范,为学生树立一个可以学习的模板。
教学方法激发诱导,探索交流,讲练结合三位一体的教学方式。
教学手段教师画图,学生模仿。
教具三角板,小黑板。
学法学生动手,动眼,动耳,采用自主,合作,探究的学习方法。
(包含课前检测、新课导入、新课讲解、课堂练习、小结、形成性检测、反馈拓展、作业布置)。
内容设计意图。
(一般地,如果两个变量x、y之间的关系可以表示成y=(k为常数,k0)的形式,那么称y是x的反比例函数。)。
(1)k为常数,k0。
(2)从y=中可知x作为分母,所以x不能为零。
y=kx+by=kx。
k0一、二、三一、三。
b0一、三、四。
k0一、二、四二、四。
b0二、三、四。
问题3:画图象的步骤有哪些呢?
(1)列表。
(2)描点。
(3)连线。
(教学片断:
师:上一节课我们研究了反比例函数,今天我们继续研究反比例函数,下面哪位同学说一下自己对反比例函数的了解。
生:我知道反比例函数来源于生活,生活中的许多问题都属于反比例函数问题,例如,在匀速运动中当路程一定时,且路程不等于零,则速度与时间成反比例函数关系。
生:我知道反比例函数的解析式为且k不等于0。
师:现在给大家几分钟的时间探讨一下反比例函数图象该怎么画?
学生思考、交流、回答。
提问:你能画出的图象吗?
学生动手画图,相互观摩。
(1)列表(取值的特殊与有效性)。
x-8-4-2-1-1/21/21248。
(2)描点(描点的准确)。
(3)连线(注意光滑曲线)。
议一议。
(1)你认为作反比例函数图象时应注意哪些问题?与同伴进行交流。
(2)如果在列表时所选取的数值不同,那么图象的形状是否相同?
(3)连接时能否连成折线?为什么必须用光滑的曲线连接各点?
(4)曲线的发展趋势如何?
曲线无限接近坐标轴但不与坐标轴相交。
学生先分四人小组进行讨论,而后小组汇报。
做一做。
学生动手画图,相互观摩。
想一想。
观察和的图象,它们有什么相同点和不同点?
学生小组讨论,弄清上述两个图象的异同点。
相同点:
(1)图象分别都是由两支曲线组成。
(2)都不与坐标轴相交。
(3)都是轴对称图形(y=x、y=-x)和中心对称图形(对称中心(0,0)即坐标原点)。
不同点:第一个图象位于一、三象限;第二个图象位于二、四象限。
反比例函数y=有下列性质:反比例函数的图象y=是由两支曲线组成的。
(1)当k0时,两支曲线分别位于第___、___象限,
(2)当k0时,两支曲线分别位于第___、___象限。
(1)。
(1)已知函数的图象分布在第二、四象限内,则的取值范围是_________。
(2)若ab0,则函数与在同一坐标系内的图象大致可能是下图中的()。
(a)(b)(c)(d)。
(3)画和的图象。
在同一坐标系中作出函数y=2/x与函数y=x-1的图象,并利用图象求它们的交点坐标。
(1)作反比例函数y=2/x,y=4/x,y=6/x的图象。
(2)习题5.2.1。
(3)预习下一节反比例函数的图象与性质ii。
复习上节主要内容。
(3分钟)。
(5分钟)。
运用类比研究一次函数性质的方法,来研究反比例函数图象与性质。
由于初中学生属于义务教育阶段,没有经过入学选拔,所以两极分化比较严重,上面提出的问题带有一定的开放性,面向各层次的学生,使不同层次的学生都有一定的问题可答,从而激发起不同层次学生的学习积极性。
数学教学重要目的之一是使学生学会学习,利用这个问题可以使学生学会寻找研究的方向,会提出研究的课题,提高学习的能力。
数学学习活动是学生对自己头脑中已有知识的重新建构,所以利用学生头脑中已有的一次函数图象与性质,及研究一次函数图象与性质的方法,创设问题情境,可以激发学习研究的热情,点燃学生思维的火花,并使学生知道如何研究新问题,使学生在探究过程中实现知识的迁移,形成新的认知结构。
(12分钟)。
引导学生正确画出反比例函数图象,并能归纳反比例函数图象的有关性质。
在画第一个图象时,教师要在黑板上用三角板一步一步的示范,在重要地方再重点强调,直到整个图象的完成。只有以身示范,同学学习才有样可依,有了正确标准的样板,学生学习也变得容易。这样可以培养学生严谨与严密的做题步骤以及做题的规范性。
注:
(1)x取绝对值相等符号相反的数值。
(2)x取值要尽可能多,而且有代表性。
(3)连线时用光滑曲线从小到大依次连接。
(4)图象不与坐标轴相交。
在此学生若是回答图象是轴对称图象或者中心对称图象都要予以肯定,这些内容留给学生课下探讨,并鼓励提出问题的学生继续探索不要放弃。
(3分钟)。
此时图象由学生仿照第一个在下边自己独立画出,并且监督学生,在有学生画的不对的地方及时指出,并使其改正后鼓励。最后在黑板上画出正确的图象,使学生自己画的图象与黑板对比。
(5分钟)。
(4分钟)。
培养学生归纳,语言表达能力。
此中注意分类讨论思想的应用。
(2分钟)。
与新课较接近的简化检测可以再次回顾所学内容,以及内容重点。这类题多为口算或口答,题目简单不过所学内容可以全部体现。
(5分钟)。
这类练习要求动笔计算或者画图,有一定难度,可以深化所学内容。
(4分钟)。
此题既是对函数图象画法的复习又是对方程求解的深化。其中蕴含了数形结合思想。
(1分钟)。
巩固作反比例函数图象的步骤,预习下一节课内容。
本节课通过学生自主探索,合作交流,自主画图,以认知规律为主线,以发展能力为目标,以从直观感受到分析归纳为手段,培养学生的合情推理能力和积极的情感态度,促进良好的数学观的形成。培养了学生的抽象思维能力,同时也向学生渗透了归纳类比,数形结合以及分类讨论的数学思想方法。
由于此节课是动手画图,限于器材以及教学设备,图象显示不能用几何画板和投影仪,不过一笔一笔的教学生一个范例,既可给学生思考也可有学习的空间。
在由图象获取性质的时候有一些不足,以后教课时要注意引导,使学生较快获得有效信息,从而归纳出要得到的性质和结论。在这节课要多强调光滑曲线以及画法。
(1)列表(取值的特殊与有效性)。
x-8-4-2-1-1/21/21248。
(2)描点(描点的准确)。
(3)连线(注意光滑曲线)。
注:(1)x取绝对值相等符号相反的数值。
(2)x取值要尽可能多,而且有代表性三:练习。
(3)连线时用光滑曲线从小到大依次连接。
(4)图象不与坐标轴相交。
(1)当k0时,两支曲线分别位于第一、三象限,
(2)当k0时,两支曲线分别位于第二、四象限。
反比例函数教案篇三
本节课的教学,我本意是通过反比例函数及其图像相关问题的复习,引出本节课所要讨论的问题反比例函数的应用,而后通过对问题1的讨论切入正题,重点研究“数”与“形”的互相渗透,并通过这节课的学习让学生体会“数形结合”的数学思想,利用函数图像来解决应用题。在教学中,我发现这种教学设计出现了以下几个问题。
首先,目标教学的第一环节,前测激趣,但没有达到激趣的目的,这种引课方式,在课堂反映出来显得非常平淡,没有新意,没能引起学生的认知发生冲突,激发学生的求知欲。
其次,在导探激励环节中,问题设计较好,但问题的处理上操之过急,没能让学生切实做出函数图像,通过问题迫使学生利用函数图像来解决问题,达到真正看图说话,因此就数形的内在联系学生体会不是很深刻。
为了一开始就能充分调动学生的情商,激发他们的学习动机和好奇心,激发他们的求知欲,使他们的思维进入最佳状态,我就上面存在的问题作如下改进。
在整个题目的处理过程,鼓励学生画出函数图像,更好的认识整个过程自变量和应变量变化的整体情况,处理好题目中的量与自变量和应变量的关系。
作以上改进,可以很好地让学生体会到“数”与“形”之间的联系,并且会根据反比例函数求应用题。
反比例函数教案篇四
2、能根据实际问题中的条件确定反比例函数的解析式。
3、在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。
重点:能利用反比例函数的相关的知识分析和解决一些简单的实际问题。
难点:根据实际问题中的条件确定反比例函数的解析式。
为了预防“非典”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量(g)与时间x(in)成正比例。药物燃烧后,与x成反比例(如图所示),现测得药物8in燃毕,此时室内空气中每立方米的含药量为6g,请根据题中所提供的信息,解答下列问题:
(1)药物燃烧时,关于x的函数关系式为:________,自变量x的取值范围是:_______,药物燃烧后关于x的函数关系式为_______.
(1)如果小明以每分种120字的速度录入,他需要多少时间才能完成录入任务?
(2)录入文字的速度v(字/in)与完成录入的时间t(in)有怎样的函数关系?
(3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字?
例2某自来水公司计划新建一个容积为的长方形蓄水池。
(1)蓄水池的底部s与其深度有怎样的函数关系?
(2)如果蓄水池的深度设计为5,那么蓄水池的底面积应为多少平方米?
(3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长与宽最多只能设计为100和60,那么蓄水池的深度至少达到多少才能满足要求?(保留两位小数)。
1、一定质量的氧气,它的密度(g/3)是它的体积v(3)的反比例函数,当v=103时,=1.43g/3.(1)求与v的函数关系式;(2)求当v=23时求氧气的密度。
2、某地上年度电价为0.8元&nt/&nt度,年用电量为1亿度。本年度计划将电价调至0.55元至0.75元之间。经测算,若电价调至x元,则本年度新增用电量(亿度)与(x-0.4)(元)成反比例,当x=0.65时,=-0.8。
(1)求与x之间的函数关系式;
3、如图,矩形abcd中,ab=6,ad=8,点p在bc边上移动(不与点b、c重合),设pa=x,点d到pa的距离de=.求与x之间的函数关系式及自变量x的取值范围。
30.3——1、2、3。
反比例函数教案篇五
这节课是在学生掌握了反比例函数的概念及其图像与性质的基础之上而学习的,并且上学学习了正比例函数和一次函数,因此学生已经有了一定的知识准备,但是由于学生的知识所限,对于例题中的信息并不了解,这样容易造成学生在了解上的困难,所以在教学时我选用了学生所熟悉的实例进行教学。使学生从身边事物入手,真正体会到数学知识来源于生活,有一种亲切感,另外对于本节的问题,文字多,阅读量大,所以我应用幻灯片的形式展现,效果要好,注意要让学生经历实践、思考、表达与交流的过程,给学生留下充足的时间来活动,不断引导学生利用数学知识解决实际问题,本节课效果较好。
反比例函数教案篇六
1.本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。
2.对教材的分析。
(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。
(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。
(3)难点:探索并掌握反比例函数的主要性质。
1、提问:
(1)=4/x是什么函数?你会作反比例函数的图象吗?
(2)作图的步骤是怎样的(3)填写电脑上的表格,开始在坐标纸上描点连线。
2、按照上述方法作=—4/x的图象3、对照你所作的两个函数图象,找一下它们的相同点和不同点。
1、让学生观察函数=/x的图象,按下动画按钮,在运动中观察值的变化与函数图象变化之间的关系,并与同学充分讨论有何规律。
2、演示反比例函数中心对称的性质以及轴对称性质,显示反比例函数的两条对称轴。
3、让学生观察函数=/x的图象,观察过反比例函数上任意一点作x轴和轴的垂线,观察其围成矩形的面积变化情况。
(1)拖动,使变化,观察不断变化过程中,矩形面积的变化情况,讨论得出结论。
(2)拖动函数上的点,观察矩形面积的变化情况,讨论得出结论。
1、给出两个反比例函数的图象,判断哪一个是=2/x和=—2/x的图象。
2、判断一位同学画的反比例函数的图象是否正确。
3、下列函数中,其图象位于第一、三象限。
的有哪几个?在其图象所在象限内,的值随x的增大而增。
大的有哪几个?
课本137页第1题、141页第2题。
反比例函数教案篇七
1、本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。
2、对教材的分析。
(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。
(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。
(3)难点:探索并掌握反比例函数的主要性质。
1、提问:
(1)=4/x是什么函数?你会作反比例函数的图象吗?
(2)作图的步骤是怎样的。
(3)填写电脑上的表格,开始在坐标纸上描点连线。
2、按照上述方法作=—4/x的图象。
3、对照你所作的两个函数图象,找一下它们的相同点和不同点。
1、让学生观察函数=/x的图象,按下动画按钮,在运动中观察值的变化与函数图象变化之间的关系,并与同学充分讨论有何规律。
2、演示反比例函数中心对称的性质以及轴对称性质,显示反比例函数的两条对称轴。
3、让学生观察函数=/x的图象,观察过反比例函数上任意一点作x轴和轴的垂线,观察其围成矩形的面积变化情况。
(1)拖动,使变化,观察不断变化过程中,矩形面积的变化情况,讨论得出结论。
(2)拖动函数上的点,观察矩形面积的变化情况,讨论得出结论。
1、给出两个反比例函数的图象,判断哪一个是=2/x和=—2/x的图象。
2、判断一位同学画的反比例函数的图象是否正确。
:课本137页第1题、141页第2题。
反比例函数教案篇八
本节课是在学习了反比例函数的概念,反比例函数的图像和性质等相关知识的基础上引入的。首先创设问题情境,展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣。接下来主要讨论了反比例函数在体积、面积这样的实际问题中的应用。分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
知识与技能。
1.能灵活列反比例函数表达式解决一些实际问题。
2.能综合利用几何、方程、反比例函数的知识解决一些实际问题。
过程与方法。
1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。
情感态度与价值观。
体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。
难点:从实际问题中寻找变量之间的关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。
反比例函数教案篇九
(二)对反比例函数的三种表示方法进行巩固和熟悉。
例题非常简单,在例题的处理上我注重了学生解题步骤的培养,同时通过两次变式进一步巩固解法,并拓宽了学生的思路。在变式训练之后,我又补充了一个综合性题目的例题,(在上学期曾有过类似问题的,由于时间的久远学生不是很熟悉)但在补充例题的处理上点拨不到位,导致这个问题的解决有点走弯路。
题组(三)在本节既是知识的巩固又是知识的检测,通过这组题目的处理,发现学生对本节知识的掌握还可以。从整体来看,时间有点紧张,小结很是仓促,而且是由老师代劳了,没有让学生来谈收获,在这点有些包办的趋势。
虽然在题目的设计和教学设计上我注重了由浅入深的梯度,但有些问题的处理方式不是恰到好处,有的学生课堂表现不活跃,这也说明老师没有调动起所有学生的学习积极性。总之,我会在以后的教学中注意细节问题的。
还希望数学组的老题多提宝贵的意见。谢谢了!
反比例函数教案篇十
本节课是在学习了反比例函数的概念,反比例函数的图像和性质等相关知识的基础上引入的。首先创设问题情境,展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣。接下来主要讨论了反比例函数在体积、面积这样的实际问题中的应用。分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
1.能灵活列反比例函数表达式解决一些实际问题。
2.能综合利用几何、方程、反比例函数的知识解决一些实际问题。
1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。
情感态度与价值观。
体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。
从实际问题中寻找变量之间的关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。
启发引导、合作探究。
(一)创设问题情境,引入新课。
[生]是为了应用。
[师]很好。学习的目的是为了用学到的知识解决实际问题。究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学。
问题:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境。
反比例函数教案篇十一
1、经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力。
2、理解反比例函数的概念,会列出实际问题的反比例函数关系式。
4、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质。
1、使学生了解反比例函数的表达式,会画反比例函数图象。
1、列函数表达式。
一、作业检查与讲评。
二、复习导入。
我们知道当。
(1)当路程s一定,时间t与速度v成反比例,即vt=当矩形面积一定时,长a和宽b成反比例,即ab=,求另一边的长y(米)与x的函数关系式。
分析根据矩形面积可知。
xy=24,即。
从这个关系中发现:
2、自变量的取值是x0.
反比例函数教案篇十二
数学思考
解决问题
情感态度
重点
运用反比例函数解释生活中的一些规律、解决一些实际问题
难点
把实际问题利用反比例函数转化为数学问题加以解决
活动流程图
活动内容和目的
活动1创设情境,引出问题
活动2分析解决问题
活动3从函数的观点进一步分析规律
活动4巩固练习
活动5课堂小结、布置作业
教师提出生活中遇到的难题,请学生帮助解决,激发学生的兴趣
与学生共同分析实际问题中的变量关系,引导学生利用反比例函数解决问题
引导学生追寻杠杆原理中蕴涵的规律,从反比例函数的图象、性质等角度挖掘
通过课堂练习,提高学生运用反比例函数解决实际问题的能力
归纳、总结所学,体会利用函数的观点解决实际问题
问题与情境
师生行为
设计意图
如何打开这个未开封的奶粉桶呢?―
教师提出实际生活中的问题,学生提出解决办法,教师引出利用杠杆原理解决问题。
能否从数学角度探索杠杆原理中蕴涵的变量关系呢?
让学生了解到日常生活中存在着许多两个量之间具有反比例关系的例子,自然引入课题
展示问题1:
几位同学玩撬石头的游戏,已知阻力和阻力臂不变,分别是1200牛顿和0.5米,设动力为f,动力臂为。回答下列问题:
(1)动力f与动力臂有怎样的函数关系?
不妨列表描点画出图象
(图象在第三象限会有吗?)
分析问题中变量间的关系
教师按照学生的认知规律有层次、有步骤地引导学生分析解决问题
从函数的观点进一步分析规律
(5)地球重量的近似值为(即为阻力),假设阿基米德有500牛顿的力量,阻力臂为20xx千米,请你帮助阿基米德设计该用动力臂为多长的杠杆才能把地球撬动?利用反比例函数的变化规律解释实际生活中一些问题深入挖掘动力臂与动力f又有怎样的函数关系呢?待定系数法解决函数问题公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”:
阻力阻力臂=动力动力臂,他形象地说,“给我一个支点我可以把地球撬动”
展示练习
市政府计划建设一项水利工程,工程需要运送的土石方总量为米,某运输公司承办了该项工程运送土方的任务。
归纳、总结
作业:教科书习题17.2第6题
教师引导学生回忆、总结,教师予以补充
通过小结,使学生把所学知识进一步内化、系统化
反比例函数教案篇十三
1. 本节 课讲述内容为北师大版教材九年级下册第五章《反比例函数》 的第二节,也这一章的重点。本节课是在理解反比例 函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。
2. 对教材的分析
(1) 教学目标:进 一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对 函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。
(2) 重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。
(3) 难点:探索并掌握反比例函数的主要性质。
1、提问:
(1)=4/x 是什么函数?你会作反比例函数的图象吗?
(2)作图的步骤是 怎样的(3)填写电脑上的表格,开始在坐标纸上描点连线。
2、按照上述方法作 =―4/x 的图象3、 对照你所作的两个函数图象,找一下它们的相同点和不同点。
1、让学生观察函 数 =/x 的图象 ,按下动画按钮,在运动中观察值的变化与函数图象变化之间的关系,并与同学充分讨论有何规律。
2、演示反比例函数中心 对称的性质以及轴对称性质,显示反比例函数的两条对称轴。
3、让学生观察函数 =/x 的图象,观察过反比例函数上任意一 点作x轴和轴的垂线,观察其围成矩形的面积变化情况。
(1) 拖动,使变化,观察不断变化过程中,矩形面积的变化情况,讨论得出 结论。
(2) 拖动函数上的点,观察矩形面积的变化情况,讨论得出结论。
1、给出两个反比例函数的图象,判断哪一个是 =2/x 和 =―2/x 的图象。
2、判断一位同学画的反比例函数的图象是否正确。
3、下列函数中,其图象位于第一、三象限
的有哪几个?在其图象所在象限内,的值随x的增大而增
大的有哪几个?
:课本137页第1题、141页第2题
反比例函数教案篇十四
1.能运用反比例函数的相关知识分析和解决一些简单的实际问题。
2.在解决实际问题的过程中,进一步体会和认识反比例函数是刻
画现实世界中数量关系的一种数学模型。
运用反比例函数解决实际问题
运用反比例函数解决实际问题
一、情景创设
反比例函数在生活、生产实际中也有着广泛的应用。
例如:在矩形中s一定,a和b之间的关系?你能举例吗?
二、例题精析
例1、见课本73页
例2、见课本74页
四、课堂练习课本p74练习1、2题
五、课堂小结反比例函数的应用
六、课堂作业课本p75习题9.3第1、2题
七、教学反思
更多初二数学教案,请点击
反比例函数教案篇十五
教学目标:
1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式;。
2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质;。
3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想;。
4、体会数学从实践中来又到实际中去的研究、应用过程;。
5、培养学生的观察能力,及数学地发现问题,解决问题的能力。
教学重点:
教学用具:直尺。
教学方法:小组合作、探究式。
教学过程:
我们在小学学过反比例关系。例如:当路程s一定时,时间t与速度v成反比例。
即vt=;。
当矩形面积s一定时,长a与宽b成反比例,即ab=。
从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:
(s是常数)。
(s是常数)。
一般地,函数(k是常数,)叫做反比例函数。
如上例,当路程s是常数时,时间t就是v的反比例函数.当矩形面积s是常数时,长a是宽b的反比例函数。
在现实生活中,也有许多反比例关系的例子.可以组织学生进行讨论。
解:列表。
说明:由于学生第一次接触反比例函数,无法推测出它的大致图象.取点的时候最好多取几个,正负可以对称着取分别画点描图。
一般地反比例函数(k是常数)的图象由两条曲线组成,叫做双曲线。
3、观察图象,归纳、总结出反比例函数的性质。
前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习。
显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证。
(1)的图象在第一、三象限.可以扩展到k=0时的情形,即k=0时,双曲线两支各在第一和第三象限。从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限的讨论与此类似。
抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法.体现了由特殊到一般的研究过程。
(2)函数的图象,在每一个象限内,y随x的增大而减小;。
从图象中可以看出,当x从左向右变化时,图象呈下坡趋势。从列表中也可以看出这样的变化趋势。有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小。由此可归纳出,当k0时,函数的图象,在每一个象限内,y随x的增大而减小。
同样可以推出的图象的性质。
(3)函数的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出,.如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子。同理,抽象出图象的性质。
函数的图象性质的讨论与次类似。
4、小结:
本节课我们学习了反比例函数的概念及其图象的性质.大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识.数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释.即数学是世界的一个部分,同时又隐藏在世界中。
5、布置作业习题13.81-4。
反比例函数教案篇十六
知识与技能:1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。
2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。
3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。
过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力.
情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。
教学难点 1) 重点:画反比例函数图象并认识图象的特点.
2)难点:画反比例函数图象.
教学关键 教师画图中要规范,为学生树立一个可以学习的模板
教学方法 激发诱导,探索交流,讲练结合三位一体的教学方式
教学手段 教师画图,学生模仿
教具 三角板,小黑板
学法 学生动手,动眼,动耳,采用自主,合作,探究的学习方法
(包含课前检测、新课导入、新课讲解、课堂练习、小结、形成性检测、反馈拓展、作业布置)
内 容 设计意图
1.什么叫做反比例函数;
(一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k0)的形式,那么称y是x的反比例函数。)
2.反比例函数的定义中需要注意什么?
(1)k为常数,k0
(2)从y= 中可知x作为分母,所以x不能为零.
y=kx+b y=kx
k0 一、二、三 一、三
b0 一、三、四
k0 一、二、四 二、四
b0 二、三、四
可以
问题3:画图象的步骤有哪些呢?
(1)列表
(2)描点
(3)连线
(教学片断:
师:上一节课我们研究了反比例函数,今天我们继续研究反比例函数,下面哪位同学说一下自己对反比例函数的了解。
生:我知道反比例函数来源于生活,生活中的许多问题都属于反比例函数问题,例如,在匀速运动中当路程一定时,且路程不等于零,则速度与时间成反比例函数关系。
生:我知道反比例函数的解析式为 且k不等于0
生:我知道反比例函数的图象是曲线。
生:该研究反比例函数图象和性质了。
师:现在给大家几分钟的时间探讨一下反比例函数图象该怎么画?
学生思考、交流、回答。
提问:你能画出 的图象吗?
学生动手画图,相互观摩。
(1) 列表(取值的特殊与有效性)
x -8 -4 -2 -1 -1/2 1/2 1 2 4 8
(2)描点(描点的准确)
(3)连线(注意光滑曲线)
议一议
(1)你认为作反比例函数图象时应注意哪些问题?与同伴进行交流。
(2)如果在列表时所选取的数值不同,那么图象的形状是否相同?
(3)连接时能否连成折线?为什么必须用光滑的曲线连接各点?
(4)曲线的发展趋势如何?
曲线无限接近坐标轴但不与坐标轴相交
学生先分四人小组进行讨论,而后小组汇报
做一做
作反比例函数 的图象。
学生动手画图,相互观摩。
想一想
观察 和 的图象,它们有什么相同点和不同点?
学生小组讨论,弄清上述两个图象的异同点
相同点:(1)图象分别都是由两支曲线组成(2)都不与坐标轴相交(3)都是轴对称图形(y=x、y=-x)和中心对称图形(对称中心(0,0)即坐标原点)
不同点:第一个图象位于一、三象限;第二个图象位于二、四象限
反比例函数 y = 有下列性质:反比例函数的图象y = 是由两支曲线组成的。
(1) 当 k0 时,两支曲线分别位于第___、___象限,
(2) 当 k0 时,两支曲线分别位于第___、___象限.
(1)
(1)已知函数 的图象分布在第二、四象限内,则 的取值范围是_________
(2)若ab0,则函数 与 在同一坐标系内的图象大致可能是下图中的 ( )
(a) (b) (c) (d)
(3)画 和 的图象
在同一坐标系中作出函数y=2/x与函数y=x-1的图象,并利用图象求它们的交点坐标.
(1) 作反比例函数y=2/x,y=4/x,y=6/x的图象
(2) 习题5.2.1
(3)预习下一节 反比例函数的图象与性质ii
复习上节主要内容
(3分钟)
(5分钟)
运用类比研究一次函数性质的方法,来研究反比例函数图象与性质
由于初中学生属于义务教育阶段,没有经过入学选拔,所以两极分化比较严重,上面提出的问题带有一定的开放性,面向各层次的学生,使不同层次的学生都有一定的问题可答,从而激发起不同层次学生的学习积极性。
数学教学重要目的之一是使学生学会学习,利用这个问题可以使学生学会寻找研究的方向,会提出研究的课题,提高学习的能力。
数学学习活动是学生对自己头脑中已有知识的重新建构,所以利用学生头脑中已有的一次函数图象与性质,及研究一次函数图象与性质的方法,创设问题情境,可以激发学习研究的热情,点燃学生思维的火花,并使学生知道如何研究新问题,使学生在探究过程中实现知识的迁移,形成新的认知结构。
(12分钟)
引导学生正确画出反比例函数图象,并能归纳反比例函数图象的有关性质.
在画第一个图象时,教师要在黑板上用三角板一步一步的示范,在重要地方再重点强调,直到整个图象的完成。只有以身示范,同学学习才有样可依,有了正确标准的样板,学生学习也变得容易。这样可以培养学生严谨与严密的做题步骤以及做题的规范性。
注:(1)x取绝对值相等符号相反的数值
(2) x取值要尽可能多,而且有代表性
(3)连线时用光滑曲线从小到大依次连接
(4)图象不与坐标轴相交
在此学生若是回答图象是轴对称图象或者中心对称图象都要予以肯定,这些内容留给学生课下探讨,并鼓励提出问题的学生继续探索不要放弃。
(3分钟)
此时图象由学生仿照第一个在下边自己独立画出,并且监督学生,在有学生画的不对的地方及时指出,并使其改正后鼓励。最后在黑板上画出正确的图象,使学生自己画的图象与黑板对比。
(5分钟)
(4分钟)
培养学生归纳,语言表达能力
此中注意分类讨论思想的应用
巩固反比例函数图象性质
(2分钟)
与新课较接近的简化检测可以再次回顾所学内容,以及内容重点。这类题多为口算或口答,题目简单不过所学内容可以全部体现。
(5分钟)
这类练习要求动笔计算或者画图,有一定难度,可以深化所学内容。
(4分钟)
此题既是对函数图象画法的复习又是对方程求解的深化。其中蕴含了数形结合思想。
(1分钟)
巩固作反比例函数图象的步骤,预习下一节课内容
本节课通过学生自主探索,合作交流,自主画图,以认知规律为主线,以发展能力为目标,以从直观感受到分析归纳为手段,培养学生的合情推理能力和积极的情感态度,促进良好的数学观的形成。培养了学生的抽象思维能力,同时也向学生渗透了归纳类比,数形结合以及分类讨论的数学思想方法。
由于此节课是动手画图,限于器材以及教学设备,图象显示不能用几何画板和投影仪,不过一笔一笔的教学生一个范例,既可给学生思考也可有学习的空间。
在由图象获取性质的时候有一些不足,以后教课时要注意引导,使学生较快获得有效信息,从而归纳出要得到的性质和结论。在这节课要多强调光滑曲线以及画法。
(1)列表(取值的特殊与有效性)
x -8 -4 -2 -1 -1/2 1/2 1 2 4 8
(2)描点(描点的准确)
(3)连线(注意光滑曲线)
注:(1)x取绝对值相等符号相反的数值
(2)x取值要尽可能多,而且有代表性 三:练习
(3)连线时用光滑曲线从小到大依次连接
(4)图象不与坐标轴相交
(1) 当 k0 时,两支曲线分别位于第一、三象限,
(2) 当 k0 时,两支曲线分别位于第二、四象限.
反比例函数教案篇十七
2、能根据实际问题中的条件确定反比例函数的解析式。
3、在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。
重点:能利用反比例函数的相关的知识分析和解决一些简单的实际问题。
难点:根据实际问题中的条件确定反比例函数的解析式。
为了预防“非典”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物8min燃毕,此时室内空气中每立方米的含药量为6mg,请根据题中所提供的信息,解答下列问题:。
(1)药物燃烧时,y关于x的函数关系式为:________,自变量x的取值范围是:_______,药物燃烧后y关于x的函数关系式为_______.
(1)如果小明以每分种120字的速度录入,他需要多少时间才能完成录入任务?
(3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字?
例2某自来水公司计划新建一个容积为的'长方形蓄水池。
(1)蓄水池的底部s与其深度有怎样的函数关系?
(2)如果蓄水池的深度设计为5m,那么蓄水池的底面积应为多少平方米?
(3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长与宽最多只能设计为100m和60m,那么蓄水池的深度至少达到多少才能满足要求?(保留两位小数)。
1、一定质量的氧气,它的密度(kg/m3)是它的体积v(m3)的反比例函数,当v=10m3时,=1.43kg/m3.(1)求与v的函数关系式;(2)求当v=2m3时求氧气的密度.
2、某地上年度电价为0.8元度,年用电量为1亿度.本年度计划将电价调至0.55元至0.75元之间.经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)(元)成反比例,当x=0.65时,y=-0.8.
(1)求y与x之间的函数关系式;
3、如图,矩形abcd中,ab=6,ad=8,点p在bc边上移动(不与点b、c重合),设pa=x,点d到pa的距离de=y.求y与x之间的函数关系式及自变量x的取值范围.
30.31、2、3。
反比例函数教案篇十八
1.对教材的分析。
本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。
本节课前一课时是在具体情境中领会反比例函数的意义和概念。函数的性质蕴涵于概念之中,对反比例函数性质的探索是对其内在规定性的的认识,也是对函数的概念的深化。同时,本节课也是下一节课《反比例函数的应用》的基础,有了本节课的知识储备,便于学生利用函数的观点来处理问题和解释问题。
传统教材在内容和编写意图的比较:传统教材里反比例函数的内容仅有一节,新教材里反比例函数的内容增加至一章。本节课中的作函数图象的要求在新旧教材中并不一样,旧教材对画图只是一带而过,而新教材中让学生反复作反比例函数的图象,为下一步性质的探索打下良好的基础。因为在学生进行函数的列表、描点作图是活动中,就已经开始了对反比例函数性质的探索,而且通过对函数的三种表示方式的整和,逐步形成对函数概念的整体性认识。在旧教材中对反比例函数性质只是简单观察以后,由老师讲解得到,但是在新教材中注重从操作、观察、概括和交流这些数学活动中得到性质结论,从而逐步提高从函数图象中获取信息的能力。这也充分体现了重视获取知识过程体验的新课标的精神。
(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。
(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。
(3)难点:探索并掌握反比例函数的主要性质。
2、对学情的分析。
九年级学生在前面学习了一次函数之后,对函数有了一定的认识,虽然他们在小学已经接触了反比例,但都处于浅显的、肤浅的知识表面,这对于他们理解反比例函数的图象与性质没有多大的帮助,但由于本节课采用z+z智能教育平台进行教学,比较形象,便于学生接受。
教学过程。
一、忆一忆。
生:作一次函数的图象要采用以下几个步骤:(1)列表(2)描点(3)连线。
生乙:一次函数的图象是一条直线。
师:你们能作出它的图象吗?
生:可以。
点评:复习旧知识,让学生感受到新旧知识的联系,并为后面的作反比例函数的图象做好准备。
二、作图象,试比较。
师:请填写电脑上的表格,并开始在坐标纸上描点,连线。
师:再按照上述方法作y=-4/x的图象。
(学生动手操作)。
师:下面大家分小组讨论:对照你们所作出的两个函数图象,找出它们的相同点与不同点。
(学生讨论交流,教师参与)。
师:讨论结束,下面哪个小组的同学说说你们的看法?
生1:它们的图象都是由两支曲线组成的。
生2:y=4/x的图象的两条曲线分布在一、三象限内,而y=-4/x的图象的两支曲线分布在二、四象限内。
点评:这里让学生自己上台操作,既培养了学生的动手能力,又可以激发学生学好数学的兴趣。
三、细观察,找规律。
师:大家都说得很好,下面我们一起观察反比例函数y=k/x的图象,当k的发值生变化时,函数的图象发生了怎样的变化,并分小组讨论有什么规律。
(展示图象,让学生观察y=k/x的图象,按下动画按钮,在运动中观察值的变化与函数的图象变化之间的关系,并与同学们充分讨论)。
师:请同学们谈一谈刚才讨论的结果。
生:我发现函数图象的变化与k的值有关:当k0时,在每一象限内,y随x的增大而减小,当k0时,在每一象限内,y随x的增大而增大。
师:看来大家都经过了认真的思考和讨论,对规律总结的也比较完整,下面我们一起把刚才两个环节的知识点一起总结一下。
(1)反比例函数y=k/x的图象是由两支曲线所组成的。
(2)当k0时,两支曲线分别在一、三象限;当k0时,两支曲线分别在二、四象限。
(3)当k0时,在每一象限内,y随x的增大而减小,当k0时,在每一象限内,y随x的增大而增大。
(由学生在电脑上进行操作)。
生:我发现旋转后的图象与原图象完全重合了,这说明反比例函数的图象是一个中心对称图形。
师:大家做得很好。那么,如果我们在图象上任取a、b两点,经过这两点分别作轴、轴的垂线,与坐标轴围成的矩形面积分别为s1、s2,观察两个矩形面积的变化情况,并找出其中的变化规律。
题目:(1)拖动k,使k变化,观察k不断变化过程中,矩形面积的变化情况,讨论得出结论。(2)拖动函数上的点,观察矩形面积的变化情况,讨论得出结论。
生:我们发现,在同一个反比例函数中,不管k值怎么变化,矩形的面积始终不变。
师:大家的观察很仔细,总结得也很正确。
点评:在这个环节中,既让学生动手操作,又让他们分组交流,这样既培养了他们的动手能力,又增强了他们的团结合作的意识。结论主要有学生来发现,体现了新课程理论的精神。
四、用规律,练一练。
1、课本137页随堂练习1。
生:第一幅图是y=-2/x的图象,因为在这里的k0,双曲线应在第二、四象限。
(1)y=1/(2x)(2)y=0.3/x(3)y=10/x(4)y=-7/(100x)。
生:其中(1)(2)(3)的图象在一、三象限;(4)的图象在每一象限内,y随x的增大而增大。
【本文地址:http://www.pourbars.com/zuowen/10759608.html】