八年级数学详细教案(通用15篇)

格式:DOC 上传日期:2023-11-13 17:42:05
八年级数学详细教案(通用15篇)
时间:2023-11-13 17:42:05     小编:碧墨

编写教案可以帮助教师合理安排教学时间和资源。教案的编写要充分利用现代教育技术手段,提高教学效果。这些教案范例中涵盖了多种教学策略和方法,适用于不同类型的学生。

八年级数学详细教案篇一

教学目标:

1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。

2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。

3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。

重点与难点:

重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。

难点:分析典型图案的设计意图。

疑点:在设计的图案中清晰地表现自己的设计意图。

教具学具准备:

提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的动画演示。

教学过程设计:

1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23)。

明确在欣赏了图案后,简单地复习旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。

2、课本。

1欣赏课本75页图3—24的图案,并分析这个图案形成过程。

评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。

评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。

(二)课内练习。

(1)以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。

(2)利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。

(三)议一议。

生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。

(四)课时小结。

本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。

通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。)。

进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。

八年级数学详细教案篇二

1、了解方差的定义和计算公式。

2、理解方差概念产生和形成过程。

3、会用方差计算公式比较两组数据波动大小。

重点:掌握方差产生的必要性和应用方差公式解决实际问题。

难点:理解方差公式。

(一)知识详解:

方差:设有n个数据,各数据与它们的平均数的差的平方分别为。

用它们的平均数表示这组数据的方差,即。

给力小贴士:方差越小说明这组数据越稳定,波动性越低。

(二)自主检测小练习:

1、已知一组数据为2.0、-1.3、-4,则这组数据的方差为。

2、甲、乙两组数据如下:

甲组:1091181213107;

乙组:7891011121112。

分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小。

引例:问题:从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下(单位:cm):

甲:9.10.10.13.7.13.10.8.11.8;

乙:8.13.12.11.10.12.7.7.10.10;

问:(1)哪种农作物的苗长较高(可以计算它们的平均数:=)?

(2)哪种农作物的苗长较整齐?(可以计算它们的极差,你可以发现)。

归纳:方差:设有n个数据,各数据与它们的平均数的差的平方分别为。

用它们的平均数表示这组数据的方差,即用来表示。

(一)例题讲解:

金志强1013161412。

提示:先求平均数,然后使用公式计算方差。

(二)小试身手。

1、甲、乙两名学生在相同条件下各射击靶10次,命中的环数如下:

甲:7.8.6.8.6.5.9.10.7.4。

乙:9.5.7.8.7.6.8.6.7.7。

经过计算,两人射击环数的平均数是,但s=,s=,则ss,所以确定去参加比赛。

1、求下列数据的众数:

(1)3.2.5.3.1.2.3(2)5.2.1.5.3.5.2.2。

方差公式:

提示:方差越小,说明这组数据越集中。波动性越小。

每课一首诗:求方差,有公式;先平均,再求差;求平方,再平均;所得数,是方差。

1、小爽和小兵在10次百米跑步练习中的成绩如下表所示:(单位:秒)。

如果根据这些成绩选拔一人参加比赛,你会选谁呢?

必做题:教材141页练习1.2;选做题:练习册对应部分习题。

写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!

八年级数学详细教案篇三

1.理解分式的基本性质.

2.会用分式的基本性质将分式变形.

二、重点、难点。

1.重点:理解分式的基本性质.

2.难点:灵活应用分式的基本性质将分式变形.

3.认知难点与突破方法。

教学难点是灵活应用分式的基本性质将分式变形.突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。

三、例、习题的意图分析。

1.p7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。

2.p9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。

教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。

3.p11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。

“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5。

四、课堂引入。

1.请同学们考虑:与相等吗?与相等吗?为什么?

2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?

3.提问分数的基本性质,让学生类比猜想出分式的基本性质.

五、例题讲解。

p7例2.填空:

[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.

p11例3.约分:

[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.

p11例4.通分:

[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.

(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.

[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变.

解:=,=,=,=,=。

六、随堂练习。

1.填空:

(1)=(2)=。

(3)=(4)=。

2.约分:

3.通分:

(1)和(2)和。

(3)和(4)和。

4.不改变分式的值,使下列分式的分子和分母都不含“-”号.

七、课后练习。

1.判断下列约分是否正确:

(1)=(2)=。

(3)=0。

2.通分:

(1)和(2)和。

3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号.

八、答案:

六、1.(1)2x(2)4b(3)bn+n(4)x+y。

2.(1)(2)(3)(4)-2(x-y)2。

3.通分:

(1)=,=。

(2)=,=。

(3)==。

(4)==。

八年级数学详细教案篇四

1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。

2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。

算术平方根的概念。

根据算术平方根的概念正确求出非负数的算术平方根。

这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.

1、提出问题:(书p68页的问题)

你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)

这个问题相当于在等式扩=25中求出正数x的值.

一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作根号a,a叫做被开方数.规定:0的算术平方根是0.

也就是,在等式=a (x0)中,规定x = .

2、试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来.

3、想一想:下列式子表示什么意思?你能求出它们的值吗?

建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如表示25的算术平方根。

4、例1求下列各数的算术平方根:

(1)100;(2)1;(3) ;(4)0.0001

p69练习1、2

怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?

方法1:课本中的方法,略;

方法2:

可还有其他方法,鼓励学生探究。

问题:这个大正方形的边长应该是多少呢?

大正方形的边长是,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?

建议学生观察图形感受的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.

1、这节课学习了什么呢?

2、算术平方根的具体意义是怎么样的?

3、怎样求一个正数的算术平方根

p75习题13.1活动第1、2、3题

八年级数学详细教案篇五

1、理解极差的定义,知道极差是用来反映数据波动范围的一个量.

2、会求一组数据的极差.

1、重点:会求一组数据的极差.

2、难点:本节课内容较容易接受,不存在难点、

从表中你能得到哪些信息?

比较两段时间气温的高低,求平均气温是一种常用的方法、

这是不是说,两个时段的气温情况没有什么差异呢?

根据两段时间的气温情况可绘成的折线图、

观察一下,它们有区别吗?说说你观察得到的结果、

本节课在教材中没有相应的例题,教材p152习题分析。

问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大、问题2涉及前一个学期统计知识首先应回忆复习已学知识、问题3答案并不唯一,合理即可。

八年级数学详细教案篇六

本节内容的重点是线段垂直平分线定理及其逆定理.定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.

本节内容的难点是定理及逆定理的关系.垂直平分线定理和其逆定理,题设与结论正好相反.学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.

本节课教学模式主要采用“学生主体性学习”的教学模式.提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳.教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人.具体说明如下:

学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点p,它到线段两端的距离有何关系?学生会很容易得出“相等”.然后学生完成证明,找一名学生的证明过程,进行投影总结.最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理.这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.

线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.

八年级数学详细教案篇七

2、范例讲解。

(学生尝试练习后,教师讲评)。

例1:解方程例2:解方程例3:解方程讲评时强调:

1、怎样确定最简公分母?(先将各分母因式分解)。

2、解分式方程的步骤、

巩固练习:p1471t,2t、

课堂小结:解分式方程的一般步骤。

布置作业:见作业本。

八年级数学详细教案篇八

1、掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用。

2、使学生理解判定定理与性质定理的区别与联系。

3、会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理。

1、通过“探索式试明法”开拓学生思路,发展学生思维能力。

2、通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力。

通过一题多解激发学生的学习兴趣。

通过学习,体会几何证明的方法美。

构造逆命题,分析探索证明,启发讲解。

1、教学重点:平行四边形的判定定理1、2、3的应用。

2、教学难点:综合应用判定定理和性质定理。

(强调在求证平行四边形时用判定定理在已知平行四边形时用性质定理)。

八年级数学详细教案篇九

《基础教育课程改革纲要(试行)》指出:“大力推进多媒体信息技术在教学过程中的普遍应用,促进信息技术与学科课程的整合,逐步实现教学内容的呈现方式、学生的学习方式、教师的教学方式和师生互动方式的变革,充分发挥信息技术的优势,为学生的学习和发展提供丰富多彩的教育环境和有力的学习工具。”教师运用现代多媒体信息技术对教学活动进行创造性设计,发挥计算机辅助教学的特有功能,把信息技术和数学教学的学科特点结合起来,可以使教学的表现形式更加形象化、多样化、视觉化,有利于充分揭示数学概念的形成与发展,数学思维的过程和实质,展示数学思维的形成过程,使数学课堂教学收到事半功倍的效果。

本节课内容是学生在小学阶段初步了解特殊四边形以及学过《三角形》这章的基础上进行的,在知识结构上打破了教材的编写顺序,从整体的角度探究特殊四边形性质。运用多媒体教学体现出直观、课容量大、容易接受的特点,为进一步的理论证明及应用起着提供数据和宏观指导作用,使学生学习本章具体内容时知道身在何处,使知识体系更加系统。本节课内容是四边形这章的理论基础,在该章占有非常重要的地位。

本班经历了一年多课改实践,学生对运用现代多媒体信息技术的教学方式有浓厚的兴趣,能运用《几何画板》这一工具进行简单的操作,形成自主探索和合作交流的学风,从而乐于在教师的指导下主动与同学探索、发现、归纳、经历数学知识于实践的过程。

本节课充分利用现有的先进教学设备(两名学生一台电脑),利用笔者自制,借助《几何画板》把学生带入数学模拟实验室,以研究电动门的机械原理为切入点,从学生已有的生活经验出发,让学生亲身经历数学知识的形成并进行解释与应用过程。组员相互配合分别测量、搜集、分析、整理特殊四边形的边长、角度、对角线长度等数据,并总结其性质,通过人机对话方式把静态、抽象的几何图形变为动态、直观地演示出来。在此过程中教师当好课堂教学的组织者、决策者、创造者和参与者,教给学生自觉主动地探究新知识的方法,激发学生的思维,培养学生的科学精神和创新思维习惯,使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到发展。

1、初步理解特殊四边形性质;

2、培养学生自主收集、描述和分析数据的能力;

1、了解特殊四边形性质的形成过程;

2、初步了解探究新知识的一些方法;

1、了解特殊四边形在日常生活中的应用;

2、学生在观察、归纳、类比及实验教学活动中,体会成功后的喜悦;

3、初步具有感性认识上升到理性认识的辩证唯物主义思想。

教学环境:

多媒体计算机网络教室。

教学课型:

试验探究式。

教学重点:

特殊四边形性质。

教学难点:

特殊四边形性质的发现。

一、设置情景,提出问题。

提出问题:

1、电动门的网格和结点能组成哪些四边形?

2、在开(关)门过程中这些四边形是如何变化的?

3、你还发现了什么?

解决问题:

学生猜想:包括平行四边形、矩形、菱形、等腰梯形、直角梯形……;

当我们学习完本节知识后,其他问题就容易解决了。

(意图:用《几何画板》的动态演示生活事例,充分展示了数学的美妙,可以使学生容易进入情境和保持积极学习状态,激起学生探究解决问题的求知欲望。)。

二、整体了解,形成系统。

本节课从整体角度研究特殊四边形性质,为今后的个体研究打下良好的基础。我们先研究四边形中的特殊与一般的关系。

提出问题:

1、本章主要研究哪些特殊四边形?

2、从哪几方面研究这些特殊四边形?

解决问题:

学生操作电脑(用几何画板),了解本章研究的主要图形;教师个别指导。

1、包括:平行四边形、矩形、菱形、梯形、等腰梯形、直角梯形。

3、等腰梯形和直角梯形后面应该是矩形,但不符合梯形定义,所以没有图形。

(意图:学生自主观察、分组讨论了解本章知识结构,从而形成系统;通过假设、猜想、推理、论证、否定假设获得新知识)。

三、个体研究、总结性质。

1、平行四边形性质。

提出问题:

在平行四边形的形状、位置、大小变化过程中,请观察数据并找出边长、角度、对角线长度相对不变的性质。

解决问题:

教师引导学生拖动b点(学生操作电脑),改变平行四边形的形状、位置、大小,并观察数据的变化,从中找出相对不变的要素。

在图形变化过程中,

(1)对边相等;

(2)对角相等;

(3)通过ao=co、bo=do,可得对角线互相平分;

(4)通过邻角互补,可得对边平行;

(5)内外角和都等于360度;

(6)邻角互补;

……。

指导学生填表:

平行四边形性质矩形性质正方形性质。

菱形性质。

梯形性质等腰梯形性质。

直角梯形性质。

(既属于平行四边形性质又属于矩形性质可以画箭头)。

按照平行四边形性质的探索思路,分别研究:

2、矩形性质;

3、菱形性质;

4、正方形性质;

5、梯形性质;

6、等腰梯形性质;

7、直角梯形的性质。

(意图:学生运用电脑自主收集、描述、分析数据,把抽象的性质变为直观化、形象化,培养独立探究,自主自信,使学生体验到科学探索的乐趣。)。

教师总结:

(意图:掌握画箭头的方法,使学生了解事物个体既有该事物一般性质,又有自己的特点。既清楚地表达,又节省时间。)。

四、联系生活,解决问题。

解决问题:

学生操作电脑,观察图形、分组讨论,教师个别指导。

学生在分别演示开(关)门过程中,观察数据并总结:边长、角度、对角线长度的变化引起四边形的形状、大小、位置的变化。

四边形具有不稳定性,而三角形没有这个特点……。

(意图:使学生体会到数学于生活、又服务于生活,更重要的是培养学生应用知识解决实际问题的能力,体会成功后的喜悦。)。

五、小结。

1.研究问题从整体到局部的方法;

2.主要从边长、角度、对角线长度三方面研究特殊四边形性质。

六、作业。

1.平行四边形内角中,既有两个相邻的角相等,又有一组邻边相等,试判断它是什么图形。

2.观察实际生活中的电动门,在开(关)门过程中特殊四边形的变化。

针对教学内容、学生特点及设计方案,预计下列学习效果:

利用多媒体信息技术图文并茂、形象直观的特点,通过学生自主测量、分析、整理数据并总结其性质,培养学生收集、描述和分析数据的能力,并达到初步理解特殊四边形性质的目标。

在问题引入、了解整体、测量个体、总结性质的过程中,符合事物的认识规律及探究新知识的一般方法,初步形成感性认识上升到理性认识的辩证唯物主义思想。

由于个体差异,针对教学目标难以达到的个别学生,根据教学的进展,通过师生之间、学生之间的对话交流及时指导,使教学目标得以实现。

八年级数学详细教案篇十

教材分析:

《背影》是朱自清先生写于1925年10月的一篇回忆性记叙散文。文章深刻的表现了父亲的爱子之心和作者的念父之情。背影是全文描写的焦点,也是叙事的线索。作者除了对背影作了笔酣墨畅的细致描写外,还以背影为中心,安排了许多精彩的衬托和铺垫。《背影》无论记人、叙事、抒情都十分平实,语言淳朴自然,毫无矫揉造作之处,却打动了几代读者的心。在一个平凡、朴素的背影上刻下了两个质朴而深沉的大字“父爱”。而这一主题的表达在物质充裕的今天,无论对我们还是学生都具有极其现实的教育意义。

教学依据:

《背影》是一篇家喻户晓的名篇,作者以洗尽铅华的质朴演绎了中华传统文化的精义:亲情、孝道与感恩。新课标中指出:“语文课程丰富的人文内涵对学生的精神领域影响是深广的,学生对语文材料的反应往往是多元的。因此,应该重视语文的熏陶感染作用,注重教学内容的价值取向,同时也应尊重学生在学习过程中的独特体验。”因此,我在教学中利用多媒体充分调动学生的学习兴趣和积极性,强调情感体验,让学生在学习课文的过程中得到审美愉悦和道德情感的熏陶。

教学理念:

阅读教学是学生、教师和文本之间的平等对话。

教学目标:

知识与技能:

1、了解作者的有关文学常识。

2、积累重点字词。

3、学习抓住某一感情的聚焦点展示人物心灵的写作方法。

过程与方法:

1、反复阅读课文,深入体会文中表现的父子深情。

2、抓住文章描述的重点,分析“背影”在表现父子情深上的作用。

3、学习人物描写的方法,感受并学习质朴中蕴含深情的语言。

情感态度与价值观:

珍视亲情,增进与父母的沟通与交流,培养中华民族的传统美德。

教学重点:

背影是全文描写的焦点,但背影不仅是父亲的形与行;要深刻理解父亲的爱子之心和作者的念父之情,不能不顾及父亲所说的话。因此,我把父亲的形、行、言作为相互联系的整体进行分析并以此为重点引导学生体会作者的思想感情。

教学难点:

语文课程标准还要求学生在通读课文的基础上,理清思路,理解主要内容把握文章结构。初二学生,他们的阅读范围还不是很广,掌握的阅读技巧不是很多。抓住某一感情的聚焦点展示人物心灵的写作方法;如何理解文中父亲那个不怎么优美的背影?学生还无能为力。因此,我把此当作本文的教学难点。

学情分析:

学生受年龄和阅历的限制对亲情的理解远不如作者深刻,教学过程中需加大感性教育。

教学策略及手段:

1、尊重学生的主体地位,置学生于现实的阅读情境中,教会学生质疑、解疑、探究作者所表达的思想感情。

2、教师设计对课文阅读过程起主导作用、支撑作用的'问题,引发学生积极思考、讨论,有所感悟,受到熏陶,获得启迪。

3、教师运用多媒体课件,创设有利于本课学习的环境,让学生在教学过程中受到爱的熏陶,感受挚爱亲情从而实现爱的传递。

教学过程:

一、导语设计:

父亲。

那是我小时候。

常坐在父亲肩头。

父亲是儿那登天的梯。

父亲是那拉车的牛。

忘不了粗茶淡饭将我养大。

忘不了一声长叹半壶老酒等我长大后。

山里孩子往外走。

想儿时一封家书千里写叮嘱。

盼儿归一袋闷烟满天数星斗。

都说养儿能防老。

可儿山高水远他乡留。

都说养儿为防老。

可你再苦再累不张口。

儿只有清歌一曲和泪唱。

愿天下父母平安度春秋。

(运用多媒体播放歌曲《父亲》)。

一首熟悉的老歌让我们想起了自己的父亲,那些默默操劳,默默关心我们的父亲。那是怎样让人心动的一份父爱呀。今天让我们带着这份感动再来欣赏一篇文质兼美的散文。它曾以质朴的语言,真挚的亲情感动了几代人。这就是朱自清先生的散文《背影》。

(板书《背影》)。

二、解题:

1、作者简介:

朱自清,原名自华,字佩弦,号秋实,原籍浙江绍兴。五岁时去了扬州,在那里时间较长,所以说他是扬州人。他是现代著名的散文家、诗人、学者、民主战士。

学生时代即创作新诗,后又从事散文写作。曾在清华大学、西南联合大学任教。抗日战争结束后,他积极支持反对反动统治的学生运动。1948年8月因贫病在北平逝世。著有诗文集《踪迹》,散文集《背影》、《欧游杂记》等。

朱自清改名——朱自清的弟弟说过:19,我家境况已大不如前,父亲尽了最大的努力送大哥(朱自清)上北京大学读书。不久,父亲的差使交卸了。当时,北大学生应先读两年预科以后,才能再报本科。自清为早日完成学业,减轻父亲负担,将“自华“改为“自清”,提前一年进入本科考场,免去了一年预科学习。

朱自清有很多散文,他的散文第一次结集时,是以《背影》作为他的整部散文集的名字的。可以看得出来,他自己对《背影》这篇散文也是比较看好的。可以说,《背影》是能够让我们终生受益的一篇散文。

2、《背影》是在什么情况下写的?

《背影》写于1925年,当时中国大多数地区是在北洋军阀统治下政治黑暗,经济衰落,广大中下层知识分子职业不安定,生活惨淡。文中所写的浦口站的父子离别,是19的事,作者朱自清当时在北京大学哲学系读书。

1947年朱自清自述:“我写《背影》,就因为文中所引的父亲的来信那句话。当时读了父亲的信,真的泪如泉涌。我父亲待我的许多好处,特别是《背影》里所叙的那一回,想起来跟在眼前一般无二。我这篇文章只是写实。”

三、整体感知:

1、朗读课文。

学生朗读,师生共同订正,教师适当做朗读指导。

2、检查课前字词预习情况。

(1)把课文读一读、写一写,找学生读。

(2)完成《配套练习》第1、2、3三个小题。小组内互评。

3、文章写了什么事,请用简洁的语句来概括出来。

4、梳理文章层次结构:

线索父亲我。

点出背影两年不见最不能忘记。

刻画背影亲自买橘泪流下来了。

惜别背影混入人群眼泪又来了。

再忆背影肥胖、马褂晶莹的泪光。

5、那么,《背影》表现了怎样的思想感情?

四、自主学习,合作探究。

学生默读课文,思考下列问题并以小组为单位进行讨论。

1、文章第一段,表达了作者怎样的思想感情?这一段对于全文有什么作用呢?

2、朗读阅读第6段,在这段文字中,作者是怎样描写父亲的背影的为什么写得这样详细?

3、课文写父亲离去时的背影,是怎样写的?有什么作用?

五、拓展延伸:

世上有一部永远写不完的书,那便是父母。度过了人生十三四个春秋的你们一定留下了许多回味绵长的、令人百读不厌的爱的细节。请你打开思维的闸门,尽情地回想,捕捉闪光的瞬间,说说自己的父亲或母亲。

六、教师小结。

母爱如水,父爱如山。

父亲是一颗星,陪你放飞童年的梦想;父亲是一把伞,为你撑起无雨的晴空;父亲是一池湖水,包容你的无知和娇嗔;父亲是一座桥,渡你从悲伤飞向快乐。让我们感恩父爱,用实际行动回报我们的父亲。

七、布置作业:

结合本节内容以“父爱”或“母爱”为话题,完成一段200字左右的细节描写。

板书设计:

背影。

朱自清。

难忘背影睹家思父悲哀。

刻画背影望父买橘感激。

惜别背影父子离别不舍。

再现背影怀念父亲伤心。

八年级数学详细教案篇十一

可化为一元二次方程的分式方程的解法.。

教学难点:解分式方程,学生不容易理解为什么必须进行检验.。

一、新课引入:

1.什么叫做分式方程?解可化为一元一次方程的分化方程的方法与步骤是什么?

2.解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?

3、产生增根的原因是什么?.。

二、新课讲解:

八年级数学详细教案篇十二

正比例函数的概念。

2、内容解析。

一次函数是最基本的初等函数,是初中函数学习的重要内容,正比例函数是特殊的一次函数,也是初中学生接触到的第一种函数,要通过对正比例函数内容的学习,为后续类比学习一般一次函数打好基础,了解研究函数的基本套路和方法,积累研究一般一次函数乃至其他各种函数的基本经验。

对正比例函数概念的学习,既要借助具体的函数进一步加深对函数概念的理解,即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应,这是理解正比例函数的核心;也要加强对正比例函数基本特征的认识,即根据实际问题构建的函数模型中,函数和自变量每一对对应值的比值是一定的,等于比例系数,反映在函数解析式上,这些函数都是常数与自变量的积的形式,这是正比例函数的基本特征。

本节课主要是通过对生活中大量实际问题的分析,写出变量间的函数关系式,观察比较概括出这些函数关系式具有的共同特征,根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念,再用正比例函数的概念对具体函数进行辨析,对实际事例进行分析,根据已知条件写出正比例函数的解析式。

基于以上分析,确定本节课的教学重点:正比例函数的概念。

1、目标。

(1)经历正比例函数概念的形成过程,理解正比例函数的概念;

(2)能根据已知条件确定正比例函数的解析式,体会函数建模思想。

2、目标解析。

达成目标(1)的标志是:通过对实际问题的分析,知道自变量和对应函数成正比例的特征,能概括抽象出正比例函数的概念。

达成目标(2)的标志是:能根据实际问题中的已知条件确定变量间的正比例函数关系式,将实际问题抽象为函数模型,体会函数建模思想。

正比例函数是是初中学生接触到的第一种初等函数,由于函数概念比较抽象,学生对函数基本概念理解未必深刻,在对实际问题进行分析过程中,需进一步强化对函数概念的理解:即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的`每一个确定的值,另一个变量都有唯一确定的值与之对应;对正比例函数概念的理解关键是对正比例函数基本特征的认识,要通过大量实例分析,写出变量间的函数关系式,观察比较发现这些函数具有的共同特征,即函数与自变量的每一对对应值的比值一定,都等于自变量前的常数,这些函数都是常数与自变量的积的形式,再根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念。对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程学生有一定难度。

因此本节课的教学难点是:对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程。

八年级数学详细教案篇十三

3.使学生了解本市常见的台风灾害及应采取的预防措施。

4.使学生了解寒潮、干旱、暴雨等气象灾害的成因、分布、危害;。

5.使学生了解监测防御我市常见的气象灾害应采取的预防措施;。

6.使学生在认识自然现象的基础上,探讨改造自然,趋利避害的实际行动。

[重点难点]:1.台风的危害。

2.监测防御台风的重要性。

3.台风的危害及形成各种气象灾害的危害。

4.监测防御的重要性。

5.气象灾害的危害、形成。

[教具设计]:

[讲授过程]:

[复习引导]:1.农作物熟制与积温的关系。

2.为什么许多新建的房屋不取正南正北走向?

3.我市的许多工厂建在西南郊,这是否合理?为什么?

【引入新课】。

气候既是一种资源,也会带来无穷的灾害。许多专家认为,本世纪初是一个自然灾害频发的时期,我们该如何趋利避害呢?今天我们就来谈这个问题。

[讲授新课]:

1.气象灾害的概念。

(1)概念:大气对人类的重合财产和经济建设以及国防建设等造成的直接或间接的损害,称为气象灾害。

(2)主要气象灾害:台风、暴雨、洪涝、寒潮;。

(3)危害:2.台风的概念。

指导学生阅读课本p58第三段,了解台风的概念。

台风:西北太平洋上热带气旋中心附近风力在12级或以上。

飓风:东北太平洋和大西洋热带气旋中心附近风力在12级或以上。

3.台风的结构。

指导学生读图2.32,了解台风的结构,并由此分析台风不同区域的天气情况。

提问:台风警报中,为什么说“台风中心附近风力”,而不说“台风中心风力”?

4.台风的路径。

指导学生读图2.33,了解台风中心位置及其移动方向,以及暴雨出现的地区,判定不同地区的天气情况。

(2)阅读短文,了解台风的危害。

6.台风危害的监测。

(1)指导学生阅读课本p59右第二、三段,了解对台风的监测。

(2)阅读短文,了解台风的监测的结果。

1986年7号台风在登陆广东前三天,中央气象台便发出了准确警报。广东三防指挥部通知并招回在南海北部和广东沿海作业的上千条渔船,数千渔民避免了覆顶之灾,使海上未死一人。1989年8号台风,由于在台风登陆前三天,连续发布了警报和紧急警报,政府采取了有效的防御措施,海上未死一人,经济损失也明显减轻。

阅读短文,思考:

据历史文献记载,公元前206年至1949年,在2155年间,我国共发生水旱灾害1750多次。其中,大旱1056次,大水658次。1931年夏季大水,江汉平原一片汪洋,武汉市区街道可以行船,淹死人数达14万,淹没农田300多万公顷。1946至1949年,四川连续四年干旱,出现了“全蜀大饥,人相食”的惨景。新中国成立以来,水旱灾害仍时有发生,如1991年的7、8月份,在江淮地区遭受特大洪涝灾害的同时,福建、两广和湘赣南部却出现了严重干旱。但由于各地兴建了许多水利工程,大大减轻了水旱灾害的威胁和损失。

为什么我国水旱灾害连年发生?

形成洪涝灾害的原因是什么?

指导学生阅读课本p60,了解暴雨形成的三个条件,以及降雨等级和雨量的关系。

2.干旱。

(1)什么是干旱?

干旱是因长期无降水或降水异常偏少而造成空气干燥、土壤缺水的一种现象。

(2)干旱会造成什么危害呢?

严重的干旱会造成粮食减产,人畜饮水困难,影响经济发展和社会安定。

(3)防御干旱、洪涝有哪些减灾措施呢?

修建各种水利工程,提高防洪能力,营造防护林。

植树造林,涵养水源,水旱兼治。

加强气象卫星监测和预报,提高预报的准确率。

3.寒潮。

(1)阅读短文。

中央气象台今天下午六点钟发布寒潮警报。

昨天提到的强冷空气的前锋,今天正午已经移到我国内蒙古醅到西北地区东部一带,并将继续向东南方向移动,影响我国大部地区。

上到后天,渤海、黄海将有7到9级东北风,东海、台湾海峡将先后有6到8级大风。冷空气前锋过后,长江以北地区的气温将下降到8至15摄氏度,其中华北地区北部和东北地区的气温将下降到15至20摄氏度。

这次强冷空气过程造成的降雪、大风、降温天气,将对交通、电讯等有不利影响,请各有关单位注意防寒防冻。

甲、从上面的寒潮警报中,看一看我国受这次寒潮影响的有哪些地区?

(2)概念:

由强冷空气迅速入侵造成大范围的剧烈降温,并伴有大风、雨雪、冻害等现象,这样的冷空气过程称为寒潮。

八年级数学详细教案篇十四

(一)、知识与技能:

(1)使学生了解因式分解的意义,理解因式分解的概念。

(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。

(二)、过程与方法:

(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。

(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。

(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。

(三)、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。

二、教学重点和难点。

重点:因式分解的概念及提公因式法。

难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。

三、教学过程。

教学环节:

活动1:复习引入。

看谁算得快:用简便方法计算:

(1)7/9×13-7/9×6+7/9×2=;

(2)-2.67×132+25×2.67+7×2.67=;

(3)992–1=。

设计意图:

注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。

活动2:导入课题。

p165的探究(略);

2.看谁想得快:993–99能被哪些数整除?你是怎么得出来的?

设计意图:

引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。

活动3:探究新知。

看谁算得准:

计算下列式子:

(1)3x(x-1)=;

(2)(a+b+c)=;

(3)(+4)(-4)=;

(4)(-3)2=;

(5)a(a+1)(a-1)=;

根据上面的算式填空:

(1)a+b+c=;

(2)3x2-3x=;

(3)2-16=;

(4)a3-a=;

(5)2-6+9=。

在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力。

活动4:归纳、得出新知。

比较以下两种运算的联系与区别:

a(a+1)(a-1)=a3-a。

a3-a=a(a+1)(a-1)。

在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?

八年级数学详细教案篇十五

学会可化为一元一次方程或一元二次方程的分式方程的解法,会用去分母求方程的解、掌握解分式方程的一般步骤。

去分母法解可化为一元一次方程或一元二次方程的分式方程、验根的方法、

解分式方程的一般步骤。

1、什么叫分式方程?

2、解分式方程的基本思想:

分式方程整式方程。

3、解方程(学生板演)。

1、由上述学生的板演归纳出解分式方程的一般步骤。

(1)去分母:在方程的两边都乘以最简公分母,化为整式方程;

(2)解这个整式方程;

2、范例讲解。

(学生尝试练习后,教师讲评)。

例1:解方程例2:解方程例3:解方程讲评时强调:

1、怎样确定最简公分母?(先将各分母因式分解)。

2、解分式方程的步骤、

巩固练习:p1471t,2t、

课堂小结:解分式方程的一般步骤。

布置作业:见作业本。

【本文地址:http://www.pourbars.com/zuowen/11670807.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map