吴正宪小数的意义教学设计大全(13篇)

格式:DOC 上传日期:2023-11-13 18:44:08
吴正宪小数的意义教学设计大全(13篇)
时间:2023-11-13 18:44:08     小编:琉璃

总结是使我们更好地认识自己、提高自己的利器。总结要具备简明扼要、重点突出的特点。推荐以下总结范文给大家,希望能够在写总结的过程中给你一些启发和帮助。

吴正宪小数的意义教学设计篇一

教学内容:本节课教学内容是新人教版本四年级下册第四单元p32页。

1、教材分析

教学主要内容:

一位、两位、三位小数的意义。小数的计数单位,每相邻两个计数单位之间的进率是10.

教材编写特点:

简化了小数意义的叙述重视了对小数意义的理解加强了小数与实际生活的联系在探究的过程中注重给学生创设自主研究的空间。

教学的重点、难点:

理解一位、两位、三位小数的意义,知道相邻的两个计数单位之间的进率是10。

教学关键:

理解一位、两位、三位小数的意义。

基本活动经验:

在老师引导下,重视学生实际动手操作的能力、合理安排引导给学生自主探索的空间、借助学生已有知识经验的迁移,促进学生自主学习。

二、学情分析

小数的意义是学生系统学习小数的开始。这是在学生三年级学习“分数的初步认识”和“小数的初步认识”基础上教学的,通过这部分内容的学习,使学生进一步理解小数的意义,为今后学习小数四则运算打好基础。

学生学习该内容可能的困难:

教学时,学生必须依托分数和整数的相关知识,借助分数理解小数的意义,借助整数掌握小数的结构特征。理解每相邻两个计数单位之间的进率是10时,必须联系生活中的货币、长度或者重量等理解小数之间的关系。

学习方式:

充分的运用演示、操作、观察等直观的手段,把基本概念的本质属性和普遍意义形象地展示出来,是学生在头脑中建立起这些内容的丰富表象,再组织学生进行分析、讨论,加深这些知识概念的感性认识;最后对表象进一步加工,形成概念,从而实现对概念的深刻理解。

3、教学目标

知识与技能

1使学生结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。借助熟悉的十进制关系的显示原型多角度的理解小数与分数之间的关系,理解计数单位0.1、0.01、0.001。

2明确一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几.....知道相邻两个计数单位间的进率是10。

过程与方法

充分的运用演示、操作、观察等直观的手段,引导学生经历从直观到抽象、概括的心理活动过程,实现“动作表征”、“直观表征”、“符号表征”的循序渐进发展,进而培养学生发现和构建知识的能力、迁移和类推能力。

情感态度与价值观

培养学生的抽象、概括、归纳的思维能力和应用数学的能力。

4、教学过程

1、已知导入、情境感知

师:(出示教室场景图)同学们看,这个地方熟悉吗?

生:熟悉

师:是哪?

生:我们的教室

师:我们的教室,这是黑板的高度,讲台的长度,课桌的长度(课件出示)。

生:我知道了,讲台的长度、课桌的长度有1米多。

生:我知道讲台的长度跟1米差不多。

生:可以用重叠法

生:可以把黑板的高度那里,对直画一根虚线下来,再看

师:课桌的长度是1米多,具体多多少呢?你有办法吗?

2、展开,认识一位小数的意义

生:先测量出1米,多余的部分截取下来,再接着去测量。

师:谁还来说说......

生:先测量出1米,多余的部分截取下来,再拿多余部分去跟1米比较(边说边用手比划)。

师:你们看看,是这样的吗?(课件演示,将多余的部分截取下来,放在1米的下面测量)

生:是的。

师:接下来,谁有办法?

生:用多余部分去比,看看1米里面有几个那么长。

生:将1米平均分成10份,再比较。

师:比不出来啊,谁有办法?

生:1个1个去比,看看几个那么长正好是1米。就用除法解决。

师:是这样的吗?(课件演示)

生:是的

师:我们一起来数数

生:1个,2个,3个......正好10个这么长是1米。

(在出现问题的时候,想解决问题的办法:我们可以把已经知道的1米的刻度标记出来,再继续测量,先用多余部分去比较,发现正好10个那么长就是1米。所以多余部分是10份中的1份,也就是说将1米平均分成10份,这样的1份,它的长度正好是多余部分,所以多余部分可以用十分之一米表示;十分之一米用小数表示是0.1米。在测量或者计算时,我们往往不能正好得到整数的结果,这时,可以用分数或者小数表示。

师:那现在知道怎么具体表示了吗?说说我们刚才的思路。

生:因为老师在操作的时候,我们可以发现10个多余部分的长度正好是1米,也就是说每个多余部分的长度是1米的1/10,也就是1/10米。写成小数的话是0.1米。还可以用1分米表示。

生:根据观察我们发现,将1米平均分成10份,多余部分正好是10份中的1份,可以用分数1/10米表示,还可以用小数0.1米表示。

生:将1米平均分成10份,多余部分是1米的1/10,也就是1/10米,用小数表示是0.1米。

师:我们一起来说说:将1米平均分成10份,多余的部分正好是这10份中的1份,也就是1/10,1米的1/10是1/10米,也可以用小数表示为0.1米。

师:这就是我们这节课要研究的“小数的意义”(板书课题)

师:那你们知道小数0.1的意义了吗?

生:0.1表示的是十分之一。

师:你还能在1米(用手比划)中找到其他的小数吗?并说说它的意义。

生:0.3米(学生说,老师点课件,并根据课件演示,学生说意义)

师:那0.3里面有几个0.1呢?表示什么

生:0.3里面有3个0.表示十分之三。

师:还找到了其他的小数吗?

生:0.7米(老师点课件,学生说意义)0.7里面有7个0.1

师:那1米里面有多少个0.1呢?

生:1米里面有10个0.1米

师:10个0.1是1

仔细观察这些小数和分数(用手比划并引导学生观察分数),你发现了什么?

生:这些小数都表示十分之几。

生:这些分数的分母都是10,小数都是一位小数

生:分母是10的分数可以写成一起小数

生:10个0.1是1

师:说得非常好。一位小数表示十分之几。分母是10的分数可以写成一位小数,10个0.1就是1。一位小数,它的计数单位是十分之一,写作0.1。

我们一起把这句话小声齐读:分母是10的分数可以写成一位小数,一位小数的计数单位是十分之一,写作0.1。

师:我们在这个1米中找到了很多的小数,是不是只能在这里找到小数呢?

(出示数轴图)你能在这里找到小数吗?

生:能(学生上台寻找并说明理由。)

师:为什么是这里呢?

生:因为0-1之间分成了10份,每一份是0.1,表示十分之一。

生:0.1还可以表示刻度。也就是说:这里的每个刻度依次是0.1、0.2、0.3......

师:我们在学习数轴的时候知道数是按照从小到大的顺序依次排列的,所以0.1在这里。

师:那你能找到0.8吗?

生:某一个点,某一个范围(指出0.8的具体位置)

师:你是怎么找到0.8的?

生:数8个0.1(10份中数出其中的8份)

生:从1开始往左边数2个0.1(10-2=8)

师:那数轴上还有其他的小数吗?

生:有,学生说小数

师:如果将数轴无限的延长,这样的小数说得完吗?

生:说不完。

师:回归到米尺中,理清我们刚刚的思路:我们知道多余的这个部分—可以用分数十分之一米表示,用小数0.1米表示。所以课桌的长度是1.1米。

3、推进,认识两位小数的意义

师:课桌的长度已经具体的表示出来了,黑板的高度呢?

生:还是拿红色部分进行重叠,多余的部分截取下来。继续用红色部分测量(课件演示)。

师:遇到了什么问题?

生:测量时,多余的部分不够1米,

生:那就用蓝色部分比较。(学生边说,课件演示)也不够1分米。

师:那怎么办?

生:用刚刚的方法去比,看多少个紫色部分有是一个蓝色部分。用分米的下一个单位厘米表示。

师:(课件演示)我们发现......

生:我们发现10个紫色部分的长度就是蓝色部分

生:把蓝色部分平均分成10份,紫色部分是其中的1份

生:是1厘米

师:把蓝色部分平均分成了10份,那1米里面会有多少个这样的紫色部分呢?

生:有100个这样的紫色部分。

生:还可以用0.01米表示。

师:对的,1/100米写成小数是0.01米。

师:那红色部分有多少个0.01米蓝色部分呢?

生:1米里面有100个0.01米。1分米里面有10个0.01米

师:那这样的4份呢?可以怎么表示?

生:4/100米,写成小数0.04米

师:请同学们拿出抽屉中的软尺。

师:这根软尺长度是多少?

生:1米、10分米、100厘米、1000毫米。

师:看来长度单位的换算学的很好哦。

操作:拿出软尺,在软尺上找到1米,1分米,1厘米,1毫米。以米为单位,找出一个可以用小数表示的地方,跟同桌说一说,并将它写在练习纸上)。

学生汇报

生1:我找到的是0-99厘米。是99厘米,用分数表示是99/100米,用小数表示是0.99米。

生2:我找到的是0-20厘米。是20厘米,用分数表示是20/100米,用小数表示是0.20米。

生:老师对于生2找的还有表示方法,我可以用分数2/10米,用小数表示是0.2米。

生:一个是表示把1米平均分成100份,取其中的20份,是20/100米=0.20米;一个是表示把1米平均分成10份,取其中的2份,是2/10米=0.2米。

生:它们表示的长度是一样的,但是它们表示的意义是不同的。

师:仔细观察这些小数,你又有什么发现呢?

生:这些分数的分母都是100,小数都是两位小数

生:分母是100的分数可以写成两位小数

生:100个0.01是1

师:说得非常好。两位小数表示百分之几,它的计数单位是百分之一,写作0.01。

(课件出示:分母是100的分数可以写成两位小数,两位小数的计数单位是百分之一,写作0.01。)

师:通过我们刚才的探究,我们知道黑板高度中1米之外多余的这个部分—1厘米,可以用分数百分之一米表示,用小数0.01米表示。所以讲台的长度是1.01米。

4、拓展,认识三位小数、四位小数的意义

师:(出示课件显示1毫米)这是多长?

生:1毫米

师:你是怎么知道的?

生:.因为把1厘米平均分成了10份,其中的1份就是1毫米.....

师:1米里面有多少个这样的1毫米呢?

生:1000个(1米里面有1000个1毫米),因为1米=1000毫米

出示课件

师:将1米平均分成1000份,这样的1份是1毫米,这样的1份还可以怎么表示?

生:1/1000米,0.001米。

师:对的,把1米平均分成1000份,其中的1份是1/1000米,用小数表示为0.001米。

师:那这里的7份可以怎么表示?米尺中的1厘米可以怎么表示呢?

生:这里的7份可以用分数7/1000米表示,用小数表示为0.007米

生:米尺中的1厘米是1000份中的10份,用分数千分之十米表示,用小数0.010米表示。

生:1厘米也可以用分数百分之一米表示,用小数0.01表示。

师:也就是说10个0.001等于1个0.01。

师:观察这些小数,你发现了什么

生:还可以知道,分母是1000的分数可以写成三位小数,三位小数的计数单位是千分分之一,写作0.001。1厘米中有10个1毫米,所以0.01里面有10个0.001;1米里面有1000个1毫米,所以1里面有1000个0.001。

五、总结及应用

(观察板书可以知道)

分母是10.100.1000......的分数可以用小数表示。

小数的计数单位是十分之一、百分之一、千分之一......写作0.1、0.01、0.001......

每相邻两个计数单位之间的进率是( 10 )

生:因为我们刚刚在黑板上标记了

生:进率是100

生:进率是10.看黑板我们知道0.1米是1分米,0.01米是1厘米,0.001米是1毫米。它们之间的关系是10毫米=1厘米,10厘米=1分米。所以相邻两个计数单位之间的进率是10.

(学生根据小数的计数单位自己理解这句话,并且填空,说明理由。)

写出合适的分数和小数

说一说你的收获

生:我知道了“小数的意义”

生:我知道了分母是10.100.1000......这样的分数可以写成小数

生:我知道了小数的计数单位

......

是的,这些都是我们这节课的收获,希望大家在以后的生活或者学习中能够好好的运用这些知识。你们将会发现,原来数学与生活是息息相关的。

板书设计

1米 1 计数单位

1/10米=0.1米 十分之一 0.1 一位小数

1/100米=0.01米 百分之一 0.01 两位小数

1/1000米=0.001米 千分之一 0.001 三位小数

1/10000米=0.0001米 万分之一 0.0001 四位小数

五、教学反思

《课标》指出:学生的数学学习应当是一个生动活泼、生动和富有个性的过程,要让学生经历数学知识的形成过程。基于这一理念,在设计本课时,我注重让学生经历探究与发现的过程,使他们在动手、动脑、动口中理解知识,掌握方法,学会思考,获得积极的情感体验。

一、运用多种手段,提高教学实效

本节课中将现代化教学手段与常规教学手段相结合,提高了教学效率。从引入课题、讲授新课、反馈练习,大部分内容均制成多媒体课件,直观、形象、动态地展现知识的形成过程,刺激学生的感官,启迪学生思维,增大了课堂容量,大大提高了课堂效率。在授新一位小数的意义时,扎扎实实的抓住了重难点,两位小数的意义学习时,让学生借助实物(软尺)进行操作:找小数,写小数,说小数的意义,从而加深了实际与理论的联系,强化了对理论知识的理解,三位小数的引入更是在已有的软尺基础上,复习了长度单位之间的关系,从而让学生能够理解三位小数的意义。同时,本节课又注重了常规教学手段的运用,课题、一位、二位、三位小数的几个关系式等,均由老师板书。提纲挈领的板书,帮助学生形成完整的知识结构。

2、情景导入,回到最初

借助教参中的情景导入,但是在设计时抛开了已有的尺子测量,让学生只根据已有的1米进行思考。也就是在遇到不能用整数表示的时候,要想其他的办法进行解决(如:想出一个新的名数单位,比如分米、厘米、毫米来解决问题;或者想到用分数表示,借助分数从而过度到小数),让学生明白知识不是原本就是这样的。是因为我们在实际的问题当中不能解决,必须借助新的知识来解决,就此重新回顾了小数的产生与发展。

3、以学生的自主学习为活动前提,营造自我探索、自我发现的学习环境。

许多教师认为,小数的意义这一内容用传统的接受式教学方法比较恰当,因为小数的意义是约定术成的,新型的学习方式(动手实践、自主探究与合作交流)也只能是一种课堂的装饰。这种思想,是我在设计教学时考虑得最多,也是我最难突破的瓶颈。因此在本课的设计上,我以小数在生活中的实际意义为切入点,从学生的生活经验和知识背景出发,引导学生进行积极的体验。

六、案例研讨

《小数的意义》这一课。为我们诠释了如何让学生在基础数学的学习过程中,触及数学本质的深处,更深切的感受数学的精神、思维和方法的魅力。同时,本节课的教学不落俗套,特别是在教学设计上为我们展示了独有的环环相扣。

1、回归本质,回到最初

在第一个环节一位小数的意义的设计中,教师提出:“在没有测量工具的前提下,你能想办法知道课桌的长度吗”这个问题,学生想到了最为原始的办法:用非整数表示或者产生一个比米更小的名数来表示。这样的教学设计,让学生能触及数学本质。

2、数与型结合,便于学生理解

两位、三位小数的意义教学设计中,更是将实物——1米的软尺搬进课堂,让学生去观察、寻找“以米为单位可以用两位小数表示”的地方,从而让学生感受知识并不是凭空捏造的,而是有凭有据的,让学生理会到数学是一门严谨的学科。脱离实物过渡到三位小数时,让学生在操作、观察中感知,在感知后依据课件抽象、概括,在思维碰撞中提高认识的学习过程。

3、概念性的教学是否可以全面放开,让学生自己去发现、去总结

附:评课老师简介

何琴,小学高级教师,校级骨干教师。20xx年担任教育部“国培计划(20xx)”——中西部地区小学教师置换脱产研修项目培训导师,20xx年被聘为“第二批校级骨干教师”多篇教学论文获国家二等、省级二等、市级一等奖,多篇论文在《湖南教育》杂志上发表。曾代表长沙高新区参加“长沙市名优教师‘志愿支教、送教下乡’活动”,参加全国中小学“本色教育”说课比赛,荣获一等奖;在教育部“国培计划(20xx)——中西部农村小学骨干教师培训班上的示范课,曾经参加“长沙高新区小学数学教师素养比赛”荣获特等奖,参加“长沙市小学数学教师素养比赛”课堂教学竞赛荣获一等奖。工作理念:多一点鼓励,多一点期待,多一点平等,多一点沟通。教育理念:勤于好学才能乐于施教。

吴正宪小数的意义教学设计篇二

课时:第一课时

授课对象:四年级学生

1.课程标准相关要求

进一步认识小数,会进行小数和分数的转化(不包括将循环小数化为分数)。

2.教材分析

《小数的意义》是人教版四年级下册第四单元《小数的意义和性质》第一节的教学内容,是学生系统学习小数的开始。这是在学生三年级学习“分数的初步认识”和“小数的初步认识”基础上教学的,通过这部分内容的学习,使学生进一步理解小数的意义,为今后学习小数四则运算打好基础。

3.学情分析

本节课探究的内容是日常生活中的实际问题,具有很强的探索性和现实意义,学生学习探究的兴趣会很浓。教学中应因势利导,组织学生在小组中合作探讨,体会抽象和推理的数学思想方法。四年级的学生具备一定的独立思考能力,教学中可组织学生先独立思考,再在小组中相互交流,培养学生的探究品质和能力。

2.借助熟悉的十进制关系的现实原型多角度理解小数与分数的关系,通过自学,理解计数单位0.1、0.01、0.001。通过数数的活动,知道相邻两个计数单位间的进率是10。

1、通过说一说,想一想,量一量,小组合作交流,探究出小数的意义,达成目标1。

2、经历自学,数数等活动,独立探究,全班交流汇报,说出小数的计数单位和相邻两个计数单位间的进率,达成目标2。

理解一位、两位、三位小数的意义,知道相邻的两个计数单位间的进率是10。

理解一位、两位、三位小数的意义。

米尺、课件。

吴正宪小数的意义教学设计篇三

苏教版《义务教育课程标准实验教科书 数学》三年级(下册)第100~101页。

教学目标

1. 使学生经历认识小数的过程,初步了解小数的含义,会读、写一位小数,知道小数各部分的名称,知道自然数和整数。

2. 使学生在解决实际问题的过程中,培养初步的自主探究、合作交流的意识,感受数学和生活的密切联系,增强学好数学的信心。

教学过程

出示:1/2 58 5/12 0.5 1.2 5.8

提问:同学们,知道这些数分别是什么数吗?

谈话:后面的三个数,你平时在什么地方见到过?

学生可能会想到:铅笔芯的规格、眼睛的视力、商品的价格等。

揭题:是的,在日常生活中经常接触到这样的数。它们都是小数,今天我们一起来认识小数。(板书课题:认识小数)

1. 提出问题。

提问:你想了解小数的哪些知识?

学生可能提出:小数是怎么来的?学了小数有什么用处?小数应该怎样读,怎样写?……

2. 教学第一个例题。

谈话:同学们想知道小数是怎样产生的吗?其实小数就来自我们的生活。先让我们来做这样一个活动:小组合作测量课桌面的长和宽,并用不同的数、不同的单位把测量结果表示出来。比一比,哪个小组想到的表示方法最多。

学生在小组内测量课桌面的长和宽,交流不同的表示方式。教师巡视,并作适当指导。

反馈:你们小组的测量结果是多少?想到几种不同的表示方法?

学生量出课桌面的长是60厘米,宽是40厘米,并用600毫米、60厘米、6/10米等表示课桌面的长,用400毫米、40厘米、4/10米等表示课桌面的宽。(根据学生回答,板书:6分米=6/10米,4分米=4/10米)

提问:除了上面几种表示形式外,你还能用其他方法来表示吗?

如果学生主动想到分别用0.6米、0.4米表示课桌面的长和宽,则让学生说一说是怎样想到的,0.6米和0.4米分别表示什么意思。

如果学生不能主动地用小数来表示,则讲述:其实,6/10米还可以用小数0.6米来表示,0.6读作零点六。(板书:= 0.6米 0.6读作零点六)也就是说把1米平均分成10份,其中的6份可以用0.6米表示。

提问:你能说一说0.6米表示的意思吗?

学生回答后,让同桌间互相说一说。

引导:那么4/10米还可以怎样用小数来表示呢?(板书:0.4米 0.4读作零点四)

提问:0.4米表示什么意思?

学生交流时,分别让学生在米尺上指出0.1米、0.5米、0.8米的实际长度。

小结:十分之几米可以写成零点几米。

3. 做“想想做做”第1题。

先让学生弄懂题意,然后把答案填在书上。完成后,电脑出示答案,集体校对。

4. 教学第二个例题。

谈话:昨天三(5)班的李萍同学在育才商店里买了这样一些文具用品。我们一起来看看吧。

出示文具的图片及标价:

铅笔 圆珠笔 笔记本

3角 1元2角 3元5角

提问:一枝铅笔是3角钱,如果用元作单位,是多少元呢?(分别用3/10元和0.3元表示,并读一读、写一写。)

讨论:一枝圆珠笔的价钱是1元2角,怎样用元作单位,用小数来表示圆珠笔的价钱呢?请先在小组里讨论讨论,再说一说你是怎样想的。

反馈时,着重引导学生体会:1元2角是1元多2角,2角可以用0.2元来表示,1元和0.2元合起来就写成1.2元,1元2角可以写成1.2元。(板书:1元2角= 1.2元 1.2读作一点二)

提问:一本笔记本的价钱是3元5角,用元作单位的小数又怎么来表示呢?你是怎么想的?(板书:3元5角=3.5元 3.5读作三点五)

小结:几元几角写成小数就是几点几元。

5. 做“想想做做”第2题。

让学生在书上完成填空,并说一说是怎样想的。

6. 介绍自然数和整数。

让学生自由阅读书本第100页的最后一段,提出不懂的问题。

7. 游戏。

男同学代表整数,女同学代表小数,看到你所表示的数请你站起来。

8 0.2 3.8 0 59 95.4 1 1/4 1.6

谈话:我们已经认识了小数。现在我们以小组为单位,一起来进行比赛好吗?

1. 听录音,把听到的小数记录下来。

一只青蛙跳过0.4米的田埂,来到宽16.8米的河面上,踏上了0.2平方米的荷叶,狂叫三声,扑通一声掉进了深3.9米的河里。

2. 做“想想做做”第3题。

出示题目,让学生抢答,并说一说每道题中分数、小数的意义。

3. 回答下面的问题。

一包上好佳,价钱在1元到2元之间,请你猜猜它的价钱是多少?

小组合作讨论后把价钱写在纸上,交流时引导学生用“几元几角”和“几点几元”两种方式表达,并在数轴上分别找出每种可能价钱所在的点。

提问:今天你学得开心吗?你有什么收获?

课件介绍十进分数的发展史和古代数学家刘徽的杰出成就。

吴正宪小数的意义教学设计篇四

1、结合具体情境,结合实际操作,通过观察、类比等活动使学生理解小数的意义。

2、在理解小数意义的基础上学会读小数和写小数,并分清与整数读写的区别。

3、经历探索小数意义的过程,了解小数在生活中的广泛应用。

教学重点:结合实际操作,使学生理解小数的意义,学会读写小数

教学难点:经历探索小数意义的过程。

自制课件正方形纸片、正方体模型

课件播放歌曲《春天在哪里》

师:请大家用最响亮的声音告诉老师,刚才我们听到的歌曲与哪个季节有关?

生:春天。

课件出示:1千瓦时的电可以让电动车运行0.84千米。

师:谁来读一读这句话。

生:1千瓦时的电可以让电动车运行0.84千米。

师:0.84是个什么数?

生:小数。

1、教学小数的读写

师:你还会读其他的小数吗?

课件出示一组小数。指名学生读。如果都读对了给自己适当的鼓励。

教师给予适当的评价,教案《小数的意义教学设计》。然后分组讨论:小数的读法和整数的读法有什么相同的地方,又有什么不同的地方。

学生讨论后回答汇报。

教师小结:小数点前面的数按照整数的读法去读,小数点后面的按照数字出现的顺序去读。

师:打搅会读小数了,那你会写小数吗?

生:会。

课件出示零点四七四点一三十二点四零五

学生自由写--交流--集体订正。

2、教学小数的意义

师:大家既然都见到过小数,那想一想都是在哪里见到的:

生举例生活中的小数(超市的货架上、小票上、课本上等等)

师:大家都是善于观察、乐于发现的好孩子。那你知道0.1元是什么意思吗?

生:1角。

师:说说你的想法。

生:、、、、、、

师出示正方形的纸,然后让学生图出0.1元。

生操作然后汇报。

师生共同通过课件展示来理解1角=0.1元,然后拓展到2角。

师操作让学生回答表示的是多少元。

师:我还是把1元平均分成10份,你能表示出3角吗?涂一涂。

生操作后汇报

师:你知道0.01元是多少钱?

生:1分。

师:那1元里面有多少个1分呢?

生:100个。

师:也就是说(课件展示0.01元表示把1元平均分成份,取了其中的份,用分数表示。--学生自然而然的填写了答案。

0.03元呢?0.36元呢。

让学生用手中的正方形的纸片进行涂写、汇报。

展示0.25的图片,让学生写小数和分数。

借助课件讲解0.001与分数的关系。让学生写0.025与分数。进一步理解三位小数。

师小结:通过我们刚才的谈话,我们不难看出小数与分数有着密切的联系。其实小数就是表示十分之几、百分之几、千分之几…的数。0.1、0.01、0.001…是小数的计数单位。到这里,这节课我们主要就学习了出示课题"小数的读写及意义",学得怎么样呢,下面我们一起来测验一下。

(课件)展示题目

采用的方法是学生口答,并要学生说出原因。教师做适当的点评和评价。

师:今天我们进一步认识了小数,你有什么收获,能和大家分享吗?

吴正宪小数的意义教学设计篇五

义务教育课程标准实验教科书(西南师大版)四年级(下)练习十六第3~11题。

1进一步掌握小数点位置的移动引起小数大小的变化。

2能根据要求正确移动小数点的位置。

3感受数学知识的严谨,养成认真、仔细的习惯。

进一步掌握小数点位置的移动引起小数大小的变化。

根据要求正确移动小数点的位置。

一、基本练习

1小数点位置移动引起小数大小变化的规律是什么?

2练习十六第3题。

学生独立看懂表格,注意找准整数的小数点位置,并指名让学生说说他们的方法。

二、指导练习

1第8题

老师针对不同的学生进行指导。

第9题请同学们先汇报收集的资料,再算一算。

3第10题

注意两种情况:一是宽边相接,按长边计算;二是长边相接,按宽边计算。

三、独立练习

1练习十六第4,5题教师强调:写得数时注意位数不够用"0"补足。

2学生独立完成第6,7题

四、拓展练习

练习第11题。

引导学生思考:两个因数同时缩小10倍、100倍、1000倍,由此引起的积的变化。

五、小结

哪些同学愿意谈谈今天的收获?

吴正宪小数的意义教学设计篇六

在学生初步认识分数和小数的基础上,使学生进一步理解小数的意义,认识小数的计数单位及相邻两个单位间的进率。

在操作中使学生体会小数产生的必要性。通过观察、比较,以及自主探究建立小数与分数之间的联系。

在学生积极参与数学活动的过程中,渗透数形结合的数学思想,培养学生的抽象概括和迁移能力。

教学重点:理解小数的意义,理解小数的计数单位及它们间的进率。

教学难点:理解小数的计数单位及它们间的进率。

米尺、彩带、磁条。

2.你们估计得对不对呢?让我们一起用直尺来验证一下。

3.谁愿意把你测量的结果告诉大家?

学生汇报预设:

学生1:我测量课桌面的长度是120厘米。

学生2:我测量课桌面的长度是1米2分米。

教师:课桌的长度如果以米为单位就是1.2米。

(1)在生活中,人们进行测量和计算时,往往不能正好得到整数的结果。这时常用小数表示。

(2)认识小数吗?在哪儿见过小数?今天我们一起学习小数的意义。

【设计意图】联系生活实际提出问题,让学生通过动手操作,在实际测量和记录的过程中发现有时得不到整数结果,从而引发认知冲突,激发学生进一步探究的欲望,感受小数产生的必要性。

1.认识一位小数。

教师:出示1米长的彩条,如果把1米平均分成10份,每份是多长?把1分米改写成

用“米”做单位的分数怎么表示?说一说你是怎么想的?

学生交流想法。

教师总结:米用小数表示就是0.1米。

教师:3分米,7分米改写成用“米”作单位的分数应该怎样表示呢?小数呢?请同学们试着写一写。

学生独立完成,教师巡视。交流分享学生的思考过程。

教师:仔细观察黑板上的每组分数和小数,你发现了什么?

结合学生回答,教师小结:像这样,小数点的右面有1个数字,这样的小数,就称为一位小数。也就是说,分母是10的分数,可以用一位小数表示。

练习:用小数怎么表示?呢?0.5怎样用分数表示?

参考答案:0.9,0.6,。

2.认识两位小数。

1厘米写成用“米”作单位的分数应该怎么表示?小数呢?4厘米呢?8厘米呢?

学生先独立完成,再合作交流。

教师:观察每组中的分数和小数,说一说你发现了什么?

学生1:分数的分母都是100。

学生2:小数点的右面都有2个数字。

教师小结:同学们观察得都非常正确。类似刚刚学习的一位小数,像这样,小数点的右面有2个数字的小数就称为两位小数。也就是说,分母是100的分数,可以用两位小数表示。

【设计意图】让学生根据一位小数表示十分之几,猜想出两位小数和什么样的小数有关,有意识地促进迁移,让学生体验成功,培养学生的学习兴趣和信心。

3.小数的意义。

教师:结合我们刚才对一位小数和两位小数的认识,自选两位以上的小数进行研究,完成表格。

学生先独立研究,再汇报交流结果,教师根据学生回答适时板书。

教师:通过你的研究,你发现了什么?

学生1:我发现分母是1000的分数可以写成三位小数。比如:把1米平均分成1000份,这样的一份就是1毫米,也就是米,写成小数就是0.001米。

学生2:三位小数就表示千分之几。

教师:其他同学还有谁也研究了三位小数的意义?谁愿意也来说一说?

学生预设:我选择的小数是0.023,也是一个三位小数,可用分数表示为千分之二十三。

学生:四位小数表示万分之几,五位小数表示十万分之几。

学生1:我认为分母是10、100、1000、10000等的分数可以用小数来表示。

4.认识小数的计数单位。

【设计意图】引导学生借助对“一位小数表示十分之几”“两位小数表示百分之几”的直观认识,独立探究三位小数、四位小数、五位小数……表示的意义,最后抽象概括出小数的意义,有效地锻炼了学生的多种能力,突破了重难点,同时也渗透了小数中相邻两个计数单位间的进率。

1.第33页做一做。

2.第36页练习九第1题。

3.填空:

0.6 里面有6个( );再增加( )个 0.1就等于1。

0.25里面有( )个0.01。

32个0.001是( );32个0.01是( );32个0.1是( )。

4.在括号里填上适当的小数。

学生先独立完成,教师再让学生汇报答案,集体评议。

【设计意图】通过不同层次的练习设计,让学生在对比练习的过程中不断加深对小数意义的理解,同时有意识地结合生活实际体现知识的应用价值,帮助学生根据小数意义理解生活中常见的小数所表示的含义。

1.今天这节课我们学习了哪些知识?你有什么收获?

2.介绍对小数发展具有杰出贡献的两位数学家。

【设计意图】通过问题帮助学生梳理本课所学的知识,最后通过课外延伸向学生介绍与小数发展相关的数学资料,让学生进一步感受数学文化,培养学生的数学素养。

吴正宪小数的意义教学设计篇七

1、在现实情境中认识两位小数、三位小数等,从而理解小数的意义,体会小数和分数的联系,会正确读写小数。

2、在用小数进行表达的过程中,感受小数与生活的联系,进一步培养数感和观察、比较、抽象的能力,增强学习数学的兴趣和信心。

一、回顾导入:

1、师:在三年级时我们一起认识了小数,你还记得吗?

(稍作停顿,学生回忆小数知识)

你对小数有了哪些了解?(生独立发言)

(可以是读写方法、意义、一位小数、组成部分、使用情况等)

2、师(板书:0.3):会读吗?(生齐读)

你是怎样理解0.3的?

3、揭题:今天起我们将继续学习小数的相关知识。

(出示课题:小数的意义和读写方法)

二、展开新授:

1、教学例1:

(1) 课件播放例1:

师:你能读出这三种物品的价格吗?

(个别读,师板书价格及读法)

0.05:请两生个别读再齐读,这个读法与以前学过的数的读法有什么不同?

小数部分依次直接读出数字就可以了。

(2) 用角或分做单位,说出这些物品的价钱。

生答师追问:

3角为什么可以写成0.3元?

5分为什么写成0.05元呢?

(1元=?分,1分是一元的几分之几?可以写成多少元?

5分是一元的几分之几,可以写成多少元?)

4角8分是一元的几分之几,可以写成多少元?

书p25/1(1)课件出示,直接口答。

(2) 齐读0.05、0.48:

0.05、0.48分别是一元的几分之几?

与以前认识的小数有什么不同?

揭示两位小数、一位小数的概念。

2、教学例2:

(1) 师:用分作单位的数是一元的百分之几,可以写成两位小数。生活中还有很多用到两位小数的情景。

(出示一把米尺):把一米平均分成100份,每份长多少?

1厘米是1米的几分之几?

可以写成小数是?

(2) 播放例2的课件,师稍作讲解。生独立完成书上的尺子图。

全班交流书写情况。

29厘米呢?

你想到了多少厘米,写成小数是多少米?

(3) 师:把一米平均分成1000份,每份长多少呢?

1毫米是1米的几分之几?可以写成小数是?

播放课件,稍作讲解。生独立完成书上的尺子图。

全班交流书写情况,并齐读这些小数,(指导:小数部分的零不能省略读)

(4) 师:他们是几位小数?

分别表示千分之几?

有没有四位小数呢?你能举个例子吗?

他表示多少分之多少?

按照这样的方法还有五位小数、六位小数位数更多的小数。我们以后将学到的圆周率还是个无限小数呢。

3、小结、揭示小数的意义:

师:齐读黑板上小数和对应的分数。

黑板上的这些小数是由怎样的分数改写成的?

你还发现了什么?

学生默读理解。

师:两个省略号分别省略的什么?你能补充吗?

三、巩固练习:

1、试一试:(课件播放题目)

师指导:第一幅图把正方形平均分成了几份?每一份是什么形状的?

第二幅图能?

第三幅图把什么看作整数1了?

平均分成了几份?你是怎样看出来的?

每一份是什么形状的?

独立填书。

全班交流,并结合图说说0.7、0.43、0.009分别表示什么?

2、练一练第二题,独立完成在书上。

全班交流。

3、练习五第二题、第三题。

独立练习,口头汇报。

0.300表示什么?

4、练习五第四、五题。

独立练习,全班交流。

四、总结:

师:谁能来归纳一下今天我们的学习内容? 你有哪些收获?

吴正宪小数的意义教学设计篇八

1、结合具体情境使学生初步体会小数的含义,能认、读、写小数部分是一位的小数,知道小数各部分的名称。

2、通过观察思考、比较分析、综合概括,经历小数含义的探索过程,让学生主动参与,学会讨论交流,与人合作。

3、使学生进一步体会数学与生活的密切联系,培养学生自主探索与合作交流的习惯。通过了解小数的产生和发展过程,提高学生学习数学的兴趣,增强爱国情感。

课件。

一、情境导入:

(两个小朋友在量课画面的长和宽。长5分米,宽4分米。)。

板书:5分米4分米。

二、新知探索:

(一)认识整数部分是0的小数。

师:5分米是几分之几米?你能说说你是怎么想的吗?

那4分米呢?

师:5/10、4/10这样的数,我们称为分数,那5和4是什么数?表示物体个数的数1、2、3、4……我们称为自然数,0也是自然数,它们都是整数。

板书:分数、整数。

今天我们要认识另一种数。板书:小数。

1、告诉:5/10米可以用小数0.5米来表示。

请仔细看0.5米怎么写,板书:0.5米。

你觉得在书写的时候要注意什么?它读作:零点五。板书:零点五。

(估计好读哦同学已经会读了,指名读一读,再一起读。)。

想一想,4/10米用小数表示是多少?

讲述:今天我们要学习“小数的意义和读写”。

引导学生发现:分数十分之几可以写成小数零点几;小数零点几就表示十分之几。

2、完成“想想做做”第一题:在括号里填上合适的数。

“1分米”用分数怎么表示?小数呢?你能像这样把余下的括号填完吗?全班交流。

3、完成“想想做做”第3题。

你能利用分数和小数的关系来完成“想想做做”第3题吗?

学生独立完成。全班交流。

讲述:小数是在人们实际测量和计算的需要中产生的,在我们实际生活中有着非常广泛的应用。

4、说说你在哪些地方见过小数?(汽车的排量、视力、铅笔芯的规格……)。

(二)认识整数部分不是0的小数。

2、课件出示:圆珠笔1元2角笔记本3元5角。

你知道了什么?

你能用小数表示出圆珠笔和笔记本各是多少元吗?

学生独立思考,再在小组中合作交流。

全班交流,教师相机板书:

1元2角2角是2/10元0.2元1.2元读作:一点二。

3元5角5角是5/10元0.5元3.5元读作:3点五。

小结:几元几角分成两部分:几元和几角,先把几角表示成“零点几元”,再和几元合起来是几点几元。

三、练习巩固:

1、“想想做做”第二题:商店里有很多食品,你能用“元”作单位来表示它们的价格吗?

学生独立完成。全班交流。

2、“想想做做”第四题:先读一读各小数,再说说每种文具的价格各是几元几角.

(1)一起读题,指名说说本题的要求与第二题有什么不同。

(2)读一读文具的价格。

(3)学生独立完成,同桌交流。

(4)全班交流:

3、讨论:小数有什么特点?

看看这些小数,你觉得它有什么特点?

告诉:小数中间的点称为“小数点”,小数点的左边是整数部分,右边是小数部分。

4、“想想做做”第五题。

师:小数在我们生活、生产中处处可以用到,同学们要学会用数学的眼睛观察生活,用数学知识解决生活中的实际问题。

吴正宪小数的意义教学设计篇九

[教学内容]苏教版五年级上册第86页例1、“试一试”、“练一练”以及练习十五的相应练习。

[教学目标]1、使学生通过自主探索,理解并掌握小数乘小数的计算方法,能正确计算相应的式题。2、引导学生积极主动地参加教学活动,经历探索计算方法的过程,培养他们初步的推理能力以及抽象概括能力,并能用数学语言表达自己的想法并进行交流。

3、使学生进一步体会数学知识之间的内在联系,感受数学探究活动本身的乐趣,增强学好数学的信心。

[教学重点]理解小数乘小数的算理,掌握小数乘小数的计算方法。

[教学难点]理解把小数乘法转化成整数乘法后,得到的积回归小数乘法积的推理过程。

[教材简析]这部分内容主要是教学小数乘小数的计算,教材一共安排了两道例题和一个练习。例1呈现的是“小明”房间连同阳台的平面图。教材在引导学生根据长方形面积公式列出乘法算式后,要求先估算再计算。这里的估算既是为了让学生体会解决问题的不同方式,更是为了给接下来探索笔算方法提供一种支持----学生可以通过对笔算结果与估算结果的比较,判断笔算结果是否合理,从而确认相应计算方法的正确性。在让学生初步估算乘积以后,教材重点组织学生探索笔算方法。先告诉学生可以把算式的的两个小数都看成整数来计算,再结合直观图示讨论:按整数相乘后,怎样才能得到原来的积?启发学生理解:把两个因素看成整数,等于把原来的两个因素分别乘10,得到的积也就等于原来的积乘10再乘10,即乘100。由此,要得到原来的乘积,应该用整数相乘的积反过来除以100。

随后的“试一试”让学生继续利用利用例题的情境,求平面图中的阳台面积。教材通过直观的图示继续呈现了计算的思考过程,但把其中的关键步骤留给了学生填空,并在填空的基础上完成了计算,进一步加深对计算方法的理解。然后,引导学生比较例题和“试一试”的计算过程,发现两个因数中的小数位数与积的小数位数的关系,初步抽象出小数乘小数的计算方法。“练一练”第1题针对小数乘小数计算方法的关键环节,让学生根据因数中的小数位数直接在乘积中点上小数点。第2题让学生通过计算巩固刚刚学习的计算方法。

[学情分析]。

多媒体课件。

[教学过程]一、在情境中引发问题。

1、出示小明房间图:从图中你了解到哪些信息?你能提出什么数学问题?师:我们就先来解决第一个问题:房间的面积有多大?谁会列式?你为什么这样列式?2、揭示课题:

师:这里的计算结果与我们开始估计的结果可符合?说明同学们估计得准不准?

请两名学生板演,集体订正、注意纠正错误。3、完成练习十五第2题。

在书上改正,谁愿意上来展示,展台展示。四、在回顾与反思中提升经验,渗透转化的策略。

师:通过这节课的学习,你有什么收获?你觉得在计算小数乘小数的时候要注意些什么?

3.6×2.8=10.08(平方米)2.8×1.15=3.22(平方米)3.61.15×2.8×2.82889207223010.083.220答:房间的面积有10.08平方米。答:阳台的面积是3.22平方米。[作业布置]练习十五第1、3题。

吴正宪小数的意义教学设计篇十

1、了解小数的产生,理解和掌握小数的意义。

2、初步理解整数、小数与分数之间的内在联系,掌握相邻两个计数单位间的进率。

3、在合作与交流中的过程中,体验探究发现和迁移推理的学习方法,感受数学学习的乐趣。

1、测量讲台的长度。

我们学校的多功能教室更换了新的讲台和桌椅,你们能帮老师量一量新讲台的长度吗?

学生用米尺测量讲台的长度。

测量得不到整米的`结果。

2、揭示课题。

在进行测量和计算时,往往不能正好得到整数的结果,这时常常用小数来表示。今天这节课我们继续来认识小数。

1、一位小数。

(1)为了帮助大家理解小数,我们可以借助米尺。

(出示米尺图)。

(2)把一米长的尺子平均分成了多少份,每一份有多长?(1分米)。

(4)口答:3分米用分数表示是多少米?用小数表示是多少米?为什么?

(5)7分米是多少米?

(6)1/10可以写成0.1,3/10可以写成0.3,7/10可以写成0.7,像十分之几这样的分数我们都可以用零点几这样的小数来表示。

2、两位小数。

(1)如果把1米中的每一分米再平均分成10份,那么1米就平均分成了多少份?

(2)我们来看它的放大图。每一份是多少?(1厘米)。

1厘米是一米的几分之几?用分数和小数表示分别是多少米?

(3)3厘米呢?6厘米呢?

(4)13厘米是多少米?为什么?

(6)像1/100,3/100……,这些表示百分之几的分数我们可以用零点几几这样的小数来表示。

3、认识三位小数。

(2)我们来看它的放大图。这样的一份是多长?(1毫米)。

(3)1毫米是一米的千分之一。所以1毫米是1/1000米,也就是0.001米。

(4)想一想:6毫米和13毫米分别是多少米?为什么?

(5)35毫米呢?135毫米又该如何表示呢?

(6)表示千分之几这样的分数我们可以用零点几几几这样的小数来表示。

4、更多位小数。

(1)如果把一米平均分成10000份,这样的一份用小数表示是多少米?

(2)如果把1米平均分成100000份,这样的一份用小数表示是多少米?

(1)回顾前面的学习过程,什么样的分数可以用小数来表示呢?

生分组讨论,汇报讨论结果。

(2)分母是10、100、1000……的分数可以用小数表示。这就是小数的意义。

(3)0.1、0.3、0.7的小数点右面只有一个数字,像这样的小数就是一位小数。一位小数表示十分之几。

依次介绍两位小数、三位小数。

(1)0.3里面有几个1/10?0.03里面有几个1/100?

(3)每相邻两个计数单位间的进率是10。

三、巩固练习。

1、完成51页做一做。

2、完成55页第1、2题。

四、全课小结。

在今天的学习活动中你有什么收获?

吴正宪小数的意义教学设计篇十一

1、使学生理解小数的意义。

2、使学生认识数学知识源于实际生活,用于实际生活。

3、通过分析、对比、概括培养学生的思维能力。初步渗透对应思想和分类思想。

4、激发学生大胆质疑、问答,培养创新意识。

理解小数的意义

理解三位小数的意义

直尺、课件

课前谈话:同学们,你们逛过超市吗?大家在挑选商品的时候,一般看些什么?

2、看课件。

3、说说你记得都是什么?这些都是什么数?这些都是用小数表示的价钱,还能用别的方法表示吗?试一试。

4、和小组里的同学说一说自己是怎样想的?如果组里有什么解决不了的困难,一会儿告诉全班同学我们一起来研究。

5、汇报:(师选择板书)

6、刚才,我们一起研究了这么多小数,还把他们用分数表示出来了,请你们仔细观察一下,小声读读,你们有什么发现吗?(独立思考)有想法了吗?快跟组里同学说一说。

7、汇报:生发现小数与分数之间的关系

2、测量。以小组为单位:

(1)测量身边物体的长度。

(2)以米为单位用小数表示出来。

(3)把测量结果写在记录单上

(主要解决三位小数)

1、有关小数你还知道些什么?你是怎样知道的?

吴正宪小数的意义教学设计篇十二

小数的意义和产生,课本50—51页内容。

1、我能通过观察知道小数的产生。

3、我知道小数的计算单位及单位间的进率。

一、知识链接。

1/、谈话引入:

我们已经初步认识了小数,小数是怎样产生的?小数的意义是什么呢?这节课我们就来学习小数的产生和意义。

二、探究新知。

1、探究活动:

认真阅读教材第50、51页内容,结合“导学案”中的学习提示,先自主探究,再在小组内相互交流,初步理解小数的产生和意义。

温馨提示:

(1)能你测量课桌的长度和宽度吗?测量时发现了什么?

(2)、你知道米尺是把1米平均分成了多少份吗?它的每一份用分数怎样表示?

(3)、你能用小数表示分母是10的分数吗?

(4)、你能用小数表示分母是100的分数吗?

(5)、你能用小数表示分母是1000的分数吗?

(6)、什么是小数,小数的计数单位是什么。

(7)、每相邻两个计数单位之间的进率是多少。

(8)、小数的'计算单位和分数的计数单位有什么不同之处。

2、我会总结:

(1)分母是10、100、1000……的分数可以写成小数,像这样用来表示十分之几、百分之几、千分之几……的数叫做小数。

(2)、每相邻两个计数单位之间的进率是()。

3、解决问题:

(1)0.457,每个数位上的数各表示几个几分之一?

(2)一个小数由5个1、3个0.1、6个0.01组成,这个小数是()。

1、判断:

(1)0.40里面有4个0.01()(2)35克=0.35千克()。

3、括号里能填几?你是怎么知道的?

(1)、0.3里面有()个,0.09里面有()个;0.08里面有()个。

(3)、找朋友:(用线把上下两组数连起来)。

0.0450.130.00010.9。

这节课我们学习了什么?你知道了什么?你还有什么问题?

吴正宪小数的意义教学设计篇十三

1.结合具体情境,通过操作、观察、类比等活动理解小数的意义。

2.经历探索小数意义的过程,体会小数与生活的联系,培养归纳能力。

3.在学习小数意义过程中,培养探求知识的兴趣,提高独立探索和合作交流的能力。

一、创设情境,复习引入。

1.师:同学们,你们在日常生活中,都见过哪些种类的蛋呢?……看来大家见过的蛋还真不少。接下来,咱们一起走进《蛋的世界》,看看里面有多奇妙,好不好!这节课我们一起来探究小数的意义。(板书:小数的意义)。

生1:0.2表示把一正方形平均分成10份,取其中的2份,是十分之二也就是0.2。

师:说得很好,谁再来说一个?

生2:0.5表示十分之五,

生3:0.4表示十分之四。

生:能!

师:下面请同学们从这三个小数中,选择你喜欢的一个用画图的方式表示出来?好吗?

生:好!

师:哪位同学展示一下你画的小数?把你的想法和画法和同学们说一说?

生1:先画一条线段,平均分成10份,取其中的5份,是十分之五,也就是0.5。

师:老师想问问你,为什么取其中5份就是0.5?

生1:因为其中一份是0.1,5份就是0.5。

师:谁想再来展示一下?

生2:我先画一个长方形平均分成10份,取其中的2份,是十分之二,也就是0.2。

生:一位小数。

师:一位小数他们画法虽然不同,但是有共同点。谁来说说这两种画法的共同之处?

生:都是把一个物体平均分成10份,然后再取其中几份,来表示小数。

2.谈话:看来同学们前面的知识掌握的不错,课前,老师从几种动物的蛋的质量中也搜集了一些小数,请同学们看大屏幕。(课件出示情境图)。

二、结合情境,探究新知。

1.学习小数的读写。

(1)师:请同学们仔细观察情境图,你获得了那些数学信息?

(学生根据情境图说出信息)。

师:这个小数读作?第二个小数读作?

这位同学读得非常正确,谁想再来读一读?谁来说说读小数时应注意什么?

(读小数时,小数点前面部分和整数读法一样,小数点后面部分依次读出每一个数。)。

(写小数时,小数点前面部分和整数的写法一样,小数点后面部分依次写出每一个数。)。

(1)在正方形纸片上表示出0.25。

这组信息给我们提供了4个小数,像0.25、0.06这样的小数在图上怎样表示呢?老师为每位同学准备了一张画有正方形的纸,现在请同学们从这两个小数中选择一个小数在这个正方形中表示出来。

谁能到前面来说说你的想法和画法?

学生到前面交流。

师:你是把什么看作一个整体,平均分成()份,表示其中的()份,用分数表示是(),0.25里面有()个0.01。

老师想问问你,为什么取6份(或25份)就表示0.06(或0.25),一格(份)就是0.01,6份(或25份)就是0.06(或0.25)。

【本文地址:http://www.pourbars.com/zuowen/11692582.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map