函数的应用教案及反思(专业16篇)

格式:DOC 上传日期:2023-11-14 06:05:11
函数的应用教案及反思(专业16篇)
时间:2023-11-14 06:05:11     小编:灵魂曲

教案是教师备课的重要组成部分,它包含了教学的目标、内容、方法和评价等要素。教案的语言要简洁明了,注意用词准确,让学生易于理解和跟随。教案的编写不是一成不变的,你可以根据实际情况进行适当的调整和修改。

函数的应用教案及反思篇一

用竖式计算三位数减三位数的退位减法,要注意相同数位对齐,从个位算起,哪一位不够减,要向前一位退1,退位点点清楚,哪一位头上有一点要减1后再计算。(要注意:认真书写,仔细计算)。

2.例2。

哪一组想说说你们的方法?找学生到黑板前来,边讲边板书。把讲解权交给学生。(若一名学生没讲清楚,可再找两名学生说明计算方法,或有其它学生发表意见。)。

改了数字之后我们所用的三条法则还用遵守吗?任何减法的笔算都要按照法则来计算。中间有零也可以借。

3.独立完成25页第1、4题。

4.判断对错:

函数的应用教案及反思篇二

使学生对反比例函数和反比例函数的图象意义加深理解。

一、新授:

1、实例1:(1)用含s的代数式表示p,p是s的反比例函数吗?为什么?

答:p=600,p是s的反比例函数。

(2)、当木板面积为0.2m2时,压强是多少?

答:p=3000pa。

(3)、如果要求压强不超过6000pa,木板的面积至少要多少?

答:2。

(4)、在直角坐标系中,作出相应的函数图象。

(5)、请利用图象(2)和(3)作出直观解释,并与同伴进行交流。

二、做一做。

1、(1)蓄电池的电压为定值,使用此电源时,电流i(a)与电阻r()之间的函数关系如图5-8所示。

(2)蓄电池的电压是多少?你以写出这一函数的.表达式吗?

电压u=36v,i=60k。

r()345678910。

i(a)。

3、如图5-9,正比例函数y=k1x的图象与反比例函数y=60k的图象相交于a、b两点,其中点a的坐标为(3,23)。

(1)分别写出这两个函数的表达式;。

(2)你能求出点b的坐标吗?你是怎样求的?与同伴进行交流;。

随堂练习:

p145~1461、2、3、4、5。

作业:p146习题5.41、2。

函数的应用教案及反思篇三

1.引导学生从情境图中的数据,发现数学问题。

2.采用合作学习的方式,掌握三位数减三位数被减数中间有0的连续退位减法。

3.使学生掌握被减数中间和末尾都是0的连续退位的减法的计算方法。

4.提倡算法的多样性,激发学生对数学学习的兴趣。

5.培养学生养成认真计算、检查的良好的学习习惯。

重点、难点:

1.减法的计算法则,连续退位减法。

2.被减数中间和末尾都是0的连续退位减法。

教学过程:

一、引入新课。

1.复习。

口算。(用口算卡片出示或者课件演示)。

80-7=35-8=63-4=26-7=。

42-5=43-6=32-9=65-9=。

竖式计算。(学生板演)。

54-21=79-37=65-24=。

计算后提问:笔算减法要注意什么?

今天我们就继续来学习减法,相信大家会有更大的收获。

二、新课学习。

(一)三位数减三位数退位减法。

1.例1。

放假同学们都喜欢去旅游,在我国云南有三个美丽的地方,分别是丽江、大理和昆明。请同学们看课本,这就是我们的行车路线,我们做飞机到昆明,然后从昆明出发。

函数的应用教案及反思篇四

本节课的学习是建立在学生已初步掌握和理解整数的四则混合运算的基础上的教学,重点在于让学生理解一个数连续减去两个数,可以先把两个减数相加,再从被减数里减去的计算方法,以使学生较为灵活地对某些计算采用变式,使计算达到简便的效果,为学生合理计算提供理论依据,为进一步学习小数的四则混合运算打下基础,教材引导学生利用身边的数学工具——计算器进行主动探究。在学生独立思考、合作交流的基础上,通过探究帮助学生把多种分散、局部性的认识,进行聚类、清晰化的处理,形成相对完整的、丰富的概括,提炼和抽象出“减法运算性质”的结论表述,增强学生对减法运算性质的特点把握,增强学生对运用减法运算性质进行巧算所需前提条件的敏感度,并帮助学生初步形成系统而科学的研究的意识和能力。

而学生在本课学习之前,部分学生可能对减法运算性质有了一些感性认识,甚至有个别学生具有了根据减法中数的特点改变运算顺序进行巧算的`直觉和敏感。学生对于四则混合运算中合理计算的运用已有一定的基础,而且在过去学习简便运算时已经对该运算性质有所运用,只不过没有系统的学习及不理解方法的原理,只不过在减法中添括号和去括号引起的式子的变化,学生理解起来有一定的难度,所以常常出错,为解决这一问题,所以在实际的教学中可以采用归纳的方法,让学生在实际的操作中理解和掌握这一知识点,让学生充分理解减法运算性质,从而使学生能在原有的基础上得到发展。

这节课中以例题为重点通过列式计算比较找到相等关系,并通过读算式,说算式的意义使学生对新知识有了一定的了解,在学生对231—(19+21)=231—19—21有了感性的认识的基础上,以小组为单位,探讨列式计算方法,并找到其中的规律。学生的认识具有一定的偶然性、不自觉性,为了帮助学生从偶然的.生活发现中提炼出必然的数学规律,所以接着引导学生利用身边的数学工具——计算器进行主动探究,这一回学生很快就发现了减法的运算性质。在学生独立思考、合作交流的基础上,通过探究帮助学生把多种分散、局部性的认识,进行聚类、清晰化的处理,形成相对完整的、丰富的概括,提炼和抽象出“减法运算性质”的结论表述,增强学生对减法运算性质的特点把握,增强学生对运用减法运算性质进行巧算所需前提条件的敏感度,并帮助学生初步形成系统而科学的研究的意识和能力。

接着在练习环节还鼓励学生一题多解:如864—36—63=864—(36+64)还可以=864—64—36由此激发学生创造欲望,提出从一个数中减去两个数的和,可以从这个数里依次减去这两个数,也可以先减去第二个数再减去第一个数。我对这个学生的想法充分肯定,希望全班同学向他学习,激活学生的思维。

数学可以帮助人们更好的探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择与判断,同时为人们交流信息提供了一种有效,简捷的手段。培养学生的创新意识和实践能力落实到每一节课中,在不断的反思与学习中提高自己的教学水平。

函数的应用教案及反思篇五

生说:

2、能凑整。从数字上看出来的。

两个数相减得到一个整百数,减起来好算一些了。

生小结数字特点:

能凑整十、整百或整千;

尾数相同,减出整十、整百数。

(1)先计算12+8。

*(2)先计算63+37。

(5)先计算15+5。

生得出的结论:

能够直接进简算的就不必再使用减法的性质了。

生思考、表达:

购物时,在同一地点购物一般用从整体里减掉几个部分之和的方法;在不同的地点购物一般用到连减的方法。

生购物:

454-(26+174)=。

454-(154+26+174)=。

通过对问题的解决引出两步计算的算式为研究减法性质做准备。

通过解释算式的意思使学生明确算理。

通过观察发现每两个算式间的相等关系。

合作、交流中发现算式中隐藏的相同与不同之处,并能通过相同与不同建立算式间的联系。

培养学生倾听的能力与接受他人意见的好的学习品质。

增加感性的认识,加深对性质的认识与理解。

再次加深认识。

指导学生在观察、发现中抽象、概括出一定的规律,培养学生的抽象、概括的能力。

鼓励学生要有意识地锻炼自己的语言表达能力。

函数的应用教案及反思篇六

(1)想想:运用学过的知识,你能用什么方法计算这道题呢?分小组合作学习,把你的想法同小组的同学说说。

(2)班内汇报交流。

方法1:185可以分成100和85,500-100=400,400-85=315。

方法2:185+15=200,500-200=300,300+15=315。

方法3:500-200=300,300+15=315。

方法4:我们还可以用竖式计算。

刚才同学们积极动脑筋,想出了这么多种计算方法,真了不起。下面我们一起来看看这道题怎样用竖式计算。

(3)学习竖式计算,请一学生说计算过程,老师板书。

500。

-185。

315。

(4)巩固练习:400-264=。

(5)观察思考:在计算中,被减数中某一位是0退位后,你发现了什么?(0退位后,计算时要用9减)。

注意:退位减法0上有点(退位)用9减。

三、本课总结。

这节课我们再次学习了减法,你知道了什么?用竖式计算三位数减三位数的退位减法,要注意相同数位对齐,从个位算起,哪一位不够减,要向前一位退1,退位点点清楚,哪一位头上有一点要减1后再计算。

函数的应用教案及反思篇七

这节课,我对教材进行了探究性重组,同时放手让学生在探究活动中去经历、体验、内化知识的做法是成功的。通过充分的过程探究,学生容易得出也是最早得出了图象的性质,借助直观图象的性质而得到一次函数的性质。花费了一番周折,说明去掉这个中介,直接让学生从单调性来接受一次函数性质是困难的。要想让学生真正理解和掌握一次函数的性质就必须放手让学生进行探究,让学生在探究中获得感性认识,同时只有放手让学生自我探究,潜力与智慧才会充分表现,学生也才会表现真实的思维和真实的自我。

在新课程理念的指导下,我们的一切教学都要围绕学生的成长与发展做文章,真正让学生理解、掌握真实的知识和真正的知识。要实现此目的:首先,要设计适合学生探究的素材。教材对一次函数的性质是从增减来描述的,我们认为这种对性质的表述是教条化的,对这种学术、文本状态的知识,学生不容易接受。当然教材强调所呈现内容的逻辑性、严密性与科学性是合理的。但是能让学生理解和接受的知识才是最好的。如果牵强的引出来,不一定是好事。其次,探究教学的过程就是实现学术形态的知识转化为教育形态知识的过程。只有这样探究才是有价值的,真知才会有生长性。要表现过程的真实与自然,从建构主义的观点出发,就是要尊重学生各自的经验与思维方式、习惯。结论是一致的,但过程可以是多元的,教师要善于恰倒好处地优化提炼学生的结论。

最后,教师在学生探究真知之旅上应是一个促进者、协作者、组织者。要做善于点燃学生探究欲望和智慧火花的人,要善于让学生说教师要说的话,做教师想做的事,这就是一个成功的促进者。数学教学的过程是师生共同活动、共同成长与发展的过程。真正的知识不全是由教材和教师讲授的途径获取的,其实学生也是课程资源的开发者,如本课例中的“走向”问题,“同向变化”等,这为函数性质的得出做了很好的铺垫。要彻底抛弃“唯书论”“唯师论”,与学生一起去探究协作,寻觅适合学生自己的真知才是最有效的教学。要开展成功的探究,教师要科学设置问题情景或问题素材,使探究的问题具有层次性和探究性,适时、适势、适度地用教学机智调控课堂。在教学设计中,要预设多种意外和可能,这样探究真知的过程虽然会艰辛但展开顺利,这才是一个成功的组织者。

但是,本节课也难免有许多不足之处,我本人认为:我关注学生还是不够,尤其对学生的反馈不能作到有效的和准确的指导和引导;讲的还是有点多,老不敢放手让学生自己去经历独学、对学和小组学习的过程,给学生思考和活动的时间和机会还是较少有的学生看似听课,其实思维根本就没有参与进来,从而影响了课堂效益的最大化。

我会继续努力,不断改进,是自己的课堂更加精彩!

函数的应用教案及反思篇八

教学内容:《简便运算(一)》是人教版义务教育课程标准实验教科书四年级数学下册第39页的例1以及“做一做”。

教学目标:

1、通过观察、猜想、验证、归纳,让学生经历探究发现减法的特殊规律并选择运用进行简算的过程。

2、让学生从解决生活实际问题中体会到计算方法的多样化。

3、使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。教学重点:理解一个数连续减去两个数,可以写成这个数减去后两个数的和的道理。

教学难点:灵活运用减法的性质进行简便运算。

教学过程:

一、激趣生疑。

1、竞赛。

出示两组题,分组计算,比赛看哪组同学即对又快?(幻灯片出示)第一组第二组。

72-6-472-(6+4)。

85-8-285-(8+2)。

2、发现:让学生通过观察、比较发现了什么?(学生说说自己的发现)。

3、猜想:观察三个等式,激励学生大胆猜测:这里面有没有什么规律呢?(学生发表自己的说法)。

4、师板书:从一个数里连续减去两个数可以写成这个数减去后两个数的和。

5、师提问:是不是从一个数里连续减去两个数都可以写成这个数减去后两个数的和呢?(在猜想后打上?号)。

6、举例验证。

7、师小结:大家善于观察,善于动脑,这是一种很好的学习习惯,刚才大家通过观察发现了规律,利用这些规律使计算简便。(板书:简便)。

二、自主探索,探究新知。

(创设情景引出例题)。

师:“同学们喜欢旅游吗?(喜欢)如果让你自己去旅行,你能行吗?不要着急,李叔叔给大家介绍了一个旅行法宝——《自助旅行》指南。这本书可以告诉我们旅行时应做的准备和注意事项。”

1.出示情境图。

(数学信息:李叔叔昨天看了66页,今天又看了34页。这本书一共有234页。)。

师:根据这些数学信息,你能提出哪些数学问题?

2.尝试各种算法。

师:“还剩多少页?”这个问题,你能解决吗?(能)。

师:自己先列式算算看,计算好后把你的思路跟小组内的同学交流一下,看谁的算法最多。

3.全班汇报交流。

师:你们都是怎么计算的?把你的思路跟大家分享一下。

指名上黑板板演算法。

函数的应用教案及反思篇九

昨天听了李婷婷老师的一节问题发现生成课,老师准备充分,学生积极,交流讨论应用得当。课后蔡校长又对这堂课及时进行了点评和引领,使我对问题发现课,问题生成课有了新的认识,同时结合自己上课的情况进行了自我反思,现总结如下:

1.口号:李老师的学生设计的口号知识点概括的非常全面而且读起来朗朗上口,这是我值得学习的地方。回想自己的学生设计的口号,要么是知识点的罗列,要么是空洞的大话,每次设计都不如人意。在以后的教学中要对学生口号的设计重视起来,口号是学生预习的一种体现,也可以振奋学生的精神。

2.多媒体的使用:一直以来我有一种错误的认识,觉得在数学课上能用多媒体的地方太少了,今天看来,多媒体确实是省时省力的好帮手。也可以让学生时刻注意各项要求。

3.小组交流:李老师的小组交流有三种形式,2人小组交流,4人小组交流,8人小组交流,这三种交流方式要求各不相同,解决的任务也各不相同,一次比一次的交流的深入,一次比一次有提高,这样交流无疑大大的提高了效率。回想自己在上课时的交流,每次交流完后成果总是不尽如人意,提不出问题,或者提的问题不好。我认为这种交流方式是本节课的一大亮点,也是我非常值得学习的地方。另外我认为在交流中要使每个人都有任务,每个人都是自己任务的责任人,尤其是在交流中去抓好小组长和学科长的作用,可使交流的有秩序的进行。

4.课堂记录:李老师班里的同学的课堂记录本记录的满满当当,工工整整,有组长学科长的批阅,也有老师的批阅,学生能对课上的知识点及时整理,或者是平时做错的一些题目,或者是重要的题型,这样学生课下在复习时才能有抓手,成绩当然会提高。这也是我学习的榜样。

5.评价:在一堂课将结束时,评价是非常重要的,既可对学生起到鼓励的作用,也可以起到激励的作用,蔡校长说“评价的过程就是提高的过程”,要让学生人人都会评价,人人都被评价,在评价别人的过程中也就提高了自己。

6.读:在平时学生的预习中,学生读的遍数肯定不够,主要是监督检查的力度还不够,老师督查的角色没有扮演好,所以在上课时总是嫌学生提不出好的问题,解决不了几个问题,其实学生的可塑性是很强的,关键是看老师怎样去管理,老师给学生设置一个怎样的平台。学生的预习做的好,在上课的时候可以做到事半功倍,在下一阶段的教学中,我要重视起学生的预习来。

以上是我对听李老师课的一些认识和看法,也是我今后努力的方向。

函数的应用教案及反思篇十

(二)解析:本节课要学的内容指的是会判定函数在某个区间上的单调性、会确定函数的单调区间、能证明函数的单调性,其关键是利用形式化的'定义处理有关的单调性问题,理解它关键就是要学会转换式子 。学生已经掌握了函数单调性的定义、代数式的变换、函数的概念等知识,本节课的内容就是在此基础上的应用。教学的重点是应用定义证明函数在某个区间上的单调性,解决重点的关键是严格按过程进行证明。

(一)教学目标:

掌握用定义证明函数单调性的步骤,会求函数的单调区间,提高应用知识解决问题的能力。

(二)解析:

会证明就是指会利用三步曲证明函数的单调性;会求函数的单调区间就是指会利用函数的图象写出单调增区间或减区间;应用知识解决问题就是指能利用函数单调性的意义去求参变量的取值情况或转化成熟悉的问题。

在本节课的教学中,学生可能遇到的问题是如何才能准确确定 的符号,产生这一问题的原因是学生对代数式的恒等变换不熟练。要解决这一问题,就是要根据学生的实际情况进行知识补习,特别是因式分解、二次根式中的分母有理化的补习。

在本节课()的教学中,准备使用(),因为使用(),有利于()。

函数的应用教案及反思篇十一

教学目标:使学生对反比例函数和反比例函数的图象意义加深理解。

教学程序:

一、新授:

1、实例1:(1)用含s的代数式表示p,p是s的反比例函数吗?为什么?

答:p=600,p是s的反比例函数。

(2)、当木板面积为0.2m2时,压强是多少?

答:p=3000pa。

(3)、如果要求压强不超过6000pa,木板的面积至少要多少?

答:2。

(4)、在直角坐标系中,作出相应的函数图象。

(5)、请利用图象(2)和(3)作出直观解释,并与同伴进行交流。

二、做一做。

1、(1)蓄电池的电压为定值,使用此电源时,电流i(a)与电阻r之间的函数关系如图5-8所示。

(2)蓄电池的电压是多少?你以写出这一函数的表达式吗?

电压u=36v,i=60k。

r()345678910。

i(a)。

3、如图5-9,正比例函数y=k1x的图象与反比例函数y=60k的图象相交于a、b两点,其中点a的坐标为(3,23)。

(1)分别写出这两个函数的表达式;。

(2)你能求出点b的坐标吗?你是怎样求的?与同伴进行交流;。

随堂练习:

p145~1461、2、3、4、5。

作业:p146习题5.41、2。

函数的应用教案及反思篇十二

具体分析本节课,首先简单的用几分钟时间回顾一下反比例函数的基本理论,“学习理论是为了服务于实践”的一句话,打开了本节课的课题,过渡自然。本节课用函数的观点处理实际问题,主要围绕着路程、工程这样的实际问题,通过在速度一定的条件下路程与时间的关系,认识到反比例函数与实际问题的关系,在讲解这几个例子的时候,创设了学生熟悉的情境,简单的一句话引出问题,这样更能引起学生的兴趣,使学生更积极地参与到教学中来,因为情境熟悉,也能快速地与学生产生共鸣。

创设了轻松和谐的教学环境与氛围,师生互动较好,这样能使学生主动开动思维,利用已有的知识顺利的解决这几个问题。在讲解例题的同时,试着让学生利用图象解决问题,培养学生数形结合的思想,并提示学生注意自变量在实际情境中的取值范围问题。而后,给学生几分钟的思考时间,让他们通过平时对生活的细心观察,生活中有关反比例函数的有价值的问题,说出来与全班共同分享。这一环节的设置,不仅体现新教改的合作交流的思想,更主要的培养他们与人协作的能力。更好的发展了学生的主体性,让他们也做了一回小老师,展示他们的个性,这样有益于他们健康的人格的成长。最后在总结中让学生体会到利用反比例函数解决实际问题,关键在于建立数学函数模型,并布置了作业。从总体看整个教学环节也比较完整。

函数的应用教案及反思篇十三

新课程标准的实施和新教材的使用,更强调教师进行反思性教学,教师可以通过日常的教学反思转变观念,改进教学策略。所谓反思性教学,就是教学主体(教师)“借助行动研究,不断探究与解决自身和教学目的以及教学工具等方面问题,将‘学会教学’与‘学会学习’统一起来,努力提升教学实践合理性,使自己成为学者型教师的过程”(熊川武《论反思性教学》)。教师在实践中感悟教学合理性,为新的教学实践提供计划和行动的依据,是反思性教学的主要特征。那么,语文教师如何进行反思性教学?笔者认为,至少可以从以下几个方面作出努力。一、进行系统的理论学习,增强反思能力教育(-上网第一站35d1教育网)教学理论来源于教学实践,同时又能指导教学实践。教师反思的对象是自己的教学实践,而反思的参照系就是先进的教育(-上网第一站35d1教育网)理论。没有扎实的理论知识来指导自己的教学行为,又怎能进行反思性教学呢?我曾经参与一位青年教师的小学语文教学观摩课设计,这是一节小学一年级的`识字教学课。当时,我建议这位教师设计了一系列的生活场景,如通过认读教师或学生自己的名字、商标名称等,创设识字的生活场景,将这节识字教学课融入到生活场景中,从而取得了意想不到的教学效果,观摩课获得专家学者的好评。我这样考虑是受益于教育(-上网第一站35d1教育网)家陶行知先生“教育(-上网第一站35d1教育网)就是生活”的教育(-上网第一站35d1教育网)理论。当然,除了进行系统的教育(-上网第一站35d1教育网)理论学习外,还要加强专业知识的学习,丰富教师的语文素养,这也是一个反思型教师必须要做到的。二、反思教学行为,加强教学实践过程中的反思&n。

函数的应用教案及反思篇十四

具体分析本节课,首先简单的用几分钟时间回顾一下反比例函数的基本理论,“学习理论是为了服务于实践”的一句话,打开了本节课的课题,过渡自然。本节课用函数的观点处理实际问题,主要围绕着路程、工程这样的实际问题,通过在速度一定的条件下路程与时间的关系,认识到反比例函数与实际问题的关系,在讲解这几个例子的时候,创设了学生熟悉的情境,简单的一句话引出问题,这样更能引起学生的兴趣,使学生更积极地参与到教学中来,因为情境熟悉,也能快速地与学生产生共鸣。

创设了轻松和谐的教学环境与氛围,师生互动较好,这样能使学生主动开动思维,利用已有的知识顺利的解决这几个问题。在讲解例题的同时,试着让学生利用图象解决问题,培养学生数形结合的思想,并提示学生注意自变量在实际情境中的取值范围问题。而后,给学生几分钟的思考时间,让他们通过平时对生活的细心观察,生活中有关反比例函数的有价值的问题,说出来与全班共同分享。这一环节的设置,不仅体现新教改的合作交流的思想,更主要的培养他们与人协作的能力。更好的发展了学生的主体性,让他们也做了一回小老师,展示他们的个性,这样有益于他们健康的人格的成长。最后在总结中让学生体会到利用反比例函数解决实际问题,关键在于建立数学函数模型,并布置了作业。从总体看整个教学环节也比较完整。

函数的应用教案及反思篇十五

2.渗透数形结合思想,提高学生用函数观点解决问题的能力。

二、重点、难点。

2.难点:分析实际问题中的数量关系,正确写出函数解析式。

3.难点的突破方法:

用函数观点解实际问题,一要搞清题目中的.基本数量关系,将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;二是要分清自变量和函数,以便写出正确的函数关系式,并注意自变量的取值范围;三要熟练掌握反比例函数的意义、图象和性质,特别是图象,要做到数形结合,这样有利于分析和解决问题。教学中要让学生领会这一解决实际问题的基本思路。

三、例题的意图分析。

教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。

教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。

函数的应用教案及反思篇十六

知识网络。

学习要求。

1.了解解实际应用题的一般步骤;。

2.初步学会根据已知条件建立函数关系式的方法;。

3.渗透建模思想,初步具有建模的'能力.

自学评价。

1.数学模型就是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题,得出关于实际问题的数学描述.

2.数学建模就是把实际问题加以抽象概括。

建立相应的数学模型的过程,是数学地解决问题的关键.

3.实际应用问题建立函数关系式后一般都要考察定义域.

【精典范例】。

例1.写出等腰三角形顶角(单位:度)与底角的函数关系.

例2.某计算机集团公司生产某种型号计算机的固定成本为万元,生产每台计算机的可变成本为元,每台计算机的售价为元.分别写出总成本(万元)、单位成本(万元)、销售收入(万元)以及利润(万元)关于总产量(台)的函数关系式.

分析:销售利润销售收入成本,其中成本(固定成本可变成本).

【解】总成本与总产量的关系为。

单位成本与总产量的关系为。

销售收入与总产量的关系为。

利润与总产量的关系为。

【本文地址:http://www.pourbars.com/zuowen/11813951.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map