大数据读后感(通用22篇)

格式:DOC 上传日期:2023-11-14 09:02:30
大数据读后感(通用22篇)
时间:2023-11-14 09:02:30 小编:JQ文豪

2.阅读一本好书后,产生的读后感常常会让人思考人生的意义和价值。如何写好一篇读后感?要注意论述的连贯性和层次感,结构清晰,重点突出。通过阅读这些读后感范文,你可以发现不同读者对同一本书的理解和感受是多样而丰富的。

大数据读后感篇一

读完《大数据时代》,我才意识到这并不是一本枯燥无味的书籍。作者运用案例和讲故事的方式,把美国数据开放、收集、使用背后的立法故事、公民故事、技术故事、商业故事娓娓道来,引人入胜,令我大开眼界。

我在想,大数据概念对于教育来说会产生什么样的实用价值呢?一直以来,中国教育在研究教育的数字化,比如数字化校园,这个思路就是把我们教育的内容进行数字化,其结果指向的就是电子教材的研发或者是教学过程的数字化。美其名曰,这是教育技术的重要内涵。在教学过程中,学生的行为表现都可以被数据化,而这项研究不是任何一个专业可以深入下去的,它的专业性太强,所以我才会想到,所谓教育技术与其研究教育的数字化,不如研究教育的数据化来得实在,来的有意义。长期以来,我们并不了解教育对一个人的影响具体会如何表现,我们有的只是一个轮廓,我们也并不确定一个教师的行为对学生具体产生了哪些影响。所以,人们对教育一直有一个深深的质疑,它是不是科学的?大数据概念至少提出了关注“是什么”比“为什么”要有实际意义得多。而我们的教育恰好需要把注意力从“为什么”转移到“是什么”上面来,只有如此,才能把教育从为什么发展成“可能成为什么”上来,这会是一次思想上的革命。而对于现在地位岌岌可危的教育技术来说,把研究的重点从数字化转移到数据化上面,这才是它的出路。

如何将数据融入教学,教育者首先通过标准化全科教学处方,实现了教师授课模板和教学内容的标准化,保证每个教学过程和内容是可控的,然后结合每天的教学内容,处理好面对的数据,处理好数据,自然也就处理好了课堂的反馈,最终形成了既注重教学体验又以教学结果为导向的教学体系。

与此同时,不仅要注重课上的学生资源,在课后还要对这些资源进行跟踪处理。这与过去的教育教学显然是不同的,面对大数据时代的到来,教学有所改变是必然的。所以,无论环境怎么变换,数据如何复杂,我们都不能不去改变自己的教学去迎合将来的这个大数据时代。

大数据读后感篇二

如今说起新媒体和互联网,必提大数据,似乎不这样说就out了。而且人云亦云的居多,不少谈论者甚至还没有认真读过这方面的经典名著——舍恩佰格的《大数据时代》。维克托·迈尔舍恩伯格何许人也?他现任牛津大学网络学院互联网研究所治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人。他的咨询客户包括微软、惠普和ibm等全球企业,他是欧盟互联网官方政策背后真正的制定者和参与者,他还先后担任多国政府高层的智囊。这位被誉为:大数据时代的预言家“的牛津教授真牛!那么,这位大师说的都是金科玉律吗?并不一定,读大师的作品一定要做些功课才好读懂,才能能与之进行一场思想上的对话。

舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。

在第一部分”大数据时代的思维变革“中,舍恩伯格旗帜鲜明的亮出他的三个观点:

一、更多:不是随机样本,而是全体数据。

二、更杂:不是精确性,而是混杂性。

三、更好:不是因果关系,而是相关关系。对于第一个观点,我不敢苟同。

我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的方法和范围要加以拓展。

我同意舍恩伯格的第二观点,我认为这是对他第一个观点很好的补充,这也是对精准传播和精准营销的一种反思。”大数据的简单算法比小数据的复杂算法更有效。“更具有宏观视野和东方哲学思维。对于舍恩伯格的第三个观点,我也不能完全赞同。”不是因果关系,而是相关关系。“不需要知道”为什么“,只需要知道”是什么“。传播即数据,数据即关系。在小数据时代人们只关心因果关系,对相关关系认识不足,大数据时代相关关系举足轻重,如何强调都不为过,但不应该完全排斥它。大数据从何而来?为何而用?如果我们完全忽略因果关系,不知道大数据产生的前因后果,也就消解了大数据的人文价值。如今不少学者为了阐述和传播其观点往往语出惊人,对旧有观念进行彻底的否定。

世间万物的复杂性多样化并非非此即彼那么简单,舍恩伯格也是这种二元对立的幼稚思维吗?其实不然,读者在阅读时一定要看清楚他是在什么语境下说的,不要因囫囵吞枣的浅读而陷入断章取义的误读。比如说舍恩伯格在提出”不是因果关系,而是相关关系。“这一论断时,他在书中还说道:”在大多数情况下,一旦我们完成了对大数据的相关关系分析,而又不再满足于仅仅知道‘是什么’时,我们就会继续向更深层次研究的因果关系,找出背后的‘为什么’。“[i]由此可见,他说的全体数据和相关关系都在特定语境下的,是在数据挖掘中的选项。

大数据研究的一大驱动力就是商用,舍恩伯格在第二部分里讨论了大数据时代的商业变革。舍恩伯格认为数据化就是一切皆可”量化“,大数据的定量分析有力地回答”是什么“这一问题,但仍然无法完全回答”为什么“。因此,我认为并不能排除定性分析和质化研究。数据创新可以创造价值,这是毫无疑问的。舍恩伯格在讨论大数据的角色定位时仍把它置于数据应用的商业系统中,而没有把它置于整个社会系统里,但他在第二部分大数据时代的管理变革中讨论了这个问题。

在风险社会中信息安全问题日趋凸显。如何摆脱大数据的困境?舍恩伯格在最后一节”掌控“中试图回答,但基本上属于老生常谈。我想,或许凯文·凯利的《失控》可以帮助我们解答这个问题?至少可以提供更多的思考维度。正如舍恩伯格在结语中所道:”大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考的答案,帮助是暂时的,而更好的方法和答案还在不久的未来。“谢谢舍恩伯格!让大数据讨论从自然科学回到人文社科。由此推断,《大数据时代》不是最终答案,也不是标准答案,只是参考的答案。

此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。

大数据读后感篇三

当我们说人类是通过因果关系了解世界时,我们指的是我们再理解和解释世界各种现象时使用的两种基本方法:一种是通过快速、虚幻的因果关系,还有一种就是通过缓慢、有条不紊的因果关系。大数据会改变这两种基本方法在我们认识世界时所扮演的角色。

大数据的精髓在于我们分析信息时的三个转变,这些转变讲改变我们理解和组建社会的方法。

第一个转变就是,在大数据时代,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机采样(样本=总体)。

第二个转变就是,研究数据如此之多,以至于我们不再热衷于追求精确度。

第三个转变因前两个转变而促成,即我们不再热衷于寻找因果关系,而应该寻找事物之间的相关关系。大数据告诉我们“是什么”而不是“为什么”。在大数据时代,我们不必知道现象背后的原因,我们只要让数据自己发声。

正如大家所知道的那样,人类的大脑具备这样的功能,它会把新输入的刺激或信息与“过去的经验或积累的部分知识”相对照,然后进行调整并接受下来。如果眼前新的现实与大脑中储存的固有信息无法协调,便会在无意识中拒绝接受新的现实(当作没有看见);或者通过自己一知半解的知识任意推测,使自己认识到的情况偏离实际(产生错觉)。这是人的一种本能,目的在于使自己保持冷静。

所以作者称之为revolution。

公平正义的基础是人只有做了某事才需要对它负责,毕竟,想做而未做不是犯罪,社会关系于个人责任的基本信条是,人为其选择的行为承担责任。如果大数据分析完全准确,那么我们的未来会被精准的预测,因此在未来,我们不仅会失去选择的权利,而且会按照预测去行动。如果精准的预测成为现实的话,我们也就失去了自由意志,失去了自由选择的权利。既然我们别无选择,那么我们也就不需要承担责任。这不是很讽刺吗。

扯到这里,顺便扯一下,书中另一段关于自由意志的描述。

在哲学界,关于因果关系是否存在的争论已经持续了几个世纪。毕竟,如果凡事皆有因果的话,那么我们就没有决定任何事的自由了。如果说我们做的每一个决定或者每一个想法都是其他事情的结果。而这个结果又是由其他原因导致的。以此循环往复,那么就不存在人的自由意志这一说了。----所有的生命轨迹都只是受因果关系的控制了。因此,对于因果关系在世间所扮演的角色,哲学家们争论不休,有时他们认为,这是与自由意志相对立。

书中举了个例子,举了部电影《少数派报告》,当我看到这里的时候,“哎哟,我居然看过这部电影,想想心里还是有点小激动”,有兴趣的可以去看下,大概就是讲警察通过预测来提前抓捕犯人,不过不是通过大数据,是通过超人类的方式。当你什么举动都可以被预测,相当于你完全暴露在太阳光下,换成你,你害怕不。

最后,附上两段结语,一段是书中的一段话,另一段是我自己瞎编的。

大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的未来。

大数据终将会影响到我们,也像其他技术一样会是一把双刃剑,用得好,动心,滥用,害怕。如同核技术一样,用的话,造福地球,滥用,给个金刚石地球你,照样爆。我相信,未来的大数据的发展会如作者所说的,是一场生活、工作与思维的革命。

无论如何,大家看到这四个是不是有种,不管我上面扯得有没有道理,通不通顺,下面的话,会很有道理的样子的错觉(抄袭于《栋笃笑》)ok,无论如何,日子还是得照过。施主,我看你骨骼惊奇,是个练武奇才,最后送上《九阳神功》心法,以后维护世界和平的重任就交给你了。

他强由他强,清风抚山冈。

他横由他横,明月照大江。

他自狠来他自恶,我自一口真气足。

大数据读后感篇四

悦读愉悦身心,悦读陶冶情操,悦读改变生活。

悦读,翻开我们手中的书,书是桥梁,让人思接千里;书是翅膀,让人心游万仞。摩挲书页,捧卷而读,聆听文化的钟鸣,啜饮文化的甘露,我们每个人都能遇见一个不一样的自己。

本书《大数据时代》出自维克托·迈尔-舍恩伯格,是最早洞见大数据时代的发展趋势的数据科学家之一,也是最受人尊敬的权威发言人之一。舍恩伯格教授在《大数据时代》中提出:“大数据是指不用随机分析法这样的捷径,而采用所有数据的方法。”阐述大数据是一个比较的概念,它是在人类过去运用小数据库随机抽样获得分析结果比较而来,它的关键是在“大”,数据存储量越大,价值越显著。大数据的核心作用在于“预测”,引申出“规划”与“解决方案”,也就是我们说的“算法”。书中展示了谷歌、微软、亚马逊、ibm、苹果、facebook、twitter、visa等大数据先锋们最具价值的应用案例。

在现今的社会,大数据的应用越来越彰显他的优势,它占领的领域也越来越大,电子商务、o2o、物流配送等,各种利用大数据进行发展的领域正在协助企业不断地发展新业务,创新运营模式。有了大数据这个概念,对于消费者行为的判断,产品销售量的预测,精确的营销范围以及存货的补给已经得到全面的改善与优化。就我个人体会。大数据产生最直观的价值:一是时间,二是金钱。要知道“时间就是金钱,效率就是生命。”

采样数据向全部数据转变;精确制导向方向引领转变;因果关系向相关关系转变。

1.不再局限随机样本,而是全体数据:在大数据时代,我们有更多的数据可以分析,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机采样,这也是通过大数据打通的传统壁垒。

2.不再局限精确性数据,而是混杂性数据:以前需要分析的数据很少,所以我们必须尽可能精确地量化我们的记录,随着数据的积累,数据库的完善,我们不再需要对一个现象刨根问底,只要掌握了大体的发展方向,适当忽略微观层面上的精确度,会让我们在宏观层面拥有更好的洞察力。

3.不再局限因果关系数据,而是相关关系数据:在大数据时代,我们无须再紧盯事物之间的因果关系,而应该寻找事物之间的相关关系,相关关系虽然不能准确地告诉我们事件发生的原因,但是它会提醒我们事件的发生。

近年来,我国数字农业发展方兴未艾,从北大荒千里沃野的无人驾驶农机作业,到浙江乌镇的刷脸入住农家乐、西安阿里的智慧大脑,数字农业正在悄然地助推传统农业发展。从理想状态来说,我认为数字农业就是有一块地,你种什么,种多少,施什么肥,打什么药,卖给谁,都用数据来表达,以大数据来支撑决策,通过信息化、数字化提供全程社会化服务。具体讲,数字农业是指以数据为关键要素,以数字技术与农业融合发展为重点,以数字产业化、产业数字化为路径,实现农业生产过程及全产业链数字化表达、数字化设计、数字化管理的新兴农业形态。

当前,我国已进入加快发展数字农业的新时期,发展数字农业有条件、有需求,恰逢其时,势在必行。人类社会经历了农业革命、工业革命,如今正在经历信息革命。现代信息技术日新月异,全球数据爆发增长、海量集聚,数字经济高歌猛进。互联网、物联网、大数据、云计算等数字技术加速向农业全方位渗透,让传统农业插上数字化的翅膀,培育了经济新增长点和发展新引擎,数据对农业发展的放大、叠加、倍增作用正在快速释放。这将为农业发展带来深刻的变革,创造千载难逢的历史机遇。

大数据读后感篇五

《大数据时代》,作者是被誉为“大数据时代的预言家”维克托.迈尔-舍恩伯教授和肯尼思.库克耶。此书是在大数据方兴未艾、众说纷纭的时刻,进一步阐述和厘清大数据的基本概念和特点。

人类历史长河中,即使是在现代社会日新月异的发展中,人们还主要依赖抽样数据、局部数据和片面数据,甚至在无法获得实证数据的时候纯粹依赖经验、理论、假设和价值观去发现未知领域的规律。因此,人们对世界的认识往往是表面的、肤浅的、简单的、扭曲的或者是无知的。维克托指出,大数据时代的来临使人类第一次有机会和条件,在非常多的领域和非常深入的层次获得和使用全面数据、完整数据和系统数据,深入探索现实世界的规律,获取过去不可能获取的知识,得到过去无法企及的商机。

本书从思维变革、商业变革及管理变革三部分阐述大数据时代已经来临;列举了众多在公共卫生、商业服务领域大数据变革的例子。比如:在思维变革部分,以ups与汽车修理预测为例,证明知道“是什么”就够了,没必要知道“为什么”;在大数据时代,我们不必非得知道现象背后的原因,而是要让大数据自己“发声”:ups国际快递公司从2000年就开始使用预测性分析来检测自己全美60000辆车规模的车队,这样就能及时的进行防御性的修理。之前ups每两三年就会对车辆的零件进行定时更换,但这种方法不太有效,因为有的零件并没有什么毛病就被换掉了。通过检测车辆的各个部位,ups如今只需要更换需要更换的零件,从而节省了好几百万美元,这就是通过找出新种类数据之间的相互联系来解决日常需要。这种方式完成可以应用于我们石油石化行业,我们的大量生产装置及设备,在建立日常的关键部位检测机制基础上,形成大量的数据信息,通过对这些数据的科学分析,判断出需要检修或更换的零件,从而有效降低运营成本。

当我们一旦“不再追求精确度,不再追求因果关系,而是承认混杂性,探索相关关系”,“思维转变过来,数据就能巧妙的用来激发新产品和新型服务”。数据正成为巨大的经济资产,成为新世纪的矿产与石油,将带来全新的创业方向、商业模式和投资机会。

近年来,伴随着经济社会快速发展、深度调整,石油石化产业变革加剧,面临的四大革命中其中一项就是“数字革命”。因此我们必须牢牢把握数字革命发展大势,加强数据治理和大数据分析应用,提高企业生产运行与管理水平,拥抱大数据时代的来临。

-->

-->。

大数据读后感篇六

最近闹的沸沸扬扬的“斯诺登事件”让我想起前段时间的畅销书《大数据时代》。

维克托迈尔舍恩伯格在《大数据时代》一书中,首先给出了“大数据”的含义:你的一个习惯动作,你的一次消费行为,你的一份就诊记录……文字、方位、沟通等一切事物皆可以量化为数据,不仅人类生产和生活中“有意义”的信息海量产生,相比以往呈几何数级的爆炸式增长,“无意义”的数据的膨胀速度也同样惊人。

数据采集存储技术让所有的一切信息都可能被数据化,互联网特别是移动互联网技术让所有的数据可以串联起来,无遗漏数据分析技术几乎可以让所有的数据都派上用场。“大数据时代”,没有了“有意义”信息和“无意义”信息的边界,谁能得到信息并善于利用信息,谁就会抢占先机。“大数据时代”不仅影响着我们每一个人,甚至连世界经济格局也在酝酿着巨大变革。因此,《大数据时代》的作者认为,大数据从根本上改变我们认识世界和改变世界的方式,开启了一次重大的时代转型。

历史是一面镜子,照向未来。毫无疑问,已有的大数据也属于历史的范畴,但大数据时代却是指向未来的。大数据时代,我们分析的数据因为“大”,摆脱了传统对随机采样的依赖,而是面对全体数据;因为所有信息都是“数”,可以不再纠结具体数据的精确度,而是坦然面对信息的混杂;总量每两年就可以翻番,而且这一趋势还在加速。倘若能够更有效地组织和使用大数据,人类将得到更多的机会发挥数据对社会发展的巨大推动作用。研究证明,人类行为93%是可以预测的,成为“已经发生的未来”。

大数据时代,决策将日益基于数据和分析而作出,而并非基于经验和直觉。虽然目前大数据预测的还只是参考答案,不是最终答案,但其威力已经显现。在《大数据时代》中,作者举的3个例子令人印象特别深刻。

一是谷歌仅凭网民留下的相关痕迹,就能得出与事实相符度高达97%的结论,20xx年比疾控中心提前两周、具体到了特定的地区和州、准确预测了甲型h1n1流感的爆发。20xx年,又成功预测了美国流感的暴发。

二是美国总统20xx年的选举,竞选团队里设置了首席数据科学家,他利用facebook和twitter进行数据分析,不但利用社交媒体来发布信息,帮助美国总统团队定位目标选民,甚至筛选出一些潜在的竞选志愿者。

三是微软公司通过大数据分析处理,对新一届奥斯卡金像奖作出“预言”,结果除“最佳导演”外,其余13项大奖全部命中。

正如维克托教授所说,我们目前看到的大数据和大数据应用,还只是“冰山的一角”。一定程度上,大数据就是新财富,价值堪比石油,正因为如此,赛门铁克公司的调研报告显示,全球企业的信息存储总量年增67目前包括谷歌、旧m、微软、emc,惠普,以及我国的百度、腾讯、阿里巴巴等众多巨头,已早早开始布局大数据,为在即将来临的大数据时代做好竞争铺垫。

大数据已经渗入到了生活的方方面面,将逐渐成为现代社会基础设施的一部分,就像公路、铁路、港口、水电和通信网络一样不可或缺。更有人说,大数据是继边防、海防、空防之后的第四个大国博弈的空间。美国美国总统政府已经把“大数据”上升到了国家战略的层面,投资2亿美元启动“大数据研究和发展计划”。

大数据时代,可以让人成为上帝,通过各数据汇总,俯瞰世界中你想知道的任何一面。大数据时代,也可以让你困扰不堪,因为你面临个人隐私被不断泄露和基于数据预测偏见的麻烦和危机。美国国家安全局和联邦调查局于2007年启动了一个代号为“棱镜”的秘密监控项目,划直接进入美国网际网路公司的中心服务器里挖掘数据、收集情报,包括微软、雅虎、谷歌、苹果等在内的9家国际网络巨头皆参与其中。报道刊出后外界哗然。保护公民隐私组织予以强烈谴责,表示不管美国总统政府如何以反恐之名进行申辩,不管多少国会议员或政府部门支持监视民众,这些项目都侵犯了公民基本权利。

因此,维克托教授在《大数据时代》中表达了“数据主宰一切”的隐忧,并提出了“责任与自由并举”的信息管理设想,这也是我们在拥抱大数据时代时必须思考和解决的问题。

大数据读后感篇七

“经验主义”是指形而上学的思想方法和工作作风,其特点是在观察和处理问题的时候,从狭隘的个人经验出发,不是采用联系、发展、全面的观点,而是采取鼓励、精致、片面的观点。在教学中,我们有时会凭借以往经验认定本节课学生的起点,从而制定教学目标、重难点以及教学过程。这往往忽略了上届学生和这届学生是有差异的,这班学生和另一班学生也是存在差异的,那如何准确把握学生的起点呢?我想可以借助前测数据,它可以为有效教学指明了方向。

如教学“复式统计表”时,前期查找资料的时候就发现早在一年级上册p96的时候学生就见过复式统计表,意让学生初步认识统计表,渗透统计思想。而二三年级的书中练习也多有涉及,就是这种复式统计表没有“表头”,生活中的复式统计表也很多。既然在以前练习时碰到这么多次复式统计表,学生对复式统计表到底认识多少呢?我们对157名学生进行这样的调查(如下图),第1题:像上表这样的统计表以前见过吗?见过约占65%,没见过约占35%,学生在练习中碰到过、生活中也经常看见,但还是约35%的学生回答自己没见过,说明学生平时在看这个复式统计表的时候就浮于表面,所以这节课我们重点应该让学生经历复式统计表的产生过程,加深学生对复式统计表的印象。第2题:上表中的16表示什么意思?能完整表达出二班身高在130~139厘米的学生有16人,约占41%;表达一半,如二班16人,或130~139厘米16人,约占22%,其他约占37%,真正能正确读懂复式统计表的学生一半不到,需要在课中进行读图方法的指导。而知道这个表叫做复式统计表的学生不到20%。

大数据读后感篇八

如今一提起互联网和新媒体,就不得不提到“大数据”,在多数人印象中,这是个很宽泛的定义,大数据到底是什么,对我们的工作生活又产生了哪些影响,在拜读《大数据时代:生活、工作与思维的大变革》后,思路仿佛逐渐清晰。

对于大数据,研究机构给出了这样的定义:大数据是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。作者舍恩伯格在书中前瞻性的指出大数据带来的信息风暴正在变革我们的生活、工作和思维,大数据开启了一次重大的时代转型,并用三个部分讲述了大数据时代的思维变革、商业变革和管理变革。

一直以来,人类都在利用掌握的数据进行各种分析,从而对经济、文化等各方面进行预测以期达到选择最优。进入大数据时代,人类所掌握的数据以爆炸性的速度增长,数据的存储和分析数据的方法成了释放大数据能量的关键。例如,微博、微信、抖音等推送的消息无处不在,我们掌握了新的工具,也获取了以前从未有过的各种信息。毫无疑问,在大数据时代,人们与现实的距离被网络拉近了,周围一切的人和事物都变得触手可及起来,如同舍恩伯格所言“开启了一次重大时代转型,就像望远镜能够让我们感受宇宙,显微镜让我们看清微生物一样,大数据要改变的是,我们的生活方方面面以及理解世界的方式。”

大数据意味着全体数据,而不是随机样本,以前没有获得和处理大数据的技术,只能采用随机采样,用最少的数据获得最多的信息,随着大数据时代的到来,采用所有数据的方法取代了随机分析法这样的捷径。当然,大数据也是泥沙俱下的,所有数据里面包含了更加复杂的成分,混杂的不精确数据占了所有数据的一部分,如何去伪存真更高效的使用大数据,成为所有人需要思考的课题。

大数据时代,比知道“为什么”更重要更有价值的是知道“是什么”,大数据体现的不是因果关系,而是相关关系,很多时候我们不是非得知道现象背后的原因,让数据告诉我们相关的现象就足以帮助我们做出选择和决策。传统的统计调查数据可以描述事物发展的趋势,对未来的预测起到重要作用,现在有了大数据,这种相关趋势就可以得到更加完整的拟合,有利于数据的佐证,更有利于数据解读工作。

大数据非常强大,可以在社会的方方面面帮助我们,但是这种帮助只是暂时的,大数据不能为我们提供最终答案,只能是参考答案,人类本身的作用是无法被大数据所完全替代的,将来,更好的方法和答案将在人类的作用下一步一步到来。大数据作为一种资源,也是一种工具,它改造我们的生活,它能优化、提高、高效化并最终捕捉住利益,但是它对社会的促进是有限的,社会的发展和进步源自于我们人类的独创性,这种独创性包括创意、直觉、冒险精神和知识野心等,在大数据时代,这些人类特性的培养依旧显得尤为重要。

自贸港建设正在如火如荼的进行中,建设体现中国特色、践行社会主义核心价值观的新时代重要开放门户,需要勇于创新,也要坚持底线思维,作为这场改革浪潮的参与者,大数据时代带来的既是机遇也有挑战,要更好的发挥统计监督作用,对海南自由贸易港进行统计监测,运用翔实统计数据准确全面反映自贸港建设的进展情况及建设成果,我们要善于合理利用大数据,不完全把它作为统计分析的判断依据,而是作为一项参考指标,要有自己独立判断,利用大数据中最有价值的部分。

大数据读后感篇九

舍恩伯格的《大数据时代》,让我重新审视了"大数据"这个在信息时代异军突起的热点词汇,作为信息安全专业的我,对大数据这个词本身有着更多的热忱。

在百度上搜索到的解释是:"大数据",或称巨量资料,指的`是所涉及的资料量规模巨大到无法透过目前主流软件工具工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。特点:数量、速度、品种、真实性。

而舍恩伯格认为,大数据并不能定义一个确切的概念。他提到"大数据是人们获得新的认知,创造新的价值的源泉;大数据还是改变市场、组织机构,以及政府和公民关系的方法。"这是一种更具有人文色彩和社会意义的诠释。

本书中,主要从三个方面论述,即思维变革、商业变革和管理变革。而舍恩伯格更是着重阐明三大观点:

一、更多:不是随机样本,而是全体数据。

二、更杂:不是精确性,而是混杂性。

三、更好:不是因果关系,而是相关关系。

对于观点一,我不敢苟同,毕竟大数据的实现需要一定的技术支持,而显然,现在这种技术还不够成熟,同时一些简单的事情运用大数据反倒是问题更加复杂化,因此这种大叔据的繁杂处理方式更适用于一些特定的情况,比如商业预测,人类dna的研究等。

而对第二种观点,我是十分赞同舍恩伯格所说的"大数据的简单算法比小数据的简单算法有效"。在计算机行业迅速发展中,一种新的简单可行的算法的出现,远没有计算机在运算速度和存储容量的发展快,而大数据算法似乎更能迎合这种大趋势。

观点三中提到的相关关系在大数据中可是重量级的,它能较快找到事物规律和对应的解决措施,当然,也不能完全忽视因果关系,毕竟人们在思维上更能够接受因果关系分析出的结果,而大数据预测的需要人们慢慢的适应才能接受。当我们完成相关关系的分析而又不满足于只知道"是什么"的时候,我们就可以转而研究"为什么"了,毕竟问题的根本在于因果。而舍恩伯格的全体数据和相关关系是大数据时代下的一种捷径。

但是在信息时代,信息安全问题的日趋凸显,数据独裁与隐私保护之间的矛盾更是立于风口浪尖,成为众矢之的,舍恩伯格在本书的最后章节曾试图寻找一种解决方式来摆脱这一种困境,但最终没能做到,但是他提出"大数据并不是一个充斥着算法的和机器的冰冷世界,人类的作用仍无法被完全代替。"这里表明人在数据时代同样的重要,数据是为人类服务的,也就该人类驱使下完成相应的目的。

在这样的大环境下,常引起我更多的思考和担忧。

大数据时代对于我们同是机遇与挑战,一些国家已开始步入大数据时代的行列,并在各个领域开始研究和使用。而对于我国庞大的人口,以及较大的领土面积,都可以在大数据时代为我们提供数据的保障,而能否面临挑战,在大国之间的新一轮角色角逐间崭露头角,我们更需要解决技术等方面的问题,更应在政策上逐步开放各领域的数据,保证数据来源、权限等问题得到解决,不断学习先进的计算机技术,缩小与其他国家的差距。

工业化、信息化,我们都向世界交出了一份让世界不能小觑的答案;

大数据时代的数据化我们又将怎样在新的风暴中所向披靡,如果大数据时代是一种必然趋势,那这就是我们这一代人的责任,是我们新的战场!

大数据读后感篇十

本书《大数据时代》出自维克托·迈尔-舍恩伯格,是最早洞见大数据时代发展趋势的数据科学家之一,也是最受人尊敬的权威发言人之一。舍恩伯格教授在《大数据时代》中提出:“大数据是指不用随机分析法这样的捷径,而采用所有数据的方法。”阐述大数据是一个比较的概念,它是在人类过去运用小数据库随机抽样获得分析结果比较而来,它的关键是在“大”,数据存储量越大,价值越显著。大数据的核心作用在于“预测”,引申出“规划”与“解决方案”,也就是我们说的“算法”。书中展示了谷歌、微软、亚马逊、ibm、苹果、facebook、twitter、visa等大数据先锋们最具价值的应用案例。

在现今的社会,大数据的应用越来越彰显他的优势,它占领的领域也越来越大,电子商务、o2o、物流配送等,各种利用大数据进行发展的领域正在协助企业不断地发展新业务,创新运营模式。有了大数据这个概念,对于消费者行为的判断,产品销售量的预测,精确的营销范围以及存货的补给已经得到全面的改善与优化。就我个人体会。大数据产生最直观的价值:一是时间,二是金钱。要知道“时间就是金钱,效率就是生命。”

大数据带给我们的三个颠覆性观念转变:采样数据向全部数据转变;精确制导向方向引领转变;因果关系向相关关系转变。

1.不再局限随机样本,而是全体数据:在大数据时代,我们有更多的数据可以分析,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机采样,这也是通过大数据打通的传统壁垒。

2.不再局限精确性数据,而是混杂性数据:以前需要分析的数据很少,所以我们必须尽可能精确地量化我们的记录,随着数据的积累,数据库的完善,我们不再需要对一个现象刨根问底,只要掌握了大体的发展方向,适当忽略微观层面上的精确度,会让我们在宏观层面拥有更好的洞察力。

3.不再局限因果关系数据,而是相关关系数据:在大数据时代,我们无须再紧盯事物之间的因果关系,而应该寻找事物之间的相关关系,相关关系虽然不能准确地告诉我们事件发生的原因,但是它会提醒我们事件的发生。

思考:大数据在农业领域建设。近年来,我国数字农业发展方兴未艾,从北大荒千里沃野的无人驾驶农机作业,到浙江乌镇的刷脸入住农家乐、西安阿里的智慧大脑,数字农业正在悄然地助推传统农业发展。从理想状态来说,我认为数字农业就是有一块地,你种什么,种多少,施什么肥,打什么药,卖给谁,都用数据来表达,以大数据来支撑决策,通过信息化、数字化提供全程社会化服务。具体讲,数字农业是指以数据为关键要素,以数字技术与农业融合发展为重点,以数字产业化、产业数字化为路径,实现农业生产过程及全产业链数字化表达、数字化设计、数字化管理的新兴农业形态。

当前,我国已进入加快发展数字农业的新时期,发展数字农业有条件、有需求,恰逢其时,势在必行。人类社会经历了农业革命、工业革命,如今正在经历信息革命。现代信息技术日新月异,全球数据爆发增长、海量集聚,数字经济高歌猛进。互联网、物联网、大数据、云计算等数字技术加速向农业全方位渗透,让传统农业插上数字化的翅膀,培育了经济新增长点和发展新引擎,数据对农业发展的放大、叠加、倍增作用正在快速释放。这将为农业发展带来深刻的变革,创造千载难逢的历史机遇。(张洋)。

-->

-->。

大数据读后感篇十一

《大数据时代》这本书主要描述的是大数据时代到临人们生活、工作与思维各方面所遇到的重大变革。

文中清晰的阐述了大数据的基本概念和特点,并列出明确的观点。不管对于产业实践者,还是对于政府和公众机构,都非常具有价值。作者将本书分为3个部分。第一部分提出了大数据时代处理数据理念上的三大转变:抽样等于全体;要效率不要绝对精确;要相关不要因果;第二部分作者从万事万物数据化和数据交叉复用的巨大价值两个方面,讲述驱动大数据战车在材质和智力方面向前滚动的最根本动力;最后一部分,作者描绘了大数据帝国前夜的脆弱和不安,包括产业生态环境、数据安全隐私、信息公正公开等问题。

本书观点掷地有声,作者观念高屋建瓴,从很多实例和经验中萃取普适性观念。例子详实丰富,囊括了进百个学术和商业实例。

引言提出了大数据将给生活、工作于思维带来重大的变革。一个例子是20xx年h1n1流行病毒背景下谷歌通过检测检索词条,处理了4.5亿个不同的数据模型,通过预测并与20xx年、20xx年美国疾控中心记录的实际流感病例进行对比后,确定了45条检索词条组合,并将其用于一个特定的数学模型后,预测的结果与官方数据的相关系数高达97%。按照传统的信息返回流程,通告新流感病毒病例将有一到两周的延迟。对于飞速传播的疾病,信息滞后两周是致命的。而谷歌运用大数据技术,以前所未有的方式,通过海量数据分析得出流感所传播的范围,为世界预测流感提供了一种更快捷的预测工具。此外,我联想到原淘宝董事长马云通过大量数据分析得出20xx年经济疲弱,为其商家提前做好迎接经济危机提供了时间缓冲。(补充并清晰描述详细)关于大数据在商业领域的应用,farecast公司是一个成功的典型范例。该公司由奥伦·埃齐奥尼创办,利用机票的销售数据来预测未来的机票价格,旨在帮助用户在购买机票方面做出预测,并对机票价格走势预测的可信度标示出来供消费者查考。farecast系统利用近十万亿条价格记录预测的准确度达75%,使得使用farecast票价预测工具购买机票的旅客,平均每张机票节约50美元。而处理如此多的数据离开了大数据技术将无法进行。

也正是由于我们进入了一个前所未有的信息化时代,人们拥有了如此多的数据,才提供给我们利用大数据的分析处理手段,创造新的价值。也许有人以为我们大数据时代的还未来临。其实大数据技术早已渗透到我们中间,它被应用在垃圾邮件的过滤,新浪微博技术平台,谷歌翻译以及输入文字的自动纠错等。

文中提出的一个观点是,预测是大数据的核心。其实从过去的时代人们就利用掌握的数据进行各种分析,从而对经济等各方面进行预测、矫正。只是进入了大数据时代人们掌握的数据爆炸性的速度在增长,从而数据的存储和分析数据分方法成了释放大数据能量的关键。

关于不是随机样本而是整体数据中。作者指出了随机取样是小数据时代用最少的数据获取最大价值的做法。作者用大数据与乔布斯的癌症治疗例子说明了使用全部数据而非样本的意义。乔布斯成为世界上第一个对自身所有dna和肿瘤dna进行排序的人。乔布斯曾开玩笑说“我要么是第一个通过这种方式战胜癌症的人,要么就是最后一个因为这种方式死于癌症的人”。虽然最后难免死于癌症但这种获得所有数据而不是仅样本的方法将他的生命延长了几年。同样,从事跨境汇款业务的xoom公司侦破一起犯罪集团的诈骗也是由于使用了整体数据。初此之外,他还列举了日本“相扑”等来证明使用全体数据的重要性。

作者同时也指出随着数据使用的越来越多,其得出的结果并一定能越来越精确,毕竟数据不能保证百分之百的正确,特别是大数据时代各种结构化与非结构化类型的数据聚集在一起难免导致结果的不太精确。大数据时代要求我们重新审视精确性的优劣。作者特别举了谷歌翻译成功的例子。谷歌翻译之所以优于ibm的candide系统并不是因为它拥有更好的算法机制。和微软的班科和布里尔一样,谷歌翻译增加了各种各样的数据,并且接受了有错误的数据。(其语库来自于未经过滤的网页内容,会包含一些不完整的句子、拼写错误、语法错误以及其他各种错误)。

在不是因果关系,而是相关关系的篇章中。作者指出在大数据时代往往知道是什么要比知道为什么来的更实在。作者列举了林登的亚马逊推荐系统的成功,证实了大数据在分析相关性方面的优势以及在销售中获得的成功。沃尔玛也是充分利用并挖掘各类数据信息的先锋和代表,从以前广为人事的啤酒和尿布的案例,以及作者举的有关蛋挞和飓风天气的案例,都说明了掌握了相关关系对于其策略的帮助。建立在相关关系分析法基础上的预测是大数据的核心。aviva保险公司利用几百种生活方式的数据,如爱好、长浏览网页等间接的预测出哪些人更可能患高血压、糖尿病和抑郁症。ups国家快递公司通过使用预测性分析检测其全美6万辆车队。进行防御性的修理,节约巨大得的成本。这些都充分显示了大数据在预测方面的优势。

本书第二部分讲的是大数据时代的商业变革。

作者用莫里绘制导航图的例子告诉我们,远在信息数字化之前,对数据的运用就已经开始了。莫里利用大量的人力去分析多年保存的航海记录,他从这些大量的数据中获取到新的利用价值。绘制的图表帮助商人节约一大笔钱,使年轻的海员们间接获取了成千上万名经验丰富的航海家的指导。日本先进工业技术研究所越水重臣教授通过安装压力传感器将人屁股特征数据化,进而形成对乘客身份的特征识别。这项技术为汽车防盗系统提供了方案。公司,致力于为顾客预测商品的价格,通过收集处理海量的价格信息,预测准确率高达77%,帮助顾客在购买一个产品时节约了大约100美元。r部门通过分析来自210个国家的15亿信用卡用户的650亿条交易记录,分析得出商业发展和客户消费趋势,如通过分析发现如果一个人下午四点左右给汽车加油的话,他很可能在接下来的一个小时内去购物或者去餐馆吃饭,且在这一小时里大约花费35到40美元。商家正可以利用这个分析结果,在加油的小票背面附加上附近商店的优惠券。

这些例子都证明了大数据蕴藏着巨大的商业价值。根据提供价值的不同来源,大数据价值链包括三大构成部分。包括第一种是基于数据本身的公司。这些公司拥有大量数据或者至少可以收集到大量数据,却不一定有从数据中提取价值或者用数据催生创新思想的技能。第二种是基于技能的公司。它们通常是咨询公司、技术供应商或者分析公司。它们掌握了专业技能但并不一定拥有数据或者提出数据创性用途的才能。比如说,沃尔玛和pop-tarts这两个零售商就是借助天睿公司的分析来获得营销点子,天睿就是一家大数据分析公司。第三种是基于思维的公司。皮特.华登,jetpac的联合创始人,就是通过想法获得价值的一个例子,他通过用户分享到网上的旅行照片来为人们推荐下一次旅行目的地。对于某些公司来说,数据和技能并不是成功的关键。挖掘数据的新价值的创新思维才是这些公司脱颖而出的优势所在。

大数据成为许多公司竞争力的来源,未来可能整个行业的结构会发生改变,大公司和小公司最有可能成为赢家。如今的核心竞争力在于快速而廉价地进行大量的数据存储和处理。当然公司要根据自己的情况进行调整。大数据向小数据时代的赢家以及那些线下大公司(如沃尔玛、联邦快递、宝洁公司、雀巢公司、波音公司)提出了挑战。同时,大数据也为小公司带来了机遇。大数据也将会影响国家竞争力。当制造业已经大幅转向发展中国家,而大家都争相发展创新行业的时候,工业化国家因为掌握了数据以及大数据技术,所以仍然在全球竞争中占据优势,但这个优势很难持续。随着技术的发展,西方世界在大数据技术的优势将会慢慢消失。对于大公司而言,好消息是大数据技术可以加剧优胜劣汰。一旦公司掌握了大数据,它不但可能超过对手还可能遥遥领先。

文章第三部分讲了大数据带来无数好处的同时带来的不良影响以及如何面对这些影响。包括如数据的收益的处理问题以及数据中用户资料的隐私和决策过程带来的影响。作者在保护个人隐私方面提出了几种想法。一种是使用数据时征询数据所有个人的知晓和授权。第二个技术途径就是匿名化。作者同时也指出了这两种方式的难度。一方面收集到的数据可能会被后续的多次利用。另一方面,匿名化会在数据收集越来越多和数据的相互结合关联使用时变得无效。作者列列举电影《少数派报告》的情节说明越来越依赖数据时,大数据可能将我们禁锢在可能性之中。当然通过分析犯罪的常发地与常发时间,合理安排警力会对治安防范提供不小的帮助。作者还指出不能尽信数据的分析结果,因为不能保证获取分析结果来源的数据准确性。大数据在给我们生活提供便利的同时,也让隐私保护的法律手段失去了作用。我们必须杜绝对数据的过分依赖。

在高速迈进大数据时代的同时,人类信息管理准则需要重新定位,这将带动社会核心价值观的转变。大数据时代,对原有规范的修修补补已经不足以抑制大数据带来的风险。保护个人隐私就需要对个人数据处理器对其政策和行为承担更多责任。同时必须重新定义公正的概念,以确保人类行为的自由。作者提出了解决这些问题的方向。如个人隐私保护方面,可以让使用者承担更多的社会责任。将责任从民众转移到数据使用者有很多意义,也有充分的理由。因为他们更清楚将如何使用数据且是数据应用最大的受益者。关于公正方面简单的讲就是个人可以并应为他们的行为而非倾向负责。就像公司有内部会计和外部审计人员一样,大数据时代,公司将设置专门的人员--内部和外部算法师对大数据活动进行监督。还有可能出现第三方的机构对大数据行为进行监督和衡量。作者甚至考虑到对大数据存在的垄断情况进行分析并在反垄断反面给了建议。最后结语中作者提出大数据提供给人们的只是参考答案,提醒我们在利用这个工具时要铭记人类的作用是无法完全替代的。

大数据时代是信息化社会发展必然趋势,我们只有紧紧跟随时代发展的潮流,在技术上、制度上、价值观念上做出迅速调整并牢牢跟进,才能在接下来新一轮的国际竞争中摆脱受制于人的弱势境地,才能把握发展的方向,冲破与西方国家的差距。对于一个国家如此,对于一个企业亦是如此。在如此快速的到来的大数据时代,我们还有很多知识需要学习,许多思维需要转变,许多技术需要研究。公司的规划中,也需充分考虑到大数据对于公司的未来发展所带来的机遇和挑战。对于掌握大量数据的公司,需要考虑有多少数字化的数据,又有哪些可以通过大数据的分析处理而带来有价值的用途?比如国内目前的社交网站,购物网站等都掌握了用户的大量的数据信息。在大数据时代制胜的良药也许是创新的点子,也许可以利用外部的数据,通过多维化、多层面的分析给其他企业或个人带来价值。

“大数据”概念早在1980年就有国外的学者提出,可是最近几年才广泛受到大家的关注。当“大数据”这个概念传到中国的时候,瞬间引起了轰动。随即,各种有关“大数据”的资料和书籍充斥的我们的视野。随意打开某个电子商务平台图书类页面,在搜索框中搜索“大数据”三个字,就会出现好多本有关“大数据”的书籍。可是,有一个很有趣的现象就是:几乎所有的平台上,出现的第一本关于“大数据”的书籍一定是《大数据时代》。一点进去,这本书推荐栏里的第一句话就是:迄今为止全世界最好的一本大数据专著。同时,为这本书做推荐的都是各行业的精英领袖。所有“大数据”方面的书籍也是这本书销量最高,评价最好。

我从来不会因为哪本书畅销和很多人推荐就盲目跟风的去看一本书。因为我知道通常在这种情况下选择一本书,整个阅读的体会和感受是无法遵从自己的内心的,整个过程都很容易夹杂着别人对这本书的感受。所以通常我读书的节奏大多都是跟不上“潮流”的,但往往经过风雨洗礼之后沉淀下来的都是精华。坦白讲,阅读这本书的初衷并不是因为我想从书中获取到多少大数据方面的精华,只是很想知道对于这么一个很直白的名词,作者是怎么写出这么厚的一本书的。这种初衷或许很无知和幼稚,可就是这种“愚蠢”的好奇心,让我更透彻的看到书中的精华。

在看《大数据时代》这本书之前,我的所有读后感都是集中在书籍给了我什么思考。对于这本书的读后感,除了观点碰撞之外,我还会加上大部分个人看这本书的体会。因为这本书,已经完全让我模糊了大多数人口中的“全世界最好的书”是一种什么标准。也许《大数据时代》真的无法承载那么高的赞美!

看完这本书,我随意调查了一些阅读过这本书并且给这本书绝对好评的朋友。询问他们这本书好在哪里?大多数的回答是说《大数据时代》这本书让对大数据一无所知的他们了解了大数据这个概念,同时通过很多案例说明原来大数据能有这么大的用处,影响会有这么大!仅此而已。我看完这本书最大的感受是这本书分为上、下两部分。前120多页为上部分,后120多页为下部分。之所以说《大数据时代》是一本关于大数据的入门书,是因为这本书用了前面120多页的篇幅反复的强调大数据的出现对社会发展影响很大,并且要人们转变小数据时代惯有的思想。所以整本书的前半部分就强调大数据时代的三个转变:1、大数据利用所有的数据,而不再仅仅依靠一小部分数据,不再依赖于随机采样。2、大数据数据多,不再热衷于追求精确性,也不再期待精确性。3、大数据时代不再热衷于寻找因果关系,而是追求相关关系。所以整个上半部分没什么可详说的。我们重点聊聊本书的后半部分。

既然一直都在强调大数据对我们的意义,总要有具体体现。整本书中,我感触最大的一个案例就是某公司通过分析大数据发现:新品发布的时候,旧一代的产品可能会出现短暂的价格上涨。因为人们在心理上就认为新产品的推出,旧产品就会便宜,从而就会提高购买量。这个发现和我们平常的心理是完全违背的,而且如果不用数据来证明,直接讲道理给大家可能还是无法相信。这就是大数据对我们很多传统思维的颠覆。一旦涉及到思维的改变,往往就会引起整个社会的大变动。

大数据这个概念的出现,让大数据逐渐发展形成一条价值链。在这条价值链上,数据本身、技能和思维是最重要的环节。随着互联网技术的发展,越来越多的公司都能收集到大量的数据,这些数据也会越来越公开。可是在这些公司中,不是所有的公司都有从数据中提取价值或者用数据催生创新思想的技能。于是就会出现以下两种公司,一种是掌握了专业技能但不一定拥有数据或者提出数据创新性用途才能的公司,另一种就是拥有超前思维,懂得怎样挖掘数据的新价值的创新公司。短时间内,我们可能会感觉拥有创新思维,懂得挖掘出数据新价值的大数据思维是最重要的。可是等到产业成熟之后,所有人都知晓了大数据的意义,所有人便开始挖掘自己的大数据思维。同时,随着科技的进步,掌握大数据技术的也将成为常态。所以到后来,整个价值链的核心环节还是回到了数据本身。而到那时候,大数据的公开性也就越来越小。

在大谈完大数据对人类发展的积极意义之后,作者也考虑到大数据时代的风险。这一部分是作者脑洞大开的精彩之处,同时也是最荒谬的一部分。书中说大数据时代将要惩罚未来犯罪,这样可以在嫌疑人在可能犯罪之前就把犯罪行为给防止。这样的社会,大数据俨然已经延伸到了我们每个人生活的点滴。几乎我们在生活中所做的一切都在大数据的“监控”之下,我想到那时候,别说我们每个人的隐私已经没有的了,严重一点可以说是我们可能连人都不算了。在我们人的社会属性中,自由权利是一项很重要的指标。通过大数据惩罚人的未来犯罪已经否定了人的自由选择能力和人的行为责任自负。同时,由于数据是永久保存,大数据预测也是通过每个人之前的数据来判断,所以大数据同样也否定了人的求善心理。还有,从现在各种大数据预测的结果来看,很多发言人都说大数据不是百分百的准确。所以利用大数据来判断人的行为发展已经违背了大数据不追求精确性的特征,这也是书中自相矛盾的地方。

对于一个新事物,如果能让大家了解这个事物并且对此产生兴趣,这已经算是一本不错的入门书了。

从小到大,鸡汤对于我们来说一直都挺珍贵的。身体虚弱了,喝点鸡汤能够补充营养。心灵受伤了,看点心灵鸡汤可以鼓舞人心。可是近几年,人们生活水平提高了,营养富余,鸡汤已经不是人们补营养的期待了。同样,心灵鸡汤也是如此。

心灵鸡汤其实是一个很虚伪的东西。很多人都被心灵鸡汤诱人的外表给迷惑。在我看来,心灵鸡汤很大的一个特征就是:立人的志,但是就不告诉你实现志的方法。很多人每次在失意的时候就喜欢看心灵鸡汤,希望能得到慰藉。看完后也觉得醍醐灌顶,感觉整个世界都亮了。但又有几个人想过喝完这些鸡汤之后你除了看似重拾梦想,你还获得了什么?你知道怎么去做吗?《大数据时代》就是这样一本书。整本书从头到尾都在向读者讲述大数据的意义,当然期间也会用相应的案例来证明大数据确实有这样的能力。但是,整本书从没有涉及到技术层面的问题。或许对于大数据这种依靠互联网技术的新事物,即使向读者讲技术,也没有几个人看得懂,可是整本书没有一点关于大数据思维的技能引导。给出的案例中只有少数案例向读者讲述了这个公司为什么要利用大数据来解决这种问题,大多数都只是告诉读者国外某家公司运用大数据得出了某种结论。同时,在本书中文译作者写的序里,强调自己翻译这本著作的一大优点是可以结合国内的案例来分析书中的理论,结果,看到最后一页都没有看到一个国内企业关于大数据运用的案例。

之所以我称之为“心灵鸡汤”,还有一个原因就是作者在书中大讲特讲的大数据的作用,事实上按照现在的经济发展水平和社会文明发展程度是很难实现的。书中很多时候的理论都是要建立在社会各项文明都发展健全的基础上才能实现。

看到这个标题,大家可能会觉得我夸大其词,受到如此多人好评的书怎么是“传销手册”呢?对于这个表达,我只想说两点:1、此说法仅代表我个人观点,是否认同是个人问题。2、此说法主要针对本书的上部分。

我们都知道传销组织在发展下线的前期是要花大力气去培训的,也就是洗脑。而对于一个陌生又很难以理解的事物,最好的“洗脑”方式就是重复。《大数据时代》这本书就是运用这种方式,前半部分为了让读者能够接受“大数据”这个概念,作者反反复复提醒读者大数据不是随机采样、不追求精确和不寻找因果关系。同时用很多看似很通俗易懂其实看完后还是不知道说了什么的案例来让人信服大数据的作用。书中的后半部分虽然也是用这种方式来感染读者,可后半部分中作者的畅想和对大数据的威胁分析还是对读者有一些实质意义的,所以后半部分的“传销”影响就不是很重要。

大数据时代是未来的趋势,这谁都不会否认。大数据改造了我们的生活,改变着我们的世界。不管它是以一种什么样的姿态面向世界,它都没有错,因为大数据只是一种工具。但当人类开始质疑甚至恐惧大数据的时候,人类就该思考自己是否利用好这个好工具了。

大数据读后感篇十二

(赵元)。

最近闲暇之余我读了徐子沛先生的《大数据》一书,真是让我受益匪浅。《大数据》又叫做《大数据:正在到来的数据革命》。全书通过讲述美国在过去的半个世纪里所发生的关于信息、技术方面的典型案例,来为读者剖析出一个浅显易懂的“大数据”。

《大数据》一书,之所以珍贵、便于阅读,在于徐子沛先生在写作过程之中,将原本高、精、尖的数据专业的专业术语,转而用浅显易懂的话语来表现,使得本书成为了一本平易近人的科普读物。使得阅读此书的读者无论年龄、专业、学识,都能最大限度的接触到书中所阐释的基本知识。而我作为一个农行从业四年的员工,当然也有属于我自己的一些感想:

《大数据》一书之中,所提出的一个关键性的问题就是为什么在近几年出现了“大数据”这一词语?作者举出了美国在2009年的相关数据,我从中发现了对该问题给出的一些答案。书中举例,麦肯锡《大数据:下一代创新,竞争和生产率的前沿》报告中进行估算,政府848pb,传媒行业715pb,离散制造业966pb。正是针对相关数据指标的增长,以及当前以全球化为背景的数据信息开放化,各类信息的自由化等原因,导致了面对数据的分析,以及数据的处理,数据的预测和数据的决策都有了更高的要求。这些要求导致我们在针对经济全球化,交流多元扩大化,各个专业管理与发展的精细化必须有一个相对宏观的经济分析头脑。书中使我感触最深的是,针对美国目前发展中的大事件以及现象,例如,美国矿难的悲情历史,街头警察的创新创奇,美国最热的交友信息平台facebook与推特,以及美国纠结百年的统一身份证的问题等,都一一分析了其背后所蕴含的经济学、金融学道理,以及这些时间的背后数据对于美国政府,公民以及社会的种种挑战。书中针对美国半个世纪的发展历程,逐一的分析其内涵,并将美国的发展与进步的基本原因归结为开放和创新。正是因为在这个时代美国强调对于互联网的最大利用化,才有了即使面对压力和强大的经济困难还在稳步前进的现代美国。

这本书给了我最大的启迪,说实话不是那些经济学案例,也不是那些几年前的数据信息。而是一种如何发展的理念。美国正是有了开放和创新才有了如今不断发展中的世界第一强国。而我们中国对于开放和创新却还没有做出最好的诠释。虽然我国的改革开放,技术创新已经取得了一定的成绩,但是面对发达国家我相信其中的差距也是不言而喻的。大到一个国家,小到一个集体,都离不开开放和创新。读了徐子沛先生的《大数据》,我思考最深的不是国家的改革与创新,而是我身处的农行的发展与创新。

作为一个在农行工作了四年的员工,我热爱的着我的岗位,也热爱着我为之努力奋斗的中国农业银行。面对农行未来的创新与发展,在对了这本书以后我针对自身的岗位得出了一些不尽成熟的想法:一方面,我们农行有自己的理财产品,而我行主要的营销方法还是有些被动,我的一点想法是可以多做集中性质的营销,例如在浦口区农行网点附近繁华地段发放宣传单,或者针对有需要的企业可以进行集体宣传,使我行的优质产品深入人心,从而也可以提升我行的基本效益。例如去年举行了几场“新老客户答谢会”,如果举办的次数再多一点,我觉得效果会更好。

另一方面,对于我行的创新产品我也有一些想法。创新是任何个人,企业,乃至国家的发展原动力。那么,我行也应该响应时代的召唤。近日,正值旅游的黄金时期,很多人选择出境旅游,但是有很多国家不支持银联卡,所以很多人想办理visa或mc的信用卡,但是信用卡办起来需要至少半个月的时间,且要求比较高。所以现在有的银行正在发行visa或mc的借记卡,且申领条件比较简单、速度快。我行可以参照并大力开发这一领域。

以上两点只是我个人的一点想法,虽然还有些稚嫩,有些不成熟,但是这两点是我看了徐子沛先生的《大数据》一书以后,基于我对农行的热爱,有感而发,由心而生的。

2013年09月。

大数据读后感篇十三

有人说生活像一团乱麻,剪不断理还乱;我说生活像一团乱码,尽管云山雾罩惝恍迷离,最后却总会拨云见日雨过天晴。维克托迈尔舍恩伯格就把这团乱码叫做大数据,在他的这本书里,试图给出的就是拨开云雾见青天的玄机。

这玄机说来也简单,就是放弃千百年来人们孜孜追求的因果关系转而投奔相关关系。说来简单,其实却颠覆了多少代人对真理探求的梦想。我觉得作者是个典型的实用主义者,在美帝国主义万恶的压迫下,始终追逐性价比和利益最大化,居然放弃了追求共产主义真理最基本的要求!不像我们在天朝光芒的笼罩下,从小就开始学习和追求纯粹的共产主义唯心科学历史文化知识啦!这或许就是我们永远无法获得诺贝尔奖、永远无法站在科技最前沿的根本原因吧。其实小学时候,我就想过这个问题,相信所有的人都问过类似的问题,例如现在仍然很多人在问,妈的从来没人知道我每天摆摊赚多少钱,你们他妈的那人均收入四五千是怎么算出来的。中国是抽样的代表,因为中国人最喜欢用代表来表现整体,最典型的例子莫过于公布的幸福指数满意指数各种指数永远都高于你的预期,你完全不清楚他是怎么来的,一直到最后汇总成三个代表,真心不清楚它到底能代表了啥。说这么多显得自己是个愤青,其实只是想表达“样本=总体”这个概念在科技飞速发展的今天,在世界的不同角落,还是会体现出不同的价值,受到不同程度的对待及关注。在大数据观念的冲击下,我们是不是真的需要将平时关注的重点从事物内在的发展规律转移到事物客观的发生情况上。

大数据的出现,必然对诸多领域产生极大的冲击,某些行业在未来十年必将会得到突飞猛进的发展,而其他一些行业则可能会消失。这是废话,典型的三十年河东三十年河西的道理,就像三十年前的数理化王子们,现在可能蜷缩在某工厂的小角落里颤颤巍巍的修理机器;就像三十年前职业开云KY官方登录入口 的学生才学财会学银行,如今这帮孙子一个个都开大奔养小三攒的楼房够给自己做墓群的了;当然也不乏像生物这种专业,三十年前人们不知道是干啥的,三十年后人们都知道没事别去干,唯一可惜的是我在这三十年之间的历史长河中却恰恰选了这么一个专业,这也是为什么我现在在这写读后感而没有跟姑娘去玩耍的原因。其实乍一看这个题目,我首先想到的是精益生产的过程控制,比如六西格玛,这其实就是通过对所有数据的分析来预测产品品质的变化,就已经是大数据的具体应用了。而任何事物都会有偏差,会有错误,也就是说,这全部的数据中,肯定是要出现很多与总体反应出的规律相违背的个体,但是无论如何这也是该事件中一般规律的客观体现的一种形式,要远远好过从选定的样本中剔除异常值然后得到的结论。换句话说,也大大减少了排除异己对表达事物客观规律的影响。就好比是统计局统计中国人民的平均收入一样,这些数怎么这么低啊,这不是给我们国家在国际社会上的形象抹黑么,删掉删掉;这些数怎么这么高啊,这还不引起社会不满国家动荡啊,删掉删掉。所以说,大数据至少对反应客观事实和对客观事实做预测这两个方面是有非常积极地意义的。而这个新兴行业所体现的商机,既在如何利用数据上,又在如何取得数据上。

先说数据的利用,这里面表达的就是作者在通书中强调的对“相关关系”的挖掘利用。相关关系与因果关系便不再赘述,而能够对相关关系进行挖掘利用的企业其实缺不多,因为可以相信未来的大数据库就像现在的自然资源一样,必将因为对利益的追逐成为稀缺资源,而最终落在个别人或企业或部门的手中。想想无论当你想要做什么事情的时候,都有人已经提前知道并且为你做好了计划,还真是一件甜蜜而又令人不寒而栗的事情。

而对于数据的获取,我觉得必然是未来中小型企业甚至个人发挥极致的创造力的领域。如何在尽可能降低成本的情况下采集到越多越准确的数据是必然的发展趋势,鉴于这三个维度事实上都无法做到极致,那么对于数据获取方式的争夺肯定将成就更多的英雄人物。

现在回头从说说作者书中的观点中想到的,p87中关于巴斯德的疫苗的事件,描述了一个被疯狗咬伤的小孩,在接种了巴斯德的狂犬疫苗后成功幸存,巴斯德成了英雄的故事。这是个非常有意思的案例,因为小孩被狗咬伤而患病的概率仅为七分之一,也就是说,本事件有85%的概率是小孩根本就不会患病。那么小孩的生命到底是不是巴斯德救的,而这疫苗到底是有效没效,通过这个事件似乎根本就没有办法得到验证。这就好比某人推出个四万亿计划,但实际上国际经济形势就是好转,哪怕你只推出个二百五计划,gdp都会蹭蹭的往上涨,而且又不会带来四万亿导致的严重通胀、产能过剩、房价泡沫等问题。那你说这四万亿到底是救了国还是误了国?回到我自己的工作领域上来,安全工作,我们一直遵循的方向都是寻找因果关系,典型的从工作前的`风险评估,到调查事故的taproot或者五个为什么,无一不是逻辑推理得到结果的产物。而事实上,如果能做到信息的丰富采集和汇总的话,找出事物之间的相关性,对提高工作环境的安全系数是极为有利的。这个点留着,看看可不可以在未来继续做进一步研究。

p89说了常用的两种因果推理方式,分别是凭直觉的快速推理和经过分析的慢速推理。有意思的是很多时候直觉反而比分析来得成功率要更高。作者是想利用这个例子来说明因果关系是多么的不可靠,也想表达出靠分析试验得到结果的过程成本有多高。其实我是想说,因果关系更多面向的是未来,是没有对新鲜事物发展做出的预测,而相关关系更多的是对已经存在的事物未来发展的预测,侧重点不同而已。

p135里面关于山上小球的描述,它的能量是隐藏的、潜在的。这个观点我很喜欢,也很悲观。这正说明了社会上的一种现象。很多人,虽然没有站在巨人的肩膀上,但是当他们站在亲爹干爹的路虎上保险箱上高背椅上时,就是拥有别人无法企及的力量。最近一直在背马丁老兄的i have a dream,真真切切体会到自由、公正、平等对一个社会,一个国家繁荣发展的重要性。实干兴邦、空谈误国,那就先从建立一个公平的社会秩序开始吧!

p163里面大概讲述了商家是怎么通过大数据获得的信息来进行商业推广的。这里我只想用我的三张信用卡发卡银行做一下比较。首先是交通银行,这张卡最近半年几乎没怎么用,交行也从来都无声无息,我考虑已经可以把这张卡扔掉了;去年因为国航里程申请了一张中信的信用卡,但是今年开始也已基本停用,因为之前一段时间一直使用,中信银行这几个月频繁与我联系,推荐各种业务,多次要给我提供贷款或者提高透支额度,我几次都想要不然就换回来继续用它好了;招商银行的卡也是我用得比较久的一张,近期每月的消费基本都稳定在几千,偶尔也有一万多快两万的时候,当然这不是因为我消费,只是因为出差比较多自己垫钱多而已,但是招商银行从未与我联系给我提升额度,尽管我的月消费额度都已经基本达到信用卡的上限了,有时候甚至不得不使用别家的信用卡。最差的自然是中行,首先是预约了国航金卡的信用卡,结果联系了两次我都在出差,就再也不与我联系了,半年多了我还没有拿到我的卡,而作为工资卡的借记卡,多年来仍然是每天网上付款最多2000,我的使用记录明明经常一个月有好几天都达到2000的顶值,甚至我都主动打过电话要求更改,都给我答复是必须到柜台办理。说完这几个例子,我想中国的银行业与欧美发达国家银行的差距就已经是显而易见了。真的很难以想象这种企业能在世界500强中排名那么靠前,是因为黑了中国人民多少钱。而通过对visa和mastercard的案例描述,则清晰的说明了一个成功的银行是怎么通过对数据收集进行行为预测,最终改变消费者消费习惯的。

然后想说说关于免费导航等应用的使用。天下没有免费的午餐,这是亘古不变的真理。你以为你可以只花点流量费就能舒服方便的使用卫星导航了么,你去过的每一个地方,时间,逗留市场都已经被人家记录下来卖给商家啦,哪天你打车找到一家麦当劳,刚停下车服务员就送上一套板烧鸡腿汉堡套餐可乐换阳光橙不加冰的时候你可千万不要惊讶,因为你已经无时无刻不暴露在别人的监视之下了。

最后想用文中引用的莎士比亚的一句话作为结尾,凡是过去,皆为序曲。

大数据读后感篇十四

短短几天把涂子沛先生的《大数据》这本书浏览一遍,结合去年北大继续教育学院进行现代管理学科学习时,老师介绍这本书时的精髓、内涵时的情景,写这篇。

开云官网app下载安装手机版 。

现将浅薄体会与老师同学们一起交流,部分内容参考了书内容和涂子沛先生的观点,希望老师同学给予批评指正。

“一个真正的信息社会,首先是一个公民社会”,这是全书的一个出发点,这个出发点就是说,“信息社会最大的特点就是,信息的自由流动。”涂子沛在书中的观点是:如果没有人的平等,没有人的自由,信息能够自由流动吗?如果没有人的平等,我们这个社会彼此另外压抑另外一个人,我们的创造力怎么迸发出来?我们每个人都面临大数据时代思维变革的挑战。

涂先生在书中说出“大数据时代的公民生活”,题目他在书中来演绎公民生活的时候,它的背景是“大数据”时代。首先他讲了“什么是大数据时代”,在研究一个现象的时候,首先要研究它的定义,研究它的内涵,咱们就先把数据给它抽走,看看代表是什么。数据不是数字,数据是有跟列的数字,当他在书中谈到数据的时候,我们想到的是它代表计算,代表精确,代表理性,代表科学,代表事实。大家说姚明很高,到底有多高,你最后说两米多左右,这就是一个精确的事实。数据的出现也是人类认识这个世界,不断地向前推进的需要,人类发现需要精确的数字,就好像回到刚才的例子,你说很高很高,到底有多高,我们看,人类历史上很多重大的文明推进和演进都跟数据离不开,比如说度量衡的发明,货币的发明,再比如二进制的发明最后导致计算机的发明,最背后就是数据。

他在书中有一个新的词叫database--数据库。这个词完全是一个外来的词,1。

计算机最早是计算数字和处理数字,那时候就存在database,后来随着计算机能力的不断增强,它可以处理文字、图片、视频、声音等等,但所有这些都放在database,所以他在书中把这所有的一切都称为数据,这时候数据的内涵扩大了。其实大家要知道数据的内涵在扩大,还有一些其他的事情也在发生变化,就是说数据的容量在增大。八十年代的时候就有人提出bigdata这个概念,那时候的“大数据”的还不是现在“大数据”的概念。“大数据”这个概念不断的演变,最早有人就预见到说有一天数据会比程序更加重要,比软件更加重要,它是指重要性。所以我们往大了说,可以说这是一个大的机器,一个大的房子,也可以说是一个大容物。书中说的:到2000年的时候,宾夕法尼亚大学有一个教授出来定义,那时候企业的数据已经到泰了,他说200泰的数据就是大数据了,那泰到底是什么样的单位呢?比如全世界最大的图书馆是美国国会图书馆,美国国会图书印刷品的含量,不包括电子图书加起来是15泰,北师大应该是2个泰或者更少,这个数据就叫“泰”。

2代公民的生活。data在五年的时候,应该有一个创始人,他发现一个东西:同一个计算机芯片,同一个面积上晶体管的数量每一到两年就要增加一倍,这意味着什么?意味着计算机处理的能力越来越强,存储的能力也越来越强,同一个面积上东西越来越多,越来越密,一到两年就增加一倍,物力存在器的性能不断上升,价值不断的下降。有一个考证说,从五十年代起最早的存储器发明到现在,存储器的价格下降了300万倍,大家可以想想,历史上还有什么商品它的价格能在半个世纪下降300万倍?而摩尔定律也成为了一个代名词,呈指数形发展的变化,急剧变化的状态,剧变的变化。我们可以看看,这个图代表摩尔定律,是条直线,为什么是直线呢?因为没办法画,如果严格按刻度来画的话应该是一条横轴的曲线。涂先生在书中分析了:“1988年一个科学家提出了普适计算,普适计算提的不多,大家都提物联网。物联网是普适计算一个子概念,人家计算机的浪潮是分阶段的:第一个阶段是主机阶段,到80年代由于微软、苹果一直到个人电脑的阶段,88年互联网之后,科学家说这不是结果”。

“一个主动你就能改变的时代,因为资源就在那里,你不能去等其他的人”这是涂先生的观点。他说说影响公民的第一点:公民最主要的精神是什么?是积极地介入,积极地改变。影响我们公民的第二点,书里面有很多关于“大数据”时代的隐私文化,有的专家说87%都不能定位,只要通过“大数据”挖掘就会定位,这是影响我们公民生活的一个巨大的挑战,就是隐私权的挑战,而隐私权是一个非常重要的问题,是对个人自由的凭照。他为什么用这么大的篇幅来写隐私权利呢?也是因为我觉得,我们中国社会特别需要隐私权利,不仅是政府在侵犯公民的隐私权利,我们公民彼此之间也在不停地侵犯隐私权,而且大家习以为常。但是隐私权是一个文明社会的标志,越文明的社会,越注重隐私权,个人才越有自由,隐私权是把自己跟公共生活划分开的一条界线,保障个人的自由。社交媒体让我们进入一个前所未有人文相连的时代,这影不影响我们的公民生活?这是最大的隐患,为什么?它把我们人跟人连接起来,我们知道人跟人一旦连接起来,1+1大于2的作用。

总之,使我感受到当前我们正生活在,每天都不同、都高速度发展、激烈竞。

4争和大数据时代。我们每个人都必须面对大数据时代、结合实际面对挑战,要相信“想不到事情会发生,想不到的速度会发生”。要及时更新知识、广纳信息、梳理思维及时做出正确判断、做好工作学习生活中的精准决策。

大数据读后感篇十五

大数据这几个字,其实早已经听了无数遍,但在工作中接触,其实也就一年多的时间,深深的感觉后悔啊,没有早点学习这块的内容,所以赶紧补课。

经过某数据专家的推荐,选择了《大数据时代》这本书入手。对于技术小白来说,这本书的内容是比较好理解的,主要从思维变革、商业变革、管理变革三个方面讲述了大数据给整个时代带来的变化。书中的例子很多也是大家比较熟悉的例子,所以把这本书当作科普性读物快速阅读,是非常适合小白人群的。但对大数据真正的运用,还是得在工作中实践和总结了。

大数据在消费端的应用,应该是已经起步并逐渐在完善的过程,但在工业领域可能是才刚刚起步,所以这本书我觉得对我的意义,更多的是提醒我,在工作中要时刻想想,是否有哪里是应该用到大数据的。现在我也没有特别好的例子给大家,所以只能先把我的读书笔记分享给各位。如果非要用一句话来总结,我想说:时刻牢记用数据说话,但绝对不能完全依赖数据。

-->

-->。

大数据读后感篇十六

《大数据》是中国大数据领域第一本著作,引领了中国社会对大数据战略、数据治国和开放数据的讨论,该书先后获得国家图书馆文津图书奖、第四届中国软科学前沿探索奖、20xx年度十大好书等奖项。下面是有涂子沛大数据的。

读后感。

欢迎参阅。

7月的一天,我有幸拿到了涂子沛的《大数据》一书,几个月来认真翻阅了好几遍,并查阅了许多相关的文章,也让我产生了写下这篇读后感的冲动。

当今的时代是一个信息的时代,是一个数据爆炸的时代。信息是数据的内容,数据是信息的载体。随着电脑、网络的普及,搜索引擎技术的进步以及云时代的来临,上至国家下至个人,无不为数据所包围,信息无处不在、数据无处不在。难以想象离开数据、离开数据管理,我们这个社会将会是什么样子。

那么大数据时代到底有多大呢?我们知道计算机用二进制存储和处理数据,一位是指一个二进制数位——0或1,这是存储信息的逻辑单元。一个字节有8位,再往上是kb(1kb是210字节)、mb(1mb是220字节)、gb(1gb是230字节)、tb(1tb是240字节)、pb(1pb是250字节)、eb(1eb是260字节)、zb(1zb是270字节)、yb(1yb是280字节)。但这究竟是多大的数据呢,我们还是难以想象。有人统计过将1tb的数据全部打印出来,需要用5000万个四开门的书柜去储藏。这是多么庞大的一个数啊,而这只是1tb——240个字节。而仅全世界消费者一年产生的数据就有6000pb,全世界企业一年产生的数据有7000pb。截至20xx年,人类产生的数据为1。2zb,且数据每年以指数级增长,每两年我们拥有的数据将翻一番。

在大数据时代,数字电视、手机、移动互联网统治了我们。截至20xx年,中国手机网民数突破4。2亿;20xx年中国超过美国成为最大的智能手机市场;20xx年2月微信用户数突破4亿,到9月,微信用户达到5亿,微信用户正在以每6个月增长1亿用户的速度增长;95%的智能手机用户睡前玩手机。

“棱镜门”事件主角爱德华•斯诺登一时间成为全球关注的目标,网络时代何处安放我们的隐私?美国间谍卫星精度达到了5至10厘米,当今社会我们每个人近乎“透明”!

大数据时代给我们带来什么。

1965年,英特尔创始人之一戈登•摩尔考察了计算机硬件的发展规律,提出了著名的摩尔定律。该定律认为,同一个面积集成电路上可容纳的晶体管数目,一到两年将增加1倍,也就是说,其性能将提升1倍。换句话说,计算机硬件的处理速度和存储能力,一到两年将提升1倍。这一定律揭示了信息技术进步的速度。

数据的爆炸是“三维”的,是立体的,这三个维度,主要表现在:同一类型的数据量在快速增长;数据增长速度在加快;数据的多样性,即新的数据来源和新的数据种类在不断增长。

任何一件事物,都有一个从量变到质变的过程。在当前这个数据爆炸的时代,数据带给我们什么呢?我想最重要的是带来了思维模式的转变。转变了我们一直以来以因果逻辑思维的模式,变成了相互关系的逻辑思维。举一个例子,在不久的将来我们完全可以通过数据分析,预判出一次地震的时间、地点、强度,但我们不是通过分析地壳运动而来的,而是通过相互关系的庞大的数据分析而来的。

20xx年的冰灾,当时的广州火车站滞留了25万人,这个数据是通过当时在这个区域的手机使用数统计出来的,与后期的最终统计基本吻合。大数据使我们开始了一次全新的探索,而探索的意义不在于发现新大陆,而在于发现新视角。

大数据时代给企业带来了什么。

数据挖掘是一种知识产生的过程,从中产生创新、产生管理、产生推动社会变革的理论与实践。

沃尔玛公司是美国的一家世界性连锁企业,以营业额计算,为全球最大的公司。沃尔玛一年产生的数据有2500tb。沃尔玛公司通过对大量历史数据的分析发现,年轻爸爸去超市购买婴儿尿布会顺便买点啤酒犒劳自己。因此,沃尔玛推出了尿布与啤酒搭售的营销策略,使销售量增长。

纽约,美国最大的城市及第一大港,拥有810多万人口,其36%为外国移民,人口使用约170种语言。1990年,纽约市共发生了凶杀案2245宗,1995年下降到1171宗,20xx年下降到466宗,创下50年最低。纽约是如何实现这个成绩的呢?原来纽约通过把20xx年的犯罪数据和交通数据整合,开发出了“数据驱动的警务管理”,发现交通事故高发地带,也是犯罪活动的高发地带,而且两者的高发时间段也同样吻合。这就将警察以往“亡羊补牢”的工作模式转变为“守株待兔”的工作模式,取得了巨大的成绩。

大数据及其分析,将会在未来20xx年改变几乎每一个行业的业务功能。任何一个组织,如果早一点着手大数据工作,都可以获得明显的竞争优势。用另一本类似著作《大数据时代》的作者维克托的一句话:“大数据是未来,是新的油田、金矿。”

当前我们的企业每天获得大量的生产、营销、办公数据,如何将数据分析应用其中是时代赋予我们的挑战。如何实现粗放型向精细化转变,大数据为我们的企业提升管理效率、提高服务水平提供了有利平台。

世界每天都在变,唯一不变的是变化。大数据将是传统行业的掘墓者,盛极一时的柯达倒闭了,微软收购了诺基亚……我们的企业处在这样一个变革的社会,应该何去何从,值得我们每一个人深思。

首先说下《大数据》这本书好的地方就是将大数据变化为一本科普读物,不是讲大数据的关键技术和具体实现,而更多的是围绕美国政府基于数据的管理历史线条展开,让大家更加容易理解大数据在政府执政和公共事务管理中发挥的作用,所以我看完后最大的感觉就是关注智慧城市的相关人员完全有必要阅读该书,会对以后在智慧城市的管理和建设中如何更好的理解大数据,应用大数据,发挥大数据本身的业务价值有更好的理解。

为何近几年出现大数据,最重要的还是随着信息技术和互联网,管理的精细化,全球化和社交圈扩大,数据呈现了指数级的增长。20xx年美国的数据,离散制造业966pb,政府848pb,传媒行业715pb,这是麦肯锡20xx年出版的一份报告《大数据:下一代创新,竞争和生产率的前沿》里面的一个估算。正是由于数据指数级的增长,对数据的开放,信息自由,数据的采集,数据的分析和处理,预测和决策提出了更高的要求。

信息自由,一为信息公开,二为信息发布。公开是政府和某一社会特定主体的关系,是点对点的;而信息发布是政府和社会的关系,是点对面的。信息自由法已经成为美国不可缺少的一个基本法案,只有信息自由才谈得上进一步的数据开放和数据共享。

我们信奉上帝,除了上帝任何人都要以数据说话。信息技术发展,数据指数级增长,已经彻底改变了政府,社会,商业群体的决策方法。需要的是形成一种数据驱动的决策方法,数据治国,需要基于实证的事实而非简单的意识形态。而真正要让数据能够上升到决策层面,首先需要的就是数据大范围采集,数据抽样,数据测量和数据质量管理。另外数据驱动和事件驱动是两种模式,数据驱动强调的是历史和预测,而事件驱动强调的是实时和响应。大数据有一个维度专门是指速度和快速响应,更需要考虑事件驱动和数据驱动融合。

帝国法则,详细讲述了数据的收集法则,使用法则,发布法则和管理法则。数据能够满足既定的用途,它才有质量。如果不能满足既定的目标和用途,就谈不上质量。换句话说,数据的质量不仅取决于它本身,还取决于它的用途。数据质量的问题涉及到数据收集,使用,发布等所有过程的问题。数据质量管理要有标准,有流程,有救助机制。

从软件的开源到数据的开放,我们过渡到一个新的世界,可以讲数据开放式本身的另外一个重点。在这个新的世界里面,数据远远比软件更加重要。从20xx年以来,美国一直在进行数据开放运动,联邦政府也专门家里了数据开放门户网站datagov,其主要目标就是通过数据开放,通过鼓励新的创意,让数据走出政府,得到更多的创新型应用。从而进一步巩固政府透明化,民主化和政府效能。

数据之争涉及到原始数据采集,数据质量,数据安全,数据粒度,数据价值,数据虚实多个维度。而datagov不仅仅开放了原始数据,地理数据,还包含了数据分析工具的开放。数据开放为创新提供了无穷的燃料,因为创新型应用,数据的能量将逐层放大。

预测未来最好的方法,就是创造未来。而数据最大的价值仍然在预测上面,在解决了数据开放,数据采集,数据质量管理,数据处理后,最重要的作用就是基于数据进行科学的预测和决策。数据竞争将是企业赢之道,一些企业已经将他们商业活动的每个环节放在了数据收集,分析和行动的能力上。

进入20xx年大数据一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新,人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者消费浪潮的到来。“大数据”的运用在各个领域发挥着前所未有的重要作用,渗透到了当今每一个行业和业务职能领域,成为重要的生产因素,并对人类的数据驾驭能力提出了更新的挑战。

一、传统的信息格局被打破。

不是我不明白,这世界变化快。20xx年还是一张软盘打天下的时代,短短十多年光景,硬盘的存储容量已从4gb、16gb、32gb迅速攀升到1tb(相当于1024gb的容量)。原来仅有1.44mb的软盘在当时感觉存储容量还是蛮大的,到现在硬盘容量蹿升至1tb了,反而感觉存储空间捉襟见肘,到底是哪里出现了问题呢?1965年英特尔的创始人之一戈登摩尔考察了计算机硬件的发展规律,提出了著名的摩尔定律。该定律认为,同一个面积集成电路上可容纳的晶体管数目,一到两年将增加一倍,换句话说,计算机硬件的处理速度和存储能力,一到两年将提升一倍。这一定律,得到验证。

大数据!一语惊醒梦中人,大数据时代已经悄然来临。随着社交网络的逐渐成熟,移动宽带迅速提升,云计算、互联网应用更加丰富。更多的传感设备、移动终端接入到网络,由此产生的数据及增长速度迅速攀升。那么什么是大数据呢,正如ibm总结的那样:“大量化(volume)、多样化(variety)和快速化(velocity)”就是“大数据”的显著特征。

二、管理法则:质量是数据时代的根本。

数据能满足其既定的用途,它才有质量。如果不能满足既定的目标和用途,就谈不上质量。换句话说,数据的质量不仅取决于它本身,还取决于它的用途(引致数据库专家杰克.奥尔森)。

随着网络的出现,政府开始在网上发布信息和数据,对政府而言,是一个很大的挑战,因为数据一经政府发布,往往被视为权威,对社会的各个领域都可能产生重大的影响。任何一份通过网络发布的信息,面对的都不是一定特定群体,而是全体国民,如果政府发布数据的质量不可靠,将受到频繁的、大范围的质疑,特别是一些可以会影响到公共政策和行业管制标准的数据,将引起巨大的争议。

例如:单位奶制品中蛋白质含量、菌落总数应该是多少?饮用水里能混杂多少含量的微量元素?新鲜蔬菜能带有多少指标的杀虫剂残留?工厂排放的废气、汽车的尾气以及车间的通风条件都要符合怎样的标准等等,这些标准,都是数据。随着社会的发民、科学的进步,这些标准越来越多越来越细,每一个都和国民生活和经济发展息息相关。所以政府在网上发布数据,必须慎之又慎,保证质量。

三、大数据在各领域中的价值表现。

1、数据竞争:企业赢利之道。

企业以“低成本、高效率”的方式来开展公司的业务,而要做到“低成本、高效率”的运营以及决策正确,企业必须广泛推选以事实为基础的决策方法、大量使用数据分析来优化企业的各个运营环节,通过基于数据的优化和对接,把业务流程和决策过程当中存在的每一分潜在的价值都“挤”出来,从而节约成本,战胜对手,在市场上幸存。这种竞争,就是一种基于数据的竞争。

已经有越来越多令人信服的证据表明:只要实施正确的政策和激励,大数据将成为竞争的关键性基础,并成为下一波生产率提高、创新和为消费者创造价值的支柱。信息时代的竞争,不是劳动生产率的竞争,而是知识生产率的竞争。数据,是信息的载体、是知识的源泉,当然也就可以创造价值和利润,可以预见,基于知识的竞争,将集中表现为基于数据的竞争,这种数据竞争,将成为经济发展的必然。

2、通讯、电信、商务智能、互联网的逐步演变。

近年来,随着大数据的迅猛增加,各个行业、政府部门都在尝试“用数据来决策”、“用数据来管理”、“用数据来创新”,在这个过程中,涌现了一大批既务实管用,又令人耳目一新的做法和应用。

回顾历史,我们从广播的年代到电视的年代再到本世纪初互联网的年代,从音频对话到可视电话,数据技术一直在我们的生活中扮演重要的角色,互联网出现之后,就交流和互动而言,广播和电视无疑相形见绌。

“大数据”可能带来的巨大价值正渐渐被人们认可,它通过技术的创新与发展,以及数据的全面感知、收集、分析、共享,为人们提供了一种全新的看待世界的方法。

四、总结。

涂先生从数据本身的革命、社会科学的革命、企业管理的革命、社会管理的革命四个方面深刻阐述了大数据的重要意义,以最前沿的视野、直接的解读和剖析为我们理清了《大数据》一书的脉络和精髓,为我们如何能更好地阅读、理解、领会《大数据》一书的精神实质提供了很好的帮助,让我们意识到:大数据的时代,是不可逃避的。

-->。

大数据读后感篇十七

现在已经进入到了二十一世纪了,当今社会已经摆脱了上个世纪的那种消息滞后的时代了,我们最应该感谢的就是科学的进步为我们带来了这么多便利。与此同时,科学的进步还为我们带来了“大数据”这个让人类减少了很多工作量的东西。

"大数据"在百度上搜索到的解释是:称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。特点:数量、速度、品种、真实性。而舍恩伯格认为,大数据并不能定义一个确切的概念。他提到"大数据是人们获得新的认知,创造新的价值的源泉;大数据还是改变市场、组织机构,以及政府和公民关系的方法。"这是一种更具有人文色彩和社会意义的诠释。

大数据不仅改变了公共卫生领域,整个商业领域都因为大数据而重新洗牌。购买飞机票就是一个很好的例子。就像书中写到2003年,奥伦·埃齐奥尼准备乘坐从西雅图到洛杉矶的飞机去参加弟弟的婚礼。他知道飞机票越早预订越便宜,于是他在这个大喜日子来临之前的几个月,就在网上预订了一张去洛杉矶的机票。在飞机上,埃齐奥尼好奇地问邻座的乘客花了多少钱购买机票。当得知虽然那个人的机票比他买得更晚,但是票价却比他便宜得多时,他感到非常气愤。于是,他又询问了另外几个乘客,结果发现大家买的票居然都比他的便宜。

飞机着陆之后,埃齐奥尼下定决心要帮助人们开发一个系统,用来推测当前网页上的机票价格是否合理。作为一种商品,同一架飞机上每个座位的价格本来不应该有差别。但实际上,价格却千差万别,其中缘由只有航空公司自己清楚。

埃齐奥尼表示,他不需要去解开机票价格差异的奥秘。他要做的仅仅是预测当前的机票价格在未来一段时间内会上涨还是下降。这个想法是可行的,但操作起来并不是那么简单。这个系统需要分析所有特定航线机票的销售价格并确定票价与提前购买天数的关系。

在信息时代,信息安全问题的日趋凸显,数据独裁与隐私保护之间的矛盾更是立于风口浪尖,成为众矢之的,舍恩伯格在本书的最后章节曾试图寻找一种解决方式来摆脱这一种困境,但最终没能做到,但是他提出"大数据并不是一个充斥着算法的和机器的冰冷世界,人类的作用仍无法被完全代替。"这里表明人在数据时代同样的重要,数据是为人类服务的,也就该人类驱使下完成相应的目的。在这样的大环境下,常引起我更多的思考和担忧。

大数据时代对于我们同是机遇与挑战,一些国家已开始步入大数据时代的行列,并在各个领域开始研究和使用。而对于我国庞大的人口,以及较大的领土面积,都可以在大数据时代为我们提供数据的保障,而能否面临挑战,在大国之间的新一轮角色角逐间崭露头角,我们更需要解决技术等方面的问题,更应在政策上逐步开放各领域的数据,保证数据来源、权限等问题得到解决,不断学习先进的计算机技术,缩小与其他国家的差距。

-->

-->。

大数据读后感篇十八

毫无疑问,我们正处在一个真正意义上的大数据时代。徐子沛先生的《大数据》这本书给了我们一个很好的启发,面对信息技术的迅猛发展,存储能力的日渐膨胀,网络传输的高效便捷,我们当今时代的每个人都应该认清局势,顺势而为,主动驾驭数据,让数据创造更大价值。

对比《大数据》,结合平时工作和学习的实际情况,我认为我们应该认真思考和解决好以下三个问题:

一、什么是大数据?以前我们总认为不相关的数据是没有用,但是徐子沛先生却彻头彻尾的颠覆了我们的固有思维,他告诉我们不需要强求每条数据都那么真实准确,从大量的数据中我们就可以得出相对准确的结果。例如:google通过汇总分析某个地区的人们搜索和流感有关的词汇等关键字提前一周准确的预测了这个地区流感的爆发。通过学习,我深刻意识到大数据无处不在,只要我们细心,就可以轻松挖掘出我们身边的那些大数据,并做一些有意义的关联,就像书中说的那样,未来成功的公司必定是是那些拥有大量数据、并使用那些数据为大众提供服务的公司。

二、如何收集数据?

面对信息大爆炸时代的海量数据,我们必须充分利用高科技手段,高效有序地收集整理各种数据,以满足现实工作中越来越广泛的信息需求。为此,建议我们广电系统可以规范文档备案和上传制度,建立统一的文档共享中心。通过互联网、电子计算机等现代技术手段搜集汇总各部门的纵向数据以及部门间的横向数据,通过纵横交错的数据网络,针对特定主题,持续不断地收集相关数据,增加现实工作的高效性和便捷性。

三、怎么利用数据?

收集数据的目的是为了分析利用数据。这里举一个现代财务发展史上的伟大发明,财务三大报表,通过分析财务报表,阅读者可以直观的了解到企业的财务全貌,大大加快了现代公司制企业发展的进步步伐。当今社会,依托于现代计算机技术的高速发展和现有社会结构的深刻变革,我们可以大力引入中介机构,通过培训,定制软件等方式,向员工贯彻新理念,普及新知识,迅速改变落后工作状态,加快提升业务运行效率。

综上,大数据时代是我们信息化社会发展必然趋势,身处其中的我们还有很多知识需要学习,许多思维需要转变。只有紧跟时代潮流,迅速响应调整,才能在新一轮市场竞争中把握主动,脱颖而出。成就更伟大的事业,收获更宏伟的人生。

2015年11月23日。

大数据读后感篇十九

数据,对于我们现代社社会来说,已经是再熟悉不过了。大量化(volume)、多样化(variety)、快速化(velocity)和大价值(value)。这四个v就是大数据的基本特征。每天我们都不得不和数据打交道,比如我们平常所说得“眼观六路,耳听八方,”就是生活中一个很好的的收集数据的例子。还有,在我们平时的学习中,我们对于一些学习上的数据的整理等等。可以说,数据已经成为了我们的影子一样,无时无刻的在我们的身边活动。

拿到《大数据》这本书时,吸引我的不是书评的内容,而是书的封面上的一句话“除了上帝,任何人都可以用数据说话。”也就是说,上帝可以不用数据来说话,但是,作为一个平常人,我们做事,言论等都必须用数据来说话。用数据论来证我们的观点正确性。

那么数据真的就是那么重要吗?其实不然,数据果真有那么的重要。作者在书中大量应用世界头号强国美国的例子来说明美国是如何利用数据以及数据在美国人的利用下,是如何造福美国人的。使得美国人走上了民主、发展的道路。书中还引用了大量的利用数据的案例,以及利用数据会有什么样的后果。当然,作者在书中也很明确的表达了自己观点,也就是数据要被人利用,利用的好了,造福人类,否则,祸害无穷。

毫无疑问,我们正处在一个真正意义的大数据时代。但是,大数据浪潮的来龙去脉如何?数据技术变革何以能推动政府信息的公开、透明和社会公正?又何以给我们带来无限的商机,既便利又危及我们每个人的生活?《大数据》给了我们一个很好的答案。在拿到徐子沛《大数据》时,与其说这是个新概念,还不如说就是一个现实。信息技术的迅速发展和普遍应用,存储能力的膨胀,网络传输的便捷,必然产生巨大的数据量。即使是一个公司,经过多年的积累,产生的数据也是惊人的。每天繁多的数据,这就是要求企业要很好地存储数据,利用数据通过数据,使得数据说话,提升企业的业绩和知名度。

对于一个企业来说,比较实际的倒是关注一下企业微观大数据,如何充分利用现有的、能够得到的和自己创造的数据,采用《大数据》里提及的新技术、新方法、新理念,筛选、组织、关联、分析,精细化管理和挖掘数据,探索规律性的东西,指导企业活动。尽可能多的获取数据,首先是要有心,对于公司员工来说,随时随地注意收集客户数据、需求数据、产品数据、市场数据、资源数据等,经过整理,把它变成公司的数据资产;然后是要有据,信息与数据最大的不同,就是数据是能够度量或者确定的信息,不能“毛估估”,收集数据要精细化,要准确;其次要有序,数据需要存储,更加需要整理,单个数据没有很大意义,静止的数据也没有很大意义,有价值的数据是流动的、与其他数据交互作用的。一个大杂烩的数据库,在需要时让人找不到北,没有任何意义。再次,需要技术支持,大量的数据如何检索,如何关联,单靠人脑是不行的,需要建立基于特定理论的数据处理系统来分析管理。对于一个企业,最理想的是建立一个类似人类神经系统的数据管理系统,采用各种信息终端采集内部和外部信息,通过分析、归纳、筛选,形成管理数据,某些数据可以成为系统的“本能”,一旦触发能够自动做出反应;某些数据可以成为组合信息提交大脑综合分析,作出决策和反应。数据应该为人服务,这是一条基本原则。在大数据时代始终发挥人的主观能动性,采用先进的理念和技术驾驭数据,让人们生活更方便,工作效率更高,劳动强度降低,为社会创造更多的物质财富和精神财富。

在中国,统计部门提供的数据,是各级政府部门和广大人民群众了解国家社会经济发展和人民生活状况主要渠道。只有真实可靠统计数据,才能使政府决策有的放矢,人民了解国家经济与人民生活的真实状况。如果统计数据虚假不实,就会误导政府和人民,让政府失信于人民。因此,我们一定把握好数据的生命线—质量关,确保给国家和人民提供准确、真实、可靠、无误的数据。

二、如何高效有序地收集数据?

收集数据的目的是为分析利用数据。通过数据分析挖掘数据背后隐含的经济规律及有利于提高效率、改进工作的因素,提高政府管理、决策和人民生活水平,实现“用数据改进管理”。因此,作为统计人,不仅要做好数据收集的及时有效和真实正确,更重要的是要善于分析利用数据,写好专业分析报告,发现问题、支撑决策、评估绩效的目的。

此外我们还可以看到不少政府机构或者其他一些组织也在开始大数据解决他们遇到的一些问题。在本书的最后一章,作者告诉了我们大数据可能带来的坏处。如:通过大数据可能我们的个人各种信息、隐私会很容易地被大数据的拥有者找到,这些信息,可能被政府用来监管我们等;通过大数据可以预测可能发生的事,或者预测我们人个人本书即将做的行为,书中有个例子:警察通过大数据分析得出一个人即将可能犯罪,并把它逮捕了,但事实上这个人现在并没有犯罪。也许这就限制、约束了我们个人的自由。

看完这本书,颠覆了自己之前的一些想法:以前我们认为错误的数据是没有用,我们需要保证统计的数据的准确性,但是在大数据中,错误的数据也是有用的,它和其他所有相对正确的数据一起构成了整体,也就算不了什么了。我们同样可以从这些数据中得出比较正确的预测和分析。google利用人们搜索的关键字来预测和判断某个地区是否发生流感,google通过分析这个地区的人们搜索和流感有关的词的数量等来分析得出。google从互联网抓取数以亿记的各种语言、各种翻译水平的翻译结果,使用其翻译出来的准确率比那些微软使用正确的词库翻译出来的句子准备率更高。我自己的感想是,其实大数据无处不在,只要我们细心,我们就可以挖掘出身边的那些大数据,并做一些有意义的是,就像书中说的那样,我们不需要强求每条数据都那么真实准确,但是从大量的数据中我们就可以得出相对准备的结果。未来成功的公司必定是是那些拥有大量数据、并使用那些数据为大众提供服务的公司。

大数据读后感篇二十

导语:维克托·迈尔·舍恩伯格在书中前瞻性地指出,大数据带来的信息风暴正在变革我们的生活、工作和思维,大数据开启了一次重大的时代转型,并用三个部分讲述了大数据时代的思维变革、商业变革和管理变革。

当我们说人类是通过因果关系了解世界时,我们指的是我们再理解和解释世界各种现象时使用的两种基本方法:一种是通过快速、虚幻的因果关系,还有一种就是通过缓慢、有条不紊的因果关系。大数据会改变这两种基本方法在我们认识世界时所扮演的角色。

大数据的精髓在于我们分析信息时的三个转变,这些转变讲改变我们理解和组建社会的方法。

第一个转变就是,在大数据时代,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机采样(样本=总体)

第二个转变就是,研究数据如此之多,以至于我们不再热衷于追求精确度

第三个转变因前两个转变而促成,即我们不再热衷于寻找因果关系,而应该寻找事物之间的相关关系。大数据告诉我们”是什么“而不是”为什么“。在大数据时代,我们不必知道现象背后的.原因,我们只要让数据自己发声。,出处:短美文(),转载请保留本出处,否则追究其责任,谢谢你的支持,我们会给做得更好!

正如大家所知道的那样,人类的大脑具备这样的功能,它会把新输入的刺激或信息与”过去的经验或积累的部分知识“相对照,然后进行调整并接受下来。如果眼前新的现实与大脑中储存的固有信息无法协调,便会在无意识中拒绝接受新的现实(当作没有看见);或者通过自己一知半解的知识任意推测,使自己认识到的情况偏离实际(产生错觉)。这是人的一种本能,目的在于使自己保持冷静。

所以作者称之为revolution。

公平正义的基础是人只有做了某事才需要对它负责,毕竟,想做而未做不是犯罪,社会关系于个人责任的基本信条是,人为其选择的行为承担责任。如果大数据分析完全准确,那么我们的未来会被精准的预测,因此在未来,我们不仅会失去选择的权利,而且会按照预测去行动。如果精准的预测成为现实的话,我们也就失去了自由意志,失去了自由选择的权利。既然我们别无选择,那么我们也就不需要承担责任。这不是很讽刺吗。

扯到这里,顺便扯一下,书中另一段关于自由意志的描述

在哲学界,关于因果关系是否存在的争论已经持续了几个世纪。毕竟,如果凡事皆有因果的话,那么我们就没有决定任何事的自由了。如果说我们做的每一个决定或者每一个想法都是其他事情的结果。而这个结果又是由其他原因导致的。以此循环往复,那么就不存在人的自由意志这一说了。——所有的生命轨迹都只是受因果关系的控制了。因此,对于因果关系在世间所扮演的角色,哲学家们争论不休,有时他们认为,这是与自由意志相对立。

书中举了个例子,举了部电影《少数派报告》,当我看到这里的时候,”哎哟,我居然看过这部电影,想想心里还是有点小激动“,有兴趣的可以去看下,大概就是讲警察通过预测来提前抓捕犯人,不过不是通过大数据,是通过超人类的方式。当你什么举动都可以被预测,相当于你完全暴露在太阳光下,换成你,你害怕不。

最后,附上两段结语,一段是书中的一段话,另一段是我自己瞎编的。

大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的未来。

大数据终将会影响到我们,也像其他技术一样会是一把双刃剑,用得好,动心,滥用,害怕。如同核技术一样,用的话,造福地球,滥用,给个金刚石地球你,照样爆。我相信,未来的大数据的发展会如作者所说的,是一场生活、工作与思维的革命。

-->

-->

-->

大数据读后感篇二十一

“大数据”在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在已有时日,却因为近年来互联网和信息行业的发展而引起人们关注。下面是小编给大家整理的《大数据时代》600字读后感,希望能给大家带来帮助。

读完《大数据》,我才意识到这并不是一本枯燥无味的书籍。作者运用案例和讲故事的方式,把美国数据开放、收集、使用背后的立法故事、公民故事、技术故事、商业故事娓娓道来,引人入胜,令我大开眼界。

我在想,大数据概念对于教育来说会产生什么样的实用价值呢?一直以来,中国教育在研究教育的数字化,比如数字化校园,这个思路就是把我们教育的内容进行数字化,其结果指向的就是电子教材的研发或者是教学过程的数字化。美其名曰,这是教育技术的重要内涵。在教学过程中,学生的行为表现都可以被数据化,而这项研究不是任何一个专业可以深入下去的,它的专业性太强,所以我才会想到,所谓教育技术与其研究教育的数字化,不如研究教育的数据化来得实在,来的有意义。长期以来,我们并不了解教育对一个人的影响具体会如何表现,我们有的只是一个轮廓,我们也并不确定一个教师的行为对学生具体产生了哪些影响。所以,人们对教育一直有一个深深的质疑,它是不是科学的?大数据概念至少提出了关注“是什么”比“为什么”要有实际意义得多。而我们的教育恰好需要把注意力从“为什么”转移到“是什么”上面来,只有如此,才能把教育从为什么发展成“可能成为什么”上来,这会是一次思想上的革命。而对于现在地位岌岌可危的教育技术来说,把研究的重点从数字化转移到数据化上面,这才是它的出路。

如何将数据融入教学,教育者首先通过标准化全科教学处方,实现了教师授课模板和教学内容的标准化,保证每个教学过程和内容是可控的,然后结合每天的教学内容,处理好面对的数据,处理好数据,自然也就处理好了课堂的反馈,最终形成了既注重教学体验又以教学结果为导向的教学体系。

与此同时,不仅要注重课上的学生资源,在课后还要对这些资源进行跟踪处理。这与过去的教育教学显然是不同的,面对大数据时代的到来,教学有所改变是必然的。所以,无论环境怎么变换,数据如何复杂,我们都不能不去改变自己的`教学去迎合将来的这个大数据时代。

读完《大数据时代》这本书后,我意识到:我们即将或正在迎接由书面到电子的跳跃之后的又一重大变革。

这本书介绍了大数据时代来临后,接踵而至的`三项变革——商业变革、管理变革和思维变革。

其实,这场变革已经打响。商业领域由于大数据时代的到来而推陈出新。前几年,一家名为farecast的公司,让预订到更优惠的机票价格不再是梦想。公司利用航班售票的数据来预测未来机票价格的走势。现在,使用这种工具的乘客,平均每张机票可以省大约50美元,这就是大数据给人们带来的便利。

大家应该都知道2009年出现的h1n1型流感,就拿美国为例,疾控中心每周只进行一次数据统计,而病人一般都是难以忍受病痛的折磨才会去医院就诊,因此也导致了信息的滞后。然而,对于飞速传播的疾病,google公司却能及时地作出判断,确定流感爆发的地点,这便是基于庞大的数据资源,可见大数据时代对公共卫生也产生了重大的影响!

在我看来,如果想在在大数据时代里畅游,不仅要学会分析,而且还要能够大胆地决断。

在美国,每到七、八月份时,正是台风肆虐之时,防涝用品也摆上了商品货架。沃尔玛公司注意到,每到这时,一种蛋挞的销售量较其他月份明显增加。于是,商家作了大胆的推测,出现这样的结果源于两种物品的相关性,便将这种蛋挞摆在了防涝用品的旁边。这样的举措大大增加了利润,这就是属于世界头号零售商的大数据头脑!

大数据时代的到来,可以让我们的生活更加便利。但是,如果让大数据主宰一切,也存在一定的风险。

大家应该都知道电子地图,它可以为人们指引方向。但大家应该还不知道,它会默默地积累人们的行程数据,通过智能分析可以推断出哪里是自己的家,哪里是工作单位。我们的隐私就这样被不为人知地收集着。

大数据时代的到来,让我们的生活更安全,更方便,但与此同时,我们的隐私不再是隐私,数据的收集变得无所不包、无孔不入。世界已经向大数据时代迈进了一小步,一个崭新的时代正向我们走来。让我们用知识武装大脑,做好准备,迎接新时代的到来!

这一章节,利用马修莫里导航图的例子引出了大数据的实践方式,奇人莫里通过整理航海相关的边角数据,把整个大西洋按照经纬度划分了出来,并标注出了温度、风速和风向,从而发现了洋流,也为船员提供了有效的航海路线,这就是数据的价值体现了。书中也提到了,量化我们周围的一切,是数据化的核心,将文字变成数据、将方位变成数据,将沟通、情感变成数据,通过大数据,我们会意识到,世界在本质上是由信息构成的。

在工作中,这点也可以作为启发点,通过对数据的整理,或者说以某种方式采集到相关数据,将数据整理出有价值的信息后,不断的改善到工作流程、效率、服务方面,也是工作上的创新点。

笔者在书中提到了,数据的潜在价值,并提出了数据创新应用的方法,第一是数据的再利用,数据信息被采集用作特定分析后,在另一个领域或者角色立场下,或许会开发出新的有价值的信息;第二是数据的重组,将不同类别、类型的数据进行重组,产生一个新的数据集合出来,寻找其中的关联性;第三是数据的扩展,这就需要在记录数据的同时设计好他的可扩展性;第四是数据的折旧值,数据将会贬值,但是仍会有其潜在价值;第五是数据废气,即数据采集时的离散量、离散交互信号,举例是谷歌与微软的拼写检查;第六是开放数据,数据的开放将会有利于各行各业的使用,并促进全行业数据时代的发展。这其中又提到了数据估值的概念,在数据使用时价值才会体现出来,而不是在占有本身。

根据所提供价值的不同来源,分别出现三种大数据公司,基于数据本身(采集大量数据的公司)、基于技能(提取用户的需求,给出数据分析结果的公司)、基于思维(挖掘数据新的价值的公司)。

世间万物的复杂性多样化并非非此即彼那么简单,舍恩伯格也是这种二元对立的幼稚思维吗?其实不然,读者在阅读时一定要看清楚他是在什么语境下说的,不要因囫囵吞枣的浅读而陷入断章取义的误读。比如说舍恩伯格在提出"不是因果关系,而是相关关系。"这一论断时,他在书中还说道:"在大多数情况下,一旦我们完成了对大数据的相关关系分析,而又不再满足于仅仅知道“是什么”时,我们就会继续向更深层次研究的因果关系,找出背后的“为什么”。"[i]由此可见,他说的全体数据和相关关系都在特定语境下的,是在数据挖掘中的选项。

大数据研究的一大驱动力就是商用,舍恩伯格在第二部分里讨论了大数据时代的商业变革。舍恩伯格认为数据化就是一切皆可"量化",大数据的定量分析有力地回答"是什么"这一问题,但仍然无法完全回答"为什么"。因此,我认为并不能排除定性分析和质化研究。数据创新可以创造价值,这是毫无疑问的。舍恩伯格在讨论大数据的角色定位时仍把它置于数据应用的商业系统中,而没有把它置于整个社会系统里,但他在第二部分大数据时代的管理变革中讨论了这个问题。在风险社会中信息安全问题日趋凸显,数据独裁与隐私保护成为一对矛盾。如何摆脱大数据的困境?舍恩伯格在最后一节"掌控"中试图回答,但基本上属于老生常谈。我想,或许凯文.凯利的《失控》可以帮助我们解答这个问题?至少可以提供更多的思考维度。正如舍恩伯格在结语中所道:"大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的未来。"谢谢舍恩伯格!让大数据讨论从自然科学回到人文社科。由此推断,《大数据时代》不是最终答案,也不是标准答案,只是参考答案。

如今说起新媒体和互联网,必提大数据,似乎不这样说就out了。而且人云亦云的居多,不少谈论者甚至还没有认真读过这方面的经典着作--舍恩佰格的《大数据时代》。维克托.迈尔--舍恩伯格何许人也?他现任牛津大学网络学院互联网研究所治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人。他的咨询客户包括微软、惠普和ibm等全球顶级企业,他是欧盟互联网官方政策背后真正的制定者和参与者,他还先后担任多国政府高层的智囊。这位被誉为:大数据时代的预言家"的牛津教授真牛!那么,这位大师说的都是金科玉律吗?并不一定,读大师的作品一定要做些功课才好读懂,如果能做足功课又具备相应的理论功底,就能与之进行一场思想上的对话。

舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。在第一部分"大数据时代的思维变革"中,舍恩伯格旗帜鲜明的亮出他的三个观点:一、更多:不是随机样本,而是全体数据;二、更杂:不是精确性,而是混杂性;三、更好:不是因果关系,而是相关关系。对于第一个观点,我不敢苟同。一方面是对全体数据进行处理,在技术和设备上有相当高的难度。另一方面是不是都有此必要,对于简单事实进行判断的数据分析难道也要采集全体数据吗?我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的方法和范围要加以拓展。

-->。

大数据读后感篇二十二

最近看了《大数据》一书,有一点感想,在这里和大家分享。

作者在后序中写 道,这不是一本纯粹谈技术的书,而是以技术背景探讨人和社会关系的书。今天的中国,是一个人口大国、互联网大国、手机大国,却不是一个数据大国。书中有这 样一组调查数据——“麦肯锡公司以20xx年度各国新增的存储器为基准,对全世界大数据的分布做了一个研究和统计,中国20xx年新增的数据量为250 拍,不及日本的400拍、欧洲的2000拍,和美国的3500拍相比更是连十分之一都没有达到。国内的大数据步伐急需加快。

《大数据》一书对美国大数据的应用进行了十分详细的介绍与分析,我印象最深的为两点。

第一,以海量数据的处理作为政策制定的依据。看这本书的时候,我想到了这两年很火的一个美国人——斯诺登。在其曝光的“棱镜”计划中美政府直接从包括微软、谷歌、雅虎、facebook、aol、skype以及苹果在内的国际公司服务器收集信息。美国政府从这些海量数据中寻找自己需要的数据,并以此作为所谓安全政策制定的依据之一。姑且不论媒体对此计划的口诛笔伐及相应的道德风险,仅从政策制定方面来说,依据于海量数据的政策制定科学性肯定比一般计划要高得多。

20xx年,雅虎 首席执行沃兹博士在《自然》上发表的《21世纪的科学》中提到,得益于计算机技术和海量数据库的发展,我们每个人在现实世界中的活动得到前所未有的记录, 这种记录也更为细致,为社会科学的定量分析提供了极为丰富的数据。打个比方,从你的qq空间、微博、微信中一个普通朋友都能了解到你在哪儿、做了哪些事 情、现在的状态是什么,而新闻的跟帖、网站的下载记录、社交平台的互动记录等等都为社会行为的研究提供了大量的数据。我想到最近比较火爆的穿戴设备,如果 该技术得到普及过后,拥有穿戴设备的人群的生活轨迹、生理各项指标都能轻而易举地得到,相信这些大量的原始数据如能安全有效利用定能为卫生政策的制定提供 科学依据。

第二,万事万物, 凡存在,皆联网,凡联网,皆计算。20xx年起,美国食品与药品管理局开始在药品上推行配备rfid做法即每个食品包装上安装一个薄如纸张或小如豆粒的无 线传感器。通过这个移动传感器,对食品进行连续跟踪,一旦相应的安全事故爆发,就能通过数据库追踪溯源,快速确定传染源与影响范围。这一技术相对于国内尚 在起步阶段的食品追溯具有极强的借鉴性。上面提到的穿戴设备其实就可以视为一个穿戴在人身上的rfid。

20xx年的时 候,美国国家气象局在全国2000两客运大巴上装备了传感器,随着大巴的移动,沿途手机所有地点的温度、湿度、露水、光照度等数据,并立即传给国家气象局 数据中心。数据的采集是每10秒中一次,每天采集10万次以上的数据,这些实时的、高精度的数据意味着天气预报将不再仅仅是”预“,将逐渐走向“实”报、 “精”报。

作者涂子沛在书里 引用胡适与黄仁宇的话。胡适说中国人习惯于当“差不多先生”,凡是马马虎虎、不求精确。黄仁宇认为,中国不懂得用数字来管理国家。作者引用这两位先生的名 言,当然是要彰显传统中国和今天美国之间的差异。但是我们也必须认识到:这两位先生身经当时中国的混乱,激愤而出此言。在大数据浪潮迅猛而来的时候,中国 与100年前已经完全不一样了,我们已经有足够的能力与自信来面对各项挑战。20xx年中国开始着手制定医疗系统的最小数据集,3年之后卫生部出台了第一 版中国医院最小数据集的标准。也是在20xx年,中国创立了第一个全国性的大型社会调查项目,开始对社会的发展和变迁进行全方位、综合性、纵贯性的问卷访 谈调查,即“杨文昊在kod里面穿的裤子”。可以看到,中国政府和企业已经投入到了大数据时代的浪潮之中了。我个人也有几点应对的想法。

一是鼓励、扶持基 于数据的创新创业。书中提到,政策扶持的传统方法,可能是以政府主导建立大数据产业园,对新兴企业提供办公场所等便利条件或者现金支持,这固然有效,但更 为有效的是调动全社会的力量。调动全社会的力量来支持可以包括扶植民间团体,快速推进新技术、新理念在全社会的传播。现在云技术大众基本上都耳熟能详了, 而这主要是各大互联网服务上都相继推出了相应的云服务以及各大媒体对这项技术的关注,促进了大众对新技术的了解与支持。

二是政府机构要建 立专门机构来统筹管理数据工作。在大数据时代不同的数据需要整合,公安、消防、民政、社保等等数据都需要进行联动,将沉睡在数据库内的数据唤醒,为政府制 定政策所用,避免各自为政、多头管理的情况发生。数据的联通也能在一定程度上减少群众的“办证”问题,相信在大数据时代,大家可能只需要一张身份卡就能满 足绝大部分的数据需要。

三是围绕个人数据安全,加强管理。任何技术都是双刃剑,耍得好可以披荆斩棘,耍得不好则会害人伤己,大数据也不列外。如何保障个人隐私也成为了大数据时代面临的一个重大挑战。

【本文地址:http://www.pourbars.com/zuowen/11873277.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map