最新初中数学数轴教案(热门19篇)

格式:DOC 上传日期:2023-11-14 10:33:20
最新初中数学数轴教案(热门19篇)
时间:2023-11-14 10:33:20     小编:MJ笔神

教案能够帮助教师提前预设教学环节,有利于教学效果的提高。教案的编写应充分考虑课堂教学的创新和教学方法的多样性。如果你想要了解如何编写一份好的教案,以下是一些教案范文,供你参考和学习。

初中数学数轴教案篇一

1.了解一元一次方程的概念。

2.掌握含有括号的一元一次方程的解法。

重点、难点。

1.重点:解含有括号的一元一次方程的解法。

2.难点:括号前面是负号时,去括号时忘记变号。

教学过程。

一、复习提问。

1.解下列方程:

(1)5x-2=8(2)5+2x=4x。

2.去括号法则是什么?“移项”要注意什么?

二、新授。

一元一次方程的概念。

只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,这样的方程叫做一元一次方程。

例1.判断下列哪些是一元一次方程。

x=3x-2x-=-l。

5x2-3x+1=02x+y=l-3y=5。

例2.解方程(1)-2(x-1)=4。

(2)3(x-2)+1=x-(2x-1)。

强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是“-”号,注意去掉括号,要改变括号内的每一项的符号。

补充:解方程3x-[3(x+1)-(1+4)]=l。

说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。

三、巩固练习。

教科书第9页,练习,l、2、3。

四、小结。

学习了一元一次方程的概念,含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号。

五、作业。

1.教科书第12页习题6.2,2第l题。

初中数学数轴教案篇二

(说教材)。

一.教材内容分析。

数与形是数学的两大组成部分,数形结合的思想方法是数学中的一个重要思想方法,而数轴是数形结合的高度统一。数轴是新人教版数学教材七年级上册第一章第二节的内容,是在学生学习了有理数概念的基础上再介绍的。通过数轴的学习可加深学生对有理数概念的理解,并为后面引出相反数、绝对值的概念,学习有理数大小比较、有理数运算法则、平面直角坐标系等打下良好的基础,起到承上启下的作用。

二.学情分析(学生情况分析)。

本课的教学对象是刚刚步入中学校门的七年级学生,此阶段学生天真活泼,好奇心强,有较强的模仿能力和求知欲望,而且富有一定的逻辑思维能力。但在新知的学习过程中,还是较容易出现理解局限的问题。

三.教学目标。

根据《新课程标准》对学生在知识技能、数学思考、解决问题、情感态度等方面的要求,我确定了本节课教学目标如下:

a、知识技能:

1、理解数轴概念,会画数轴。

2、知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。

b、数学思考:

1、从直观认识到理性认识,从而建立数轴概念。

2、通过数轴概念的学习,初步体会对应的思想、数形结合的思想方法。

c、解决问题:会利用数轴解决有关问题。

d、情感态度:通过数轴的学习,体会数形结合的思想方法,进而初步认识事物之间的联系性,感受数学与生活的联系。

四.重点、难点(说教学重点、难点)。

本节课教学重点我确定为:数轴的概念。

因为:只要数轴概念真正理解了,画数轴、在数轴上表示有理数等也就容易了。

本节课教学难点我确定为:从直观认识到理性认识,从而建立数轴概念。

因为:七年级的学生形象思维占主导地位,抽象思维刚开始萌芽。

教有教法,学有学法,但无定法,贵在得法,下面谈谈本节课的教法与学法。

五.学习方法和教学方法。

1、教法:数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以学生既为主体,又为客体的原则下,展现知识和方法的思维过程,因为新课标和新理念认为,获得数学知识的过程比获得知识更为重。基于本节课的特点:课堂教学采用了“情境—问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。

根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地掌握数轴的概念,并通过练习,使学生更好地理解数轴概念,从而体会数形结合的思想。

根据本节课的教学内容,我所采用的教学手段是:多媒体辅助教学。

通过课件演示,创设情境,让学生分四人小组讨论、交流、总结,并派代表发言。教师耐心引导、分析、讲解和提问,并及时对学生的意见进行肯定与评议,从而突出教师是学生获取知识的启发者、引导者、帮助者和参与者的形象。

2、学法:俗话说“授人以鱼,不如授人以渔”,在教学中我特别重视学法的指导,让学生在“观察—操作—交流—思考—概括—应用”的学习过程中,自主参与、经历数学知识的形成和应用过程。告诉学生,学习数学不是简单模仿、机械操练,而是探究学习、发现学习、研究学习、合作学习。

“凡事预则立,不预则废”,充分的课前准备是成功的一半。

六.教学准备。

老师:要充分备课,精心制作多媒体课件,准备教具。

学生:要认真预习,准备直尺或三角板。

七、教学过程分析。

课堂教学是学生获取知识、形成技能、发展能力和思维的主战场。为了突出重点、突破难点、达到目标,我设计了以下几个教学环节:

(一)、复习旧知。

通过对已知知识的回顾复习,使学生更易于接受新知识。

(二)、创设情景,引入课题。

为了使学生明白数与形的对应关系,初步认识数形结合的美妙之处,我设计了:

观察温度计的活动,目的是为了让学生切身体会数与形的对应关系,为学习数轴概念埋下伏笔。

学生拿出自己准备的温度计分小组讨论观察,共同发现数与形的对应关系。

接下来,我创设了这样一个情境:

在一条东西方向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆。随后我提出问题:“怎样用数简明地表示这些树、电线杆与汽车站的相对位置?”(学生小组讨论后再派代表回答)通过这个活动,让学生们认识到:考虑东西方向的马路上一些树、电线杆与汽车站的相对位置关系,既要考虑距离,又要考虑方向,从而需要用正负数描述。

前面几个活动之后,学生对数形结合的思想方法已有所体会,为此我让学生:

再次观察所画情境图、温度计。

并引导学生观察、比较,将其抽象成一条直线。

这样,就把正数、0和负数用一条直线上点表示出来。

(三)、学习概念,解决问题。

通过刚才的观察、比较,我引出了新课:

1)学习数轴的概念。

我先进行讲解:

一般地,在数学中人们用画图的方式把数“直观化”。通常用一条直线上的点表示数,当然这条直线必须满足以下三点要求:

(1)在直线上任取一个点表示数0,这个点叫做原点。

(2)规定直线上从原点向右(或上)为正方向,通常以向右为正方向。

(3)选取适当的长度为单位长度,每隔一个单位长度取一个点。

再画数轴。

师生共同归纳画数轴的步骤,要求学生独立画出数轴,并互相交流,老师巡堂并参与交流使学生弄清如何画数轴。

设计意图:通过学生画数轴,交流和反思,使学生真正掌握数轴的概念。

3)在数轴上表示右边各数:

4)指出数轴上a,b,c,d各点分别表示什么数。

设计意图:让学生明白任何一个有理数都可以用数轴上的一个点来表示。

下一个活动,填空:数轴上表示-2的点在原点的边,距原点的距()表示3的点在原点的()边,距原点的距离是()。

通过填空,老师引导学生做出课本第12页的归纳。

课堂练习:

1)课本第12页的练习1、2题。

2)强化练习:

(1)在数轴上标出到原点的距离小于3的整数。

(2)在数轴上标出-5和+5之间的所有的整数。

设计意图:通过练习,巩固数轴的概念;强化练习是为了培养学生用数轴解决问题的能力。

小结:什么是数轴?如何画数轴?如何在数轴上表示有理数?

1)数轴的三要素:原点、正方向、单位长度。

2)画数轴的步骤:

1.画直线;

2.在直线上取一点作为原点;

3.确定正方向,并用箭头表示;

4.根据需要选取适当单位长度。

作业:课本第17页习题1.2第2题;学生用书同步训练。

设计意图:通过适量的练习有利于学生掌握所学内容,对于学有余力的同学还应该给他们足够的发展空间,让他们多做同步训练。

八、教学设计说明。

这节课,我通过五个活动的教学设计,既遵循了概念教学的规律,又符合初中生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生由感性认识上升为理性认识。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。

初中数学数轴教案篇三

1.经历探索具体情境中两个变量之间关系的过程,获得探索变量之间关系的体验,进一步发展符号感。

2.在具体情境中理解什么是变量、自变量、因变量,并能举出反映变量之间关系的例子。

3.能从表格中获得变量之间关系的信息,能用表格表示变量之间的关系,并根据表格中的资料尝试对变化趋势进行初步的预测。

【学习方法】自主探究与小组合作交流相结合.

【学习重难点】重点:能从表格的数据中分清什么是变量,自变量、因变量以及因变量随自变量的变化情况。

难点:对表格所表达的两个变量关系的理解。

【学习过程】。

模块一预习反馈。

一、学习准备。

1.我们生活在一个变化的世界中,很多东西都在悄悄地发生变化.

你能从生活中举出一些发生变化的例子吗?

教材精读。

1.请同学们观察思考,逐一回答下面的问题:

根据上表回答下列问题:

(1)支撑物高度为70厘米时,小车下滑时间是多少?

(3)h每增加10厘米,t的变化情况相同吗?

(4)估计当h=110厘米时,t的值是多少,你是怎样估计的?

(5)随着支撑物高度h的变化,还有哪些量发生变化?哪些量始终不发生变化?

支撑物的高度h和小车下滑的时间t都在变化,它们都是。其中小车下滑的时间t随支撑物的高度h的变化而变化。支撑物的高度h是,小车下滑的时间t是。

在这一变化过程中,小车下滑的距离(木板的长度)一直变化。像这种在变化过程中的量叫做。

我国从1949年到的人口统计数据如下(精确到0.01亿):

(2)x和y哪个是自变量?哪个是因变量?

(3)从1949年起,时间每向后推移,我国人口是怎样的变化?

(4)你能根据此表格预测时我国人口将会是多少?

在“人口统计数据”中:

时间和人口数都在变化,它们都是。其中人口数随时间的变化而变化。时间是,人口数是。

归纳:借助表格,我们可以表示因变量随自变量的变化而变化的情况。

模块二合作探究。

1.研究表明,当每公顷钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系:

(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?

(2)当氮肥的施用量是101千克/公顷时,土豆的产量是多少?如果不施氮肥呢?

(3)据表格中的数据,你认为氮肥的施用量是多少时比较适宜?说说你的理由。

(4)粗略说一说氮肥的施用量对土豆产量的影响。

模块三形成提升。

某电影院地面的一部分是扇形,座位按下列方式设置:

(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?

(2)第5排、第6排各有多少个座位?

(3)第n排有多少个座位?请说明你的理由。

模块四小结反思。

一、本课知识。

1.变量、自变量、因变量:在某一变化过程中不断变化的量,叫做;如果一个变量y随另一个变量x的变化而变化,则把x叫做,y叫做。即先发生变化的量叫做,后发生变化或者随自变量的变化而变化的量叫做。

2.常量:。

二、我的困惑;。

初中数学数轴教案篇四

教学目的:

理解一元一次方程解简单应用题的方法和步骤;并会列一元一次方程解简单应用题。

重点、难点。

1、重点:弄清应用题题意列出方程。

2、难点:弄清应用题题意列出方程。

教学过程。

一、复习。

1、什么叫一元一次方程?

2、解一元一次方程的理论根据是什么?

二、新授。

分析:等量关系;a盘现有盐=b盘现有盐。

检验所求出的解是否合理。培养学生自觉反思求解过程和自觉检验方程的解是否正确的良好习惯。

1.题目中有哪些已知量?

(1)参加搬砖的初一同学和其他年级同学共65名。

(2)初一同学每人搬6块,其他年级同学每人搬8块。

(3)初一和其他年级同学一共搬了1400块。

2.求什么?初一同学有多少人参加搬砖?

3.等量关系是什么?

初一同学搬砖的块数十其他年级同学的搬砖数=1400。

三、巩固练习。

教科书第12页练习1、2、3。

四、小结。

列方程解应用题的关键在于抓住能表示问题含意的一个主要等量关系,对于这个等量关系中涉及的量,哪些是已知的,哪些是未知的,用字母表示适当的未知数(设元),再将其余未知量用这个字母的代数式表示,最后根据等量关系,得到方程,解这个方程求得未知数的值,并检验是否合理。最后写出答案。

五、作业。

初中数学数轴教案篇五

3、使学生初步了解数形结合的思想方法,培养学生相互联系的观点。

一、重点、难点分析。

本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小。难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。

二、知识结构。

有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的方法,本课知识要点如下表:

定义三要素应用。

规定了原点、正方向、单位长度的直线叫数轴原点。

正方向。

在理解并掌握数轴概念的基础之上,要会画出数轴,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数,要知道所有的有理数都可以用数轴上的点表示,会利用数轴比较有理数的大小。

三、教法建议。

小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。数轴是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是数轴的根本依据。数轴与它所在的位置无关,但为了教学上需要,一般水平放置的数轴,规定从原点向右为正方向。要注意原点位置选择的任意性。

关于有理数与数轴上的点的对应关系,应该明确的是有理数可以用数轴上的点表示,但数轴上的点与有理数并不存在一一对应的关系。根据几个有理数在数轴上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。

四、数轴的相关知识点。

1、数轴的概念。

(1)规定了原点、正方向和单位长度的直线叫做数轴。

这里包含两个内容:一是数轴的三要素:原点、正方向、单位长度缺一不可。二是这三个要素都是规定的。

(2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。

以数轴是理解有理数概念与运算的重要工具。有了数轴,数和形得到初步结合,数与表示数的图形(如数轴)相结合的思想是学习数学的思想。另外,数轴能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小。因此,应重视对数轴的学习。

2、数轴的画法。

(1)画直线(一般画成水平的)、定原点,标出原点“o”。

(2)取原点向右方向为正方向,并标出箭头。

(3)选适当的长度作为单位长度,并标出…,—3,—2,—1,1,2,3…各点。具体如下图。

(4)标注数字时,负数的次序不能写错,如下图。

3。用数轴比较有理数的大小。

(1)在数轴上表示的两数,右边的数总比左边的数大。

(2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

(3)比较大小时,用不等号顺次连接三个数要防止出现“”的写法,正确应写成“”。

五、数轴定义的理解。

初中数学数轴教案篇六

d点表示6.。

从上面的例子不难看出,在数轴上表示的两个数,右边的数总比左边的数大,又从正数和负数在数轴上的位置,可以知道:

正数都大于0,负数都小于0,正数大于一切负数.。

因为正数都大于0,反过来,大于0的数都是正数,所以,我们可以用,表示是正数;反之,知道是正数也可以表示为。

同理,,表示是负数;反之是负数也可以表示为。

3.正数轴常见几种错误。

1)没有方向。

2)没有原点。

3)单位长度不统一。

教学设计示例。

数轴(一)。

教学目标。

1.使学生正确理解数轴的意义,掌握数轴的三要素;

2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;

3.使学生初步理解数形结合的思想方法.。

教学重点和难点。

重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.。

难点:正确理解有理数与数轴上点的对应关系.。

初中数学数轴教案篇七

1.掌握数轴的三要素,能正确画出数轴.。

2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.。

(二)能力训练点。

1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.。

2.对学生渗透数形结合的思想方法.。

(三)德育渗透点。

使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点.。

(四)美育渗透点。

通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受.。

初中数学数轴教案篇八

掌握去分母解方程的方法,体会到转化的思想。对于求解较复杂的方程,注意培养学生自觉反思求解的过程和自觉检验方程的解是否正确的良好习惯。

重点、难点。

1、重点:掌握去分母解方程的方法。

2、难点:求各分母的最小公倍数,去分母时,有时要添括号。

教学过程。

一、复习提问。

1.去括号和添括号法则。

2.求几个数的最小公倍数的方法。

二、新授。

例1:解方程(见课本)。

解一元一次方程有哪些步骤?

一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。

补充例:解方程(x+15)=-(x-7)。

三、巩固练习。

教科书第10页,练习1、2。

四、小结。

1.解一元一次方程有哪些步骤?

2.掌握移项要变号,去分母时,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上。

五、作业。

教科书第13页习题6.2,2第2题。

初中数学数轴教案篇九

生活中的立体图形:(常见的有)圆柱、圆锥、正方体、长方体、棱柱、球。棱:相邻两个面的交线。

侧棱:相邻两个侧面的交线。棱柱的所有侧棱长都相等。

底面:棱柱有上、下两个底面,形状相同。

侧面:棱柱的侧面都是平行四边形。

立体图形的分类:锥体、柱体、球体。也可分为有曲面、无曲面。还可以分为有顶点、无顶点。

棱柱:分为直棱柱、斜棱柱。直棱柱的侧面是长方形。

特殊的四棱柱:长方体、正方体。正方体的每个面都是正方形。

圆柱:上、下两个面都是圆形,侧面展开图是长方形。

圆锥:底面是圆形,侧面展开图是扇形。

截面:用一个平面去截一个几何体,截出的面。

球:用一个平面去截,截面图形是圆形。

正方体的截面:可以是正方形、长方形、梯形、三角形。

圆柱体的截面:可以是长方形、圆形、椭圆形、三角形。

展开与折叠:两个面出现在同一位置的展开图形,是不可折叠的。

从三个方向看物体的形状:正面看(主视图)、左面看(侧视图)、上面看(俯视图)。

初中数学数轴教案篇十

3,体验分类是数学上的常用处理问题的方法。

正确理解有理数的概念。

问题1:观察黑板上的9个数,并给它们进行分类.。

学生思考讨论和交流分类的情况.。

例如,

对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)。

按照书本的说法,得出“整数”“分数”和“有理数”的概念.。

看书了解有理数名称的由来.。

“统称”是指“合起来总的名称”的意思.。

学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会。

练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.。

2,教科书第10页练习.。

此练习中出现了集合的概念,可向学生作如下的说明.。

思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

也可以教师说出一些数,让学生进行判断。

集合的概念不必深入展开。

创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?

教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

有理数这个分类可视学生的程度确定是否有必要教学。

课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

1,必做题:教科书第18页习题1.2第1题。

2,教师自行准备。

本课教育评注(课堂设计理念,实际教学效果及改进设想)。

1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。

2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

初中数学数轴教案篇十一

知识提要:在数学中,用一条直线上的点表示数,这条直线叫做数轴.数轴的三要素为:原点、正方向、单位长度.

1.关于数轴,下列说法最准确的是(d)。

a.一条直线。

b.有原点、正方向的一条直线。

c.有单位长度的一条直线。

d.规定了原点、正方向、单位长度的直线。

初中数学数轴教案篇十二

根据《数学课程标准》和素质教育的要求,结合学生的认知规律及心理特征而确定,即:七年级的学生对身边有趣事物充满好奇心,对一些有规律的问题有探求的欲望,有很强的表现欲,同时又具备了一定的归纳、总结表达的能力。因此,确定如下教学目标:

(1).知识技能目标。

让学生掌握多边形的内角和的公式并熟练应用。

(2).过程和方法目标。

让学生经历知识的形成过程,认识数学特征,获得数学经验,进一步发展学生的说理意识和简单推理,合情推理能力。

(3).情感目标。

激励学生的学习热情,调动他们的学习积极性,使他们有自信心,激发学生乐于合作交流意识和独立思考的习惯。。

2、教学重、难点定位。

教学重点是多边形的内角和的得出和应用。

教学难点是探索和归纳多边形内角和的过程。

1、教材的地位与作用。

本课选自人教版数学七年级下册第七章第三节《多边形的内角和》的第一课时。本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。

2、联系及应用。

本节课是以三角形的知识为基础,仿照三角形建立多边形的有关概念。因此。

多边形的边、内角、内角和等等都可以同三角形类比。通过这节课的学习,可以培养学生探索与归纳能力,体会把复杂化为简单,化未知为已知,从特殊到一般和转化等重要的思想方法。而多边形在工程技术和实用图案等方面有许多的实际应用,下一节平面镶嵌就要用到,让学生接触一些多边形的实例,可以加深对它的概念以及性质的理解。

学生对三角形的知识都已经掌握。让学生由三角形的内角和等于180°,是一个定值,猜想四边形的内角和也是一个定值,这是学生很容易理解的地方。由几个特殊的四边形的内角和出发,譬如长方形、正方形的内角和都等于360°,可知如果四边形的内角和是一个定值,这个定值是360°。要得到四边形的内角和等于360°这个结论最直接的方法就是用量角器来度量。让学生动手探索实践,在探索过程中发现问题"度量会有误差"。发现问题后接着引导学生联想对角线的作用,四边形的一条对角线,把它分成了两个三角形,应用三角形的内角和等于180°,就得到四边形的内角和等于360°。让学生从特殊四边形的内角和联想一般四边形的内角和,并在思想上引导,学习将新问题化归为已有结论的思想方法,这里学生都容易理解。课堂教学设计中,在探究五边形,六边形和七边形的内角和时,让学生动手实践,设置探究活动二,为了让学生拓宽思路,从不同的角度去思考这个问题,这个活动对学生的动手能力要求进一步提高了,学生对这个问题的理解稍微有些难度,但学生可根据自己本身的特点来加以补充和完善。在教学设计中,要求根据小组选择的方法探索多边形的内角和。首先,小组内各个成员对所选择的方法要了解,能够把掌握的知识运用到实践中;再者,小组内各个成员需要分工协作,才能够顺利的把任务完成;最后,学生还需要把自己的思维从感性认识提升到理性认识的高度,这样就培养了学生合情推理的意识。

本节课借鉴了美国教育家杜威的"在做中学"的理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"的思想,我确定如下教法和学法:

1、教学方法的设计。

我采用了探究式教学方法,整个探究学习的过程充满了师生之间,学生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

2、活动的开展。

利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

3、现代教育技术的应用。

我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。探究活动在本次教学设计中占了非常大的比例,探究活动一设置目的让学生动手实践,并把新知识与学过的三角形的相关知识联系起来;探究活动二设置目的让学生拓宽思路,为放开书本的束缚打下基础;培养学生动手操作的能力和合情推理的意识。通过师生共同活动,训练学生的发散性思维,培养学生的创新精神;使学生懂得数学内容普遍存在相互联系,相互转化的特点。练习活动的设计,目的一检查学生的掌握知识的情况,并促进学生积极思考;目的二凸现小组合作的特点,并促进学生情感交流。

以上是我对《多边形的内角和》的教学设计说明。

初中数学数轴教案篇十三

【学习目标】:

1、理解数轴的三要素,能画数轴。

2、能将有理数表示在数轴上,同时也能读出数轴的点所表示的数。

3、能理解数轴上的点表示的数的大小关系,并利用它来比较数的大小。

【学习重点】:认识数轴,画数轴,并利用数轴比较数的大小。

【候课朗读】:有理数的分类。

【学习过程】:

一、学习准备。

1、整数和分数统称为­­_________;零既不是_________,也不是_________,但它是_________。

2、正数,负数通常可以用来表示具有_________意义的量,请同学们读出教材p43三个温度计所表示的温度,分别为______、______、______,你能在温度计上标出150c,-200c的位置吗?若把温度计水平放置(或把书横放过来),我们可以发现温度计上既有正数,零,也有_______。因此我们也能将一个有理数用图形表示出来。

二、解读教材。

3、数轴的概念。

画一条水平直线,在直线上取一点表示_________(叫做_________),选取某一长度作为_________,规定直线上_________的方向为_________(用箭头标出),就得到下面的数轴。

初中数学数轴教案篇十四

本次检查大多数教师都比较重视,检查内容完整、全面。现将检查情况总结如下教案方面的特点与不足。

特点:

1、绝大多数教案设计完整,教学重点、难点突出,设置得当,紧紧围绕新课标,例如:刘兴华、孙菊、江文李雅芳等能突出对学科素养的高度关注。教师撰写的课后反思能体现教师对教材处理的新方法,能侧重对自己教法和学生学法的指导,并且还能对自己不得法的教学手段、方式、方法进行深刻地解剖,能很好地体现课堂教学的反思意识,反思深刻、务实、有针对性。

2、注重选择恰当的教学方法,注重在灵活多样的教学方法中培养学生的合作意识和创新精神。

3、教案能体现多媒体教学手段,注重培养学生的探究精神和创新能力。

不足:

1、教案后的教学反思不够认真、不够详细,没能对本堂课的得与失作出记录与小结,从中也可以看出我们对课后反思还不够重视。

2、个别教师教案过于简单。

作业方面的特点与不足。

特点:

1、能按进度布置作业,作业设置量度适中,难易适中,上交率较高,且都能做到全批全改。

2、作业批改公平、公正,有一定的等级评定。教师批改要求严格、细致,能够反映学生作业中的错误做法及纠正措施。

3、学生在书写方面有很大进步。从检查可以发现教师对学生作业的书写格式有明确的要求。

不足:

1、对于学生书写的工整性,还需加强教育。

2、教师在批阅作业时,要稍细心些,发现问题就让学生当时改正,学生也就会逐渐养成做事认真的习惯。

初中数学数轴教案篇十五

【案例主题:】学生参与教学,体现了现代教学理念:活动、合作、自由、民主、创新。

例题:课本p123证明两个角之间的关系,

请同学们总结一下他们可能出现的情况。

【活动过程】师:谁能总结一下判定两个角比较大小的方法?(学生都在紧张的思考中)(突然间,我发现一名平时学习较困难的学生闫家衔这次第一个举起了手,很惊奇,便马上让他发言了。也有了我思想上的一次飞跃。)。

生:我认为前面,度量,而刚才第一条,第二条的叠合法。(这时,教室里鸦雀无声,个别同学在讥笑,这位学生顿时有些难堪,想坐下去,我赶紧制止。)。

师:很好!那你准备应该怎么做呢?生:嗯,(一下子来劲了):接着这位同学上黑板画了图,写出自己度量的方法和自己的想法。

师:刚才闫家衔同学真的不错,不但提出了新的方法,而且还给出了说理,我和全班同学都为你今天的表现感到非常高兴(教室里响起一片掌声)。要有勇气展示自己,你今天的表现就非常非常地出色,你今后的表现一定会更出色。好,下面我就让我们一同来总结一下菱形的证明方法。

在师生的共同研讨下得出了这些方法。

师:今天的课程内容还有一项,那就是请闫家衔同学谈谈这堂课的感想。

【理念反思】:从这一个学生的举手发言到说得头头是道的“意外”中,我明白了:学生需要一个能充分展示自我的自由空间,作为老师,我们需要给学生一个自由的民主的氛围,能充分培养学生的自信,使“学困生”也能产生发言的欲望,也能对问题畅所欲言,教师还应能及时捕捉到这一闪光点,给每一位学生都有展示的机会。也就是说要使学生全部积极参与教学,因为它集中体现了现代课程理念:活动、合作、自由、民主、创新。

1、活动、合作是现代课程中的新的理念,只有参与,才能合作创新。

就不是主动性参与,而是被动的、消极的参与。

3、在提问时,应设计开放性的问题,如:“请你帮助设计一下,有几种方案等问题?这样才没有限制学生的思维,给学生创设一个自由的空间,学生在这个空间中可以按自己的方式展开想象,才能畅所欲言。

4、在课堂上,老师应不只关注“优等生”,而应平等地对待每一个学生,让学困生”和“学优生”同时享有尊严和拥有一份自信。特别是发现到一个学困生在举了手时,应及时给“学困生”展示的机会,让他们发言,学生在发言中,虽然有时不能把问题完全解决,老师也要充分的肯定这个学生的成绩和能够大胆发言的勇气。

初中数学数轴教案篇十六

1、了解一元一次方程的概念。

2、掌握含有括号的一元一次方程的解法。

1、重点:解含有括号的一元一次方程的解法。

2、难点:括号前面是负号时,去括号时忘记变号。

一、复习提问。

1、解下列方程:

(1)5x-2=8(2)5+2x=4x。

2、去括号法则是什么?“移项”要注意什么?

二、新授。

一元一次方程的概念。

只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,这样的方程叫做一元一次方程。

例1.判断下列哪些是一元一次方程。

x=3x-2x-=-l。

5x2-3x+1=02x+y=l-3y=5。

例2.解方程(1)-2(x-1)=4。

(2)3(x-2)+1=x-(2x-1)。

强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是“-”号,注意去掉括号,要改变括号内的每一项的符号。

补充:解方程3x-[3(x+1)-(1+4)]=l。

说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。

三、巩固练习。

教科书第9页,练习,l、2、3。

四、小结。

学习了一元一次方程的概念,含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号。

五、作业。

1、教科书第12页习题6.2,2第l题。

初中数学数轴教案篇十七

3、感受在特定的条件下数与形是可以互相转化的,体验生活中的数学。

重点:数轴的概念和用数轴上的点表示有理数。

难点:同上。

一。创设情境引入新知。

观察屏幕上的温度计,读出温度。.(3个温度分别是零上,零,零下)。

问题1:。

在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境。(分组讨论,交流合作,动手操作)。

二。合作交流探究新知。

通过刚才的操作,我们总结一下,用一条直线表示有理数,这条直线必须满足什么条件?(原点,单位长度,正方向,说出含义就可以)。

小游戏:。

在一条直线上的同学站起来,我们规定原点,正方向,单位长度,按老师发的数字口令回答"到"游戏前可先不加任何条件,游戏中发现问题,进行弥补。

总结游戏,明确用直线表示有理数的要求,提出数轴的概念和要求(教科书第11页)。

三。动手动脑学用新知。

1、你能举出生活中用直线表示数的实际例子吗?(温度计,测量尺,电视音量,量杯容量标志,血压计等)。

四。反复演练掌握新知。

教科书12练习。画出数轴并表示下列有理数:。

1.5,-2.2,-2.5,,,0.

2、写出数轴上点a,b,c,d,e所表示的数:。

问题1先给出情境,学生观察,思考,研究,表示。增强学生的合作意识。

满足的条件可以先不必明确,基本能明确就可以,在后面逐步明确。

游戏的目的是使学生明白数与点的对应关系,并知道要想在直线上表示数必须满足的条件是什么。

明确数轴的正确画法和要求。

练习中注意纠正学生数轴画法的错误和点的表示错误。

1、数轴需要满足什么样的条件;

2、数轴的作用是什么?

必做题:教科书第18页习题1.2:第2题。

1、在数轴上,表示数-3,2.6,,0,,,-1的点中,在原点左边的点有个。

2、在数轴上点a表示-4,如果把原点o向负方向移动1.5个单位,那么在新数轴上点a表示的数是xx。

a.b.-4c.d.

(2)你觉得数轴上的点表示数的大小与点的位置有关吗?为什么?

总结可以由教师提出问题,学生总结,教师完善。

初中数学数轴教案篇十八

与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):

提问:我们能不能用这条直线表示任何有理数?(可列举几个数)。

在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.。

通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.。

初中数学数轴教案篇十九

1.下列是几个同学画的数轴,请你判断其中正确的是。

2.下列说法正确的是()。

a.没有最大的正数,却有最大的负数b.数轴上离原点越远,表示数越大。

c.0大于一切非负数d.在原点左边离原点越远,数就越小。

3.下列说法正确的是()。

a.数轴上一个点可以表示两个不同的有理数b.表示-p的点一定在原点的左边。

c.在数轴上表示-8的点与表示+2的点的距离是6d.数轴上表示-的点,在原点左边,距原点个单位长度。

4.如图所示,点m表示的数是()。

a.2.5b.c.d.2.5。

5.下列结论正确的有()个:

a.0b.1c.2d.3。

7.在数轴上,a点和b点所表示的数分别为-2和1,若使a点表示的数是b点表示的数的3倍,应把a点()。

a.向左移动5个单位b.向右移动5个单位。

c.向右移动4个单位d.向左移动1个单位或向右移动5个单位。

8.点a为数轴上表示-2的动点,当点a沿数轴移动4个单位长到b。

时,点b所表示的实数是()。

a.1b.-6c.2或-6d.不同于以上答案。

二、填空题。

9.在数轴上表示的两个数中,的数总比的数大。

10.在数轴上,表示-5的数在原点的侧,它到原点的距离是个单位长度。

11.在数轴上,表示+2的点在原点的侧,距原点个单位;表示-7的点在原点的。

侧,距原点个单位;两点之间的距离为个单位长度。

12.在数轴上,把表示3的点沿着数轴向负方向移动5个单位,则与此位置相对应的数是。

13.与原点距离为2.5个单位长度的点有个,它们表示的有理数是。

14.到原点的距离不大于3的整数有个,它们是:。

15.数轴上表示-7与-3的两个点之间的距离是个单位长度。

18.设数b是一个负数,则数轴上表示b的点在原点的'边,与原点的距离是___个单位长度。

20.小明的家(记为a)与他上学的学校(记为b),书店(记为c)依次座落在一条东西走向的大街上,小明家位于学校西边30米处,书店位于学校东边100米处,小明从学校沿这条街向东走40米,接着又向西走了70米到达d处,试用数轴表示上述a、、b、c、d的位置。

21.(共8分)在数轴上有三个点a、b、c如图所示,请回答:

(1)把点a向右移动7个单位后,a、b、c三个点表示的数那个最小,是多少?

(2)把b点向左移动5个单位后,这是a点所表示的数比b所表示的数大多少?

(3)如果让a表示的数最大,则a点应该怎样移动,至少移动大于几个单位长度?

22.在数轴上,老师不小心把一滴墨水滴在画好的数轴上,如图所示,试根据图中标出的数值判断被墨水盖住的整数,并把它写出来。

1.2.2数轴。

参考答案:

16.—2。

17.—1或—7。

18.左边,—b,。

19.-3-3-1.25013。

20.

21.(1)b,1(2)—1(3)8。

23.12。

【本文地址:http://www.pourbars.com/zuowen/11903607.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map