大数据读后感(实用14篇)

格式:DOC 上传日期:2023-11-14 12:02:19
大数据读后感(实用14篇)
时间:2023-11-14 12:02:19 小编:灵魂曲

通过写读后感,我们可以反思自己的阅读习惯、阅读理解能力和思考能力的提升。写读后感时,可以适当引用作品中的语句或段落,突出作品的精彩之处。以下是小编为大家整理的一些精彩读后感范文,希望能够激发大家更多的阅读热情。

大数据读后感篇一

如今说起新媒体和互联网,必提大数据,似乎不这样说就out了。而且人云亦云的居多,不少谈论者甚至还没有认真读过这方面的经典名著——舍恩佰格的《大数据时代》。维克托·迈尔舍恩伯格何许人也?他现任牛津大学网络学院互联网研究所治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人。他的咨询客户包括微软、惠普和ibm等全球企业,他是欧盟互联网官方政策背后真正的制定者和参与者,他还先后担任多国政府高层的智囊。这位被誉为:大数据时代的预言家“的牛津教授真牛!那么,这位大师说的都是金科玉律吗?并不一定,读大师的作品一定要做些功课才好读懂,才能能与之进行一场思想上的对话。

舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。

在第一部分”大数据时代的思维变革“中,舍恩伯格旗帜鲜明的亮出他的三个观点:

一、更多:不是随机样本,而是全体数据。

二、更杂:不是精确性,而是混杂性。

三、更好:不是因果关系,而是相关关系。对于第一个观点,我不敢苟同。

我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的方法和范围要加以拓展。

我同意舍恩伯格的第二观点,我认为这是对他第一个观点很好的补充,这也是对精准传播和精准营销的一种反思。”大数据的简单算法比小数据的复杂算法更有效。“更具有宏观视野和东方哲学思维。对于舍恩伯格的第三个观点,我也不能完全赞同。”不是因果关系,而是相关关系。“不需要知道”为什么“,只需要知道”是什么“。传播即数据,数据即关系。在小数据时代人们只关心因果关系,对相关关系认识不足,大数据时代相关关系举足轻重,如何强调都不为过,但不应该完全排斥它。大数据从何而来?为何而用?如果我们完全忽略因果关系,不知道大数据产生的前因后果,也就消解了大数据的人文价值。如今不少学者为了阐述和传播其观点往往语出惊人,对旧有观念进行彻底的否定。

世间万物的复杂性多样化并非非此即彼那么简单,舍恩伯格也是这种二元对立的幼稚思维吗?其实不然,读者在阅读时一定要看清楚他是在什么语境下说的,不要因囫囵吞枣的浅读而陷入断章取义的误读。比如说舍恩伯格在提出”不是因果关系,而是相关关系。“这一论断时,他在书中还说道:”在大多数情况下,一旦我们完成了对大数据的相关关系分析,而又不再满足于仅仅知道‘是什么’时,我们就会继续向更深层次研究的因果关系,找出背后的‘为什么’。“[i]由此可见,他说的全体数据和相关关系都在特定语境下的,是在数据挖掘中的选项。

大数据研究的一大驱动力就是商用,舍恩伯格在第二部分里讨论了大数据时代的商业变革。舍恩伯格认为数据化就是一切皆可”量化“,大数据的定量分析有力地回答”是什么“这一问题,但仍然无法完全回答”为什么“。因此,我认为并不能排除定性分析和质化研究。数据创新可以创造价值,这是毫无疑问的。舍恩伯格在讨论大数据的角色定位时仍把它置于数据应用的商业系统中,而没有把它置于整个社会系统里,但他在第二部分大数据时代的管理变革中讨论了这个问题。

在风险社会中信息安全问题日趋凸显。如何摆脱大数据的困境?舍恩伯格在最后一节”掌控“中试图回答,但基本上属于老生常谈。我想,或许凯文·凯利的《失控》可以帮助我们解答这个问题?至少可以提供更多的思考维度。正如舍恩伯格在结语中所道:”大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考的答案,帮助是暂时的,而更好的方法和答案还在不久的未来。“谢谢舍恩伯格!让大数据讨论从自然科学回到人文社科。由此推断,《大数据时代》不是最终答案,也不是标准答案,只是参考的答案。

此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。

大数据读后感篇二

本书《大数据时代》出自维克托·迈尔-舍恩伯格,是最早洞见大数据时代发展趋势的数据科学家之一,也是最受人尊敬的权威发言人之一。舍恩伯格教授在《大数据时代》中提出:“大数据是指不用随机分析法这样的捷径,而采用所有数据的方法。”阐述大数据是一个比较的概念,它是在人类过去运用小数据库随机抽样获得分析结果比较而来,它的关键是在“大”,数据存储量越大,价值越显著。大数据的核心作用在于“预测”,引申出“规划”与“解决方案”,也就是我们说的“算法”。书中展示了谷歌、微软、亚马逊、ibm、苹果、facebook、twitter、visa等大数据先锋们最具价值的应用案例。

在现今的社会,大数据的应用越来越彰显他的优势,它占领的领域也越来越大,电子商务、o2o、物流配送等,各种利用大数据进行发展的领域正在协助企业不断地发展新业务,创新运营模式。有了大数据这个概念,对于消费者行为的判断,产品销售量的预测,精确的营销范围以及存货的补给已经得到全面的改善与优化。就我个人体会。大数据产生最直观的价值:一是时间,二是金钱。要知道“时间就是金钱,效率就是生命。”

大数据带给我们的三个颠覆性观念转变:采样数据向全部数据转变;精确制导向方向引领转变;因果关系向相关关系转变。

1.不再局限随机样本,而是全体数据:在大数据时代,我们有更多的数据可以分析,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机采样,这也是通过大数据打通的传统壁垒。

2.不再局限精确性数据,而是混杂性数据:以前需要分析的数据很少,所以我们必须尽可能精确地量化我们的记录,随着数据的积累,数据库的完善,我们不再需要对一个现象刨根问底,只要掌握了大体的发展方向,适当忽略微观层面上的精确度,会让我们在宏观层面拥有更好的洞察力。

3.不再局限因果关系数据,而是相关关系数据:在大数据时代,我们无须再紧盯事物之间的因果关系,而应该寻找事物之间的相关关系,相关关系虽然不能准确地告诉我们事件发生的原因,但是它会提醒我们事件的发生。

思考:大数据在农业领域建设。近年来,我国数字农业发展方兴未艾,从北大荒千里沃野的无人驾驶农机作业,到浙江乌镇的刷脸入住农家乐、西安阿里的智慧大脑,数字农业正在悄然地助推传统农业发展。从理想状态来说,我认为数字农业就是有一块地,你种什么,种多少,施什么肥,打什么药,卖给谁,都用数据来表达,以大数据来支撑决策,通过信息化、数字化提供全程社会化服务。具体讲,数字农业是指以数据为关键要素,以数字技术与农业融合发展为重点,以数字产业化、产业数字化为路径,实现农业生产过程及全产业链数字化表达、数字化设计、数字化管理的新兴农业形态。

当前,我国已进入加快发展数字农业的新时期,发展数字农业有条件、有需求,恰逢其时,势在必行。人类社会经历了农业革命、工业革命,如今正在经历信息革命。现代信息技术日新月异,全球数据爆发增长、海量集聚,数字经济高歌猛进。互联网、物联网、大数据、云计算等数字技术加速向农业全方位渗透,让传统农业插上数字化的翅膀,培育了经济新增长点和发展新引擎,数据对农业发展的放大、叠加、倍增作用正在快速释放。这将为农业发展带来深刻的变革,创造千载难逢的历史机遇。(张洋)。

大数据读后感篇三

“除了上帝,任何人都必须用数据来说话。”——这是《大数据》中出现的让人印象深刻的一句话,也是全书力图传递的信息。在数字信息时代,数据和空气一样遍布生活,对于有些人来说,数据无意义,而对于有些人来说,数据,即真相。

美国是《大数据》的主角,全书通过讲述美国半个多世纪信息开放、技术创新的历史,以别开生面的经典案例——奥巴ma建设“前所未有的开放政府”的雄心、公共财政透明的曲折、《数据质量法》背后的隐情、全民医改法案的波澜、统一身份证的百年纠结、街头警察的创新传奇、美国矿难的悲情历史、商务智能的前世今生、数据开放运动的全球兴起,以及云计算、facebook和推特等社交媒体、web3·0与下一代互联网的未来图景等等,为读者一一细解数据创新给公民、政府、社会带来的种种挑战和变革。

透过全书,一个立体的美国及美国人民的思想呈现在我们面前——美国人民执著于个人隐私的保护,却又不遗余力地推动着政府信息的透明与公开。

读完此书,对生活中的数据及数据处理突然有了很大的兴趣。如果有一天,处处以数据说话,那么,政治、制度、生活将更加清明,事故、腐朽将降到最低点。

作为信息技术教师,是有必要阅读此书的!有慧根的教师将能从书中挖掘出信息技术特有的文化以及能用于教学的鲜活案例。

大数据读后感篇四

“经验主义”是指形而上学的思想方法和工作作风,其特点是在观察和处理问题的时候,从狭隘的个人经验出发,不是采用联系、发展、全面的观点,而是采取鼓励、精致、片面的观点。在教学中,我们有时会凭借以往经验认定本节课学生的起点,从而制定教学目标、重难点以及教学过程。这往往忽略了上届学生和这届学生是有差异的,这班学生和另一班学生也是存在差异的,那如何准确把握学生的起点呢?我想可以借助前测数据,它可以为有效教学指明了方向。

如教学“复式统计表”时,前期查找资料的时候就发现早在一年级上册p96的时候学生就见过复式统计表,意让学生初步认识统计表,渗透统计思想。而二三年级的书中练习也多有涉及,就是这种复式统计表没有“表头”,生活中的复式统计表也很多。既然在以前练习时碰到这么多次复式统计表,学生对复式统计表到底认识多少呢?我们对157名学生进行这样的调查(如下图),第1题:像上表这样的统计表以前见过吗?见过约占65%,没见过约占35%,学生在练习中碰到过、生活中也经常看见,但还是约35%的学生回答自己没见过,说明学生平时在看这个复式统计表的时候就浮于表面,所以这节课我们重点应该让学生经历复式统计表的产生过程,加深学生对复式统计表的印象。第2题:上表中的16表示什么意思?能完整表达出二班身高在130~139厘米的学生有16人,约占41%;表达一半,如二班16人,或130~139厘米16人,约占22%,其他约占37%,真正能正确读懂复式统计表的学生一半不到,需要在课中进行读图方法的指导。而知道这个表叫做复式统计表的学生不到20%。

大数据读后感篇五

“除了上帝,任何人都必须用数据来说话。”――这是《大数据》中出现的让人印象深刻的一句话,也是全书力图传递的信息。在数字信息时代,数据和空气一样遍布生活,对于有些人来说,数据无意义,而对于有些人来说,数据,即真相。

美国是《大数据》的主角,全书通过讲述美国半个多世纪信息开放、技术创新的历史,公共财政透明的曲折、《数据质量法》背后的隐情、全民医改法案的波澜、统一身份证的百年纠结、街头警察的创新传奇、美国矿难的悲情历史、商务智能的前世今生、数据开放运动的全球兴起,web3・0与下一代互联网的未来图景等等,为读者一一细解数据创新给公民、政府、社会带来的种种挑战和变革。

透过全书,一个立体的美国及美国人民的思想呈现在我们面前――美国人民执著于个人隐私的保护,却又不遗余力地推动着政府信息的透明与公开。

读完此书,对生活中的数据及数据处理突然有了很大的兴趣。如果有一天,处处以数据说话,那么,政治、制度、生活将更加清明,事故、将降到最低点。

作为信息技术教师,是有必要阅读此书的!有慧根的教师将能从书中挖掘出信息技术特有的文化以及能用于教学的鲜活案例。

大数据读后感篇六

读了涂子沛先生的《大数据时代》(这是一本社科类书籍,想深入研究大数据原理的可以选择其他技术类专业书籍)。作者以美国为例,讲述了“数据不仅可以治国,还可以强国”的观点,对中国今后的大数据发展战略提出了建议。读完之后,主要有一下几点感想。

一、美国社会之所以发达高效,引领世界科技的发展,与其尊重数据,收集数据的传统是分不开的。数据被视为科学的度量、知识的来源。没有数据,无论是学术研究,还是政策制定,都寸步难行。“数据驱动决策方法”使得政府更有效率、更加开放、更加负责。

数据的积累需要时间,不能一蹴而就,美国在数据的收集方面历史悠久。美国联邦政府的取得数据主要有三个来源:业务管理的数据,民意社情数据,物理环境数据。例如1940年罗斯福引进的民意调查、1962年启动的海浪监测计划和1973年诞生的最小数据集。而中国取得类似的进步,是进入21世纪之后才发生的事情。2003年,中国开始着手制定医疗系统的最小数据集,创立了第一个全国性的大型社会调查项目,开始对社会的发展和变迁进行全方位、综合性、纵贯性的问卷访谈调查。2006年中国卫生部才出台了最小数据集的标准。几经周折,国家统计局才在2006年9月成立了社情民意调查中心。

中国的落后,根源之一是缺乏以数据为基础的精确管理,未来中国的进步,需要面对收集数据、使用数据、开放数据的挑战。

二、大数据是一柄双刃剑,数据虽然可以造福于民,但是也可能成为控制人民的工具。2013年的“棱镜门”事件揭露了政府对于人民的监控,引起轩然大波。在未来,每个人都可能存在一份数据档案,包括一个人的教育、医疗、福利、犯罪和纳税等等一切从摇篮到坟墓的数据记录,甚至包括电话、邮件等都可能被监听和记录。通过数据整合和信息加总,就可以再现一个人生活的轨迹和全景,各个系统之间的数据可以彼此印证、互相解释,个人隐私就无所遁形。英国作家乔治.奥威尔在其讽刺小说《一九八四》中描述了时刻被“老大哥”监视的零隐私的可怕情形:不论是睡着还是醒着,在工作还是在吃饭,在室内还是在户外,早浴盆里还是在床上,没有躲避的地方。除了你脑壳里几个立方厘米以外,没有东西是属于你自己的。

随着大数据科技的发展,我们的一举一动,每一通话,每一次上网记录都被监控、记录,分析,当这些数据被某一个人或组织掌握,将会是对我们隐私的莫大威胁,因此,对于数据使用的监管需要进一步的立法进行规范,我国目前对于数据的收集、利用处于野蛮生长阶段,任何商业组织都可以收集和分析用户的信息。政府需要立法对技术的使用进行监管,保障公民的安全。

三、数据是一种公共资源,政府使用纳税人的钱收集了数据信息之后,需要将数据进行公开,这样既可以集中大众的智慧,利用数据科学地治理社会;也可以让大众对政府的行为进行监督,避免政府的腐败。因为缺乏竞争,官僚体制与生俱来有一种僵化保守的本性,政府机关也往往固守不前。很多数据都被以机密为借口封存起来,人民就无从得知政府的各项举措是否合理,因此在黑暗中就滋生了腐败。

而且,现代社会中,掌握信息多的人,在社会竞争中处于有利的地位,而信息贫乏的人,则处于不利地位,数据不应该被少数人垄断,应该作为一种公共资源被普通百姓获取。

四、技术的进步离不开科学技术人员的不懈努力,知识分子应该承担促进社会进步的责任和使命。正如linux的开发者所说的:“一个人做事的动机,可以分为三类:一是求生,二是社会生活,三是娱乐。当我们的动机上升到一个更高阶段时,我们才会取得进步:不是仅仅为了求生,更是为了改变社会,更理想的是——为了兴趣和快乐。

-->

-->。

大数据读后感篇七

知道"是什么"就够了,没必要知道"为什么"。在大数据时代,我们不必非得知道现象背后的原因,而是让数据自己"发声"。这个命题是我读这本书最大的感触。

对于大多数人来说,这的确是一场思维变革。对于理科学生来说,会认为这是一个错误的观点,因为这无异于否定了他们对世界客观物理化学规律探索的重要性;对于一名工科学生,其实这并不是一个多么新颖的观点,因为工科是讲求时用性的,如何能更好地利用基本自然科学规律创造社会财富比探索自然科学知识显得更重要。

这些天来,在读大数据这本书的同时,也稍微重温了一下自动控制原理,认识到控制系统中存在明显的大数据时代思维方式,借读书交流会之际,与大家分享。

对系统的有效控制需要对系统理解与建模。以一个日常生活中的例子说明。开车的时候一脚油门下去车就飞出去了,但并不知道这一脚油门下去能给多大车速,这就需要驾驶人员的熟练的驾驶技能了,不然超速被开罚单是很正常的。那么,问题就来了:如何能实现速度的自动控制而不用驾驶人员踩油门?这就是控制系统最关键的环节——建立系统数学模型。大白话就是知道车速与燃油量的数学关系式。若是以探索为什么的思维模式,不可避免的要列一大堆能量方程、动量方程等物理化学式子,经过繁杂的计算,还是能得到车速和燃油量的数学关系式的。很明显这是一个繁琐的过程,因为得知道现象背后的原因。这仅是对于这种简单的系统,若是对于航空发动机这种复杂的系统,结构工艺过于复杂,分析各部分的物理化学过程是十分困难的,这时候可以通过实验法得到数学模型。

实验法主要有时域测定法、频域测定法和统计相关法。与大数据时代思维最接近的是统计相关法,主要过程是对被研究对象施加某种随机信号,根据被测对象各参数的变化,采用统计相关法确定被测系统或对象的动态特性。这种方法可以在被测系统或生产过程正常运行状态下进行在线辨识,测试结果精度较高,但要求采集大量测试数据,并需要相关仪和计算机进行数据计算和处理。

若用开车实例来解释,此时的系统为汽车动力系统,施加的随机信号为燃油量,被测对象指车转速,得到的动态特性就是指车速与燃油量函数关系式,从而不用探求背后的物理化学规律就得到了数学模型。

在沈阳黎明航空公司实习时去过试车间,除了发动机点火后震撼的场景动人心魄,控制室屏幕上海量的数据也同样引人注目,我想这么多数据无非就是验证数学模型或直接实验法得到数学模型,结合航空发动机这种复杂的系统,对于搞控制的人来说,得到数学模型就够了,现象背后的原因交给研发的人来探索更好。

大数据读后感篇八

舍恩伯格的《大数据时代》,让我重新审视了"大数据"这个在信息时代异军突起的热点词汇,作为信息安全专业的我,对大数据这个词本身有着更多的热忱。

在百度上搜索到的解释是:"大数据",或称巨量资料,指的`是所涉及的资料量规模巨大到无法透过目前主流软件工具工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。特点:数量、速度、品种、真实性。

而舍恩伯格认为,大数据并不能定义一个确切的概念。他提到"大数据是人们获得新的认知,创造新的价值的源泉;大数据还是改变市场、组织机构,以及政府和公民关系的方法。"这是一种更具有人文色彩和社会意义的诠释。

本书中,主要从三个方面论述,即思维变革、商业变革和管理变革。而舍恩伯格更是着重阐明三大观点:

一、更多:不是随机样本,而是全体数据。

二、更杂:不是精确性,而是混杂性。

三、更好:不是因果关系,而是相关关系。

对于观点一,我不敢苟同,毕竟大数据的实现需要一定的技术支持,而显然,现在这种技术还不够成熟,同时一些简单的事情运用大数据反倒是问题更加复杂化,因此这种大叔据的繁杂处理方式更适用于一些特定的情况,比如商业预测,人类dna的研究等。

而对第二种观点,我是十分赞同舍恩伯格所说的"大数据的简单算法比小数据的简单算法有效"。在计算机行业迅速发展中,一种新的简单可行的算法的出现,远没有计算机在运算速度和存储容量的发展快,而大数据算法似乎更能迎合这种大趋势。

观点三中提到的相关关系在大数据中可是重量级的,它能较快找到事物规律和对应的解决措施,当然,也不能完全忽视因果关系,毕竟人们在思维上更能够接受因果关系分析出的结果,而大数据预测的需要人们慢慢的适应才能接受。当我们完成相关关系的分析而又不满足于只知道"是什么"的时候,我们就可以转而研究"为什么"了,毕竟问题的根本在于因果。而舍恩伯格的全体数据和相关关系是大数据时代下的一种捷径。

但是在信息时代,信息安全问题的日趋凸显,数据独裁与隐私保护之间的矛盾更是立于风口浪尖,成为众矢之的,舍恩伯格在本书的最后章节曾试图寻找一种解决方式来摆脱这一种困境,但最终没能做到,但是他提出"大数据并不是一个充斥着算法的和机器的冰冷世界,人类的作用仍无法被完全代替。"这里表明人在数据时代同样的重要,数据是为人类服务的,也就该人类驱使下完成相应的目的。

在这样的大环境下,常引起我更多的思考和担忧。

大数据时代对于我们同是机遇与挑战,一些国家已开始步入大数据时代的行列,并在各个领域开始研究和使用。而对于我国庞大的人口,以及较大的领土面积,都可以在大数据时代为我们提供数据的保障,而能否面临挑战,在大国之间的新一轮角色角逐间崭露头角,我们更需要解决技术等方面的问题,更应在政策上逐步开放各领域的数据,保证数据来源、权限等问题得到解决,不断学习先进的计算机技术,缩小与其他国家的差距。

工业化、信息化,我们都向世界交出了一份让世界不能小觑的答案;

大数据时代的数据化我们又将怎样在新的风暴中所向披靡,如果大数据时代是一种必然趋势,那这就是我们这一代人的责任,是我们新的战场!

大数据读后感篇九

短短几天把涂子沛先生的《大数据》这本书浏览一遍,结合去年北大继续教育学院进行现代管理学科学习时,老师介绍这本书时的精髓、内涵时的情景,写这篇。

开云官网app下载安装手机版 。

现将浅薄体会与老师同学们一起交流,部分内容参考了书内容和涂子沛先生的观点,希望老师同学给予批评指正。

“一个真正的信息社会,首先是一个公民社会”,这是全书的一个出发点,这个出发点就是说,“信息社会最大的特点就是,信息的自由流动。”涂子沛在书中的观点是:如果没有人的平等,没有人的自由,信息能够自由流动吗?如果没有人的平等,我们这个社会彼此另外压抑另外一个人,我们的创造力怎么迸发出来?我们每个人都面临大数据时代思维变革的挑战。

涂先生在书中说出“大数据时代的公民生活”,题目他在书中来演绎公民生活的时候,它的背景是“大数据”时代。首先他讲了“什么是大数据时代”,在研究一个现象的时候,首先要研究它的定义,研究它的内涵,咱们就先把数据给它抽走,看看代表是什么。数据不是数字,数据是有跟列的数字,当他在书中谈到数据的时候,我们想到的是它代表计算,代表精确,代表理性,代表科学,代表事实。大家说姚明很高,到底有多高,你最后说两米多左右,这就是一个精确的事实。数据的出现也是人类认识这个世界,不断地向前推进的需要,人类发现需要精确的数字,就好像回到刚才的例子,你说很高很高,到底有多高,我们看,人类历史上很多重大的文明推进和演进都跟数据离不开,比如说度量衡的发明,货币的发明,再比如二进制的发明最后导致计算机的发明,最背后就是数据。

他在书中有一个新的词叫database--数据库。这个词完全是一个外来的词,1。

计算机最早是计算数字和处理数字,那时候就存在database,后来随着计算机能力的不断增强,它可以处理文字、图片、视频、声音等等,但所有这些都放在database,所以他在书中把这所有的一切都称为数据,这时候数据的内涵扩大了。其实大家要知道数据的内涵在扩大,还有一些其他的事情也在发生变化,就是说数据的容量在增大。八十年代的时候就有人提出bigdata这个概念,那时候的“大数据”的还不是现在“大数据”的概念。“大数据”这个概念不断的演变,最早有人就预见到说有一天数据会比程序更加重要,比软件更加重要,它是指重要性。所以我们往大了说,可以说这是一个大的机器,一个大的房子,也可以说是一个大容物。书中说的:到2000年的时候,宾夕法尼亚大学有一个教授出来定义,那时候企业的数据已经到泰了,他说200泰的数据就是大数据了,那泰到底是什么样的单位呢?比如全世界最大的图书馆是美国国会图书馆,美国国会图书印刷品的含量,不包括电子图书加起来是15泰,北师大应该是2个泰或者更少,这个数据就叫“泰”。

2代公民的生活。data在五年的时候,应该有一个创始人,他发现一个东西:同一个计算机芯片,同一个面积上晶体管的数量每一到两年就要增加一倍,这意味着什么?意味着计算机处理的能力越来越强,存储的能力也越来越强,同一个面积上东西越来越多,越来越密,一到两年就增加一倍,物力存在器的性能不断上升,价值不断的下降。有一个考证说,从五十年代起最早的存储器发明到现在,存储器的价格下降了300万倍,大家可以想想,历史上还有什么商品它的价格能在半个世纪下降300万倍?而摩尔定律也成为了一个代名词,呈指数形发展的变化,急剧变化的状态,剧变的变化。我们可以看看,这个图代表摩尔定律,是条直线,为什么是直线呢?因为没办法画,如果严格按刻度来画的话应该是一条横轴的曲线。涂先生在书中分析了:“1988年一个科学家提出了普适计算,普适计算提的不多,大家都提物联网。物联网是普适计算一个子概念,人家计算机的浪潮是分阶段的:第一个阶段是主机阶段,到80年代由于微软、苹果一直到个人电脑的阶段,88年互联网之后,科学家说这不是结果”。

“一个主动你就能改变的时代,因为资源就在那里,你不能去等其他的人”这是涂先生的观点。他说说影响公民的第一点:公民最主要的精神是什么?是积极地介入,积极地改变。影响我们公民的第二点,书里面有很多关于“大数据”时代的隐私文化,有的专家说87%都不能定位,只要通过“大数据”挖掘就会定位,这是影响我们公民生活的一个巨大的挑战,就是隐私权的挑战,而隐私权是一个非常重要的问题,是对个人自由的凭照。他为什么用这么大的篇幅来写隐私权利呢?也是因为我觉得,我们中国社会特别需要隐私权利,不仅是政府在侵犯公民的隐私权利,我们公民彼此之间也在不停地侵犯隐私权,而且大家习以为常。但是隐私权是一个文明社会的标志,越文明的社会,越注重隐私权,个人才越有自由,隐私权是把自己跟公共生活划分开的一条界线,保障个人的自由。社交媒体让我们进入一个前所未有人文相连的时代,这影不影响我们的公民生活?这是最大的隐患,为什么?它把我们人跟人连接起来,我们知道人跟人一旦连接起来,1+1大于2的作用。

总之,使我感受到当前我们正生活在,每天都不同、都高速度发展、激烈竞。

4争和大数据时代。我们每个人都必须面对大数据时代、结合实际面对挑战,要相信“想不到事情会发生,想不到的速度会发生”。要及时更新知识、广纳信息、梳理思维及时做出正确判断、做好工作学习生活中的精准决策。

大数据读后感篇十

数据,对于我们现代社社会来说,已经是再熟悉不过了。大量化(volume)、多样化(variety)、快速化(velocity)和大价值(value)。这四个v就是大数据的基本特征。每天我们都不得不和数据打交道,比如我们平常所说得“眼观六路,耳听八方,”就是生活中一个很好的的收集数据的例子。还有,在我们平时的学习中,我们对于一些学习上的数据的整理等等。可以说,数据已经成为了我们的影子一样,无时无刻的在我们的身边活动。

拿到《大数据》这本书时,吸引我的不是书评的内容,而是书的封面上的一句话“除了上帝,任何人都可以用数据说话。”也就是说,上帝可以不用数据来说话,但是,作为一个平常人,我们做事,言论等都必须用数据来说话。用数据论来证我们的观点正确性。

那么数据真的就是那么重要吗?其实不然,数据果真有那么的重要。作者在书中大量应用世界头号强国美国的例子来说明美国是如何利用数据以及数据在美国人的利用下,是如何造福美国人的。使得美国人走上了民主、发展的道路。书中还引用了大量的利用数据的案例,以及利用数据会有什么样的后果。当然,作者在书中也很明确的表达了自己观点,也就是数据要被人利用,利用的好了,造福人类,否则,祸害无穷。

毫无疑问,我们正处在一个真正意义的大数据时代。但是,大数据浪潮的来龙去脉如何?数据技术变革何以能推动政府信息的公开、透明和社会公正?又何以给我们带来无限的商机,既便利又危及我们每个人的生活?《大数据》给了我们一个很好的答案。在拿到徐子沛《大数据》时,与其说这是个新概念,还不如说就是一个现实。信息技术的迅速发展和普遍应用,存储能力的膨胀,网络传输的便捷,必然产生巨大的数据量。即使是一个公司,经过多年的积累,产生的数据也是惊人的。每天繁多的数据,这就是要求企业要很好地存储数据,利用数据通过数据,使得数据说话,提升企业的业绩和知名度。

对于一个企业来说,比较实际的倒是关注一下企业微观大数据,如何充分利用现有的、能够得到的和自己创造的数据,采用《大数据》里提及的新技术、新方法、新理念,筛选、组织、关联、分析,精细化管理和挖掘数据,探索规律性的东西,指导企业活动。尽可能多的获取数据,首先是要有心,对于公司员工来说,随时随地注意收集客户数据、需求数据、产品数据、市场数据、资源数据等,经过整理,把它变成公司的数据资产;然后是要有据,信息与数据最大的不同,就是数据是能够度量或者确定的信息,不能“毛估估”,收集数据要精细化,要准确;其次要有序,数据需要存储,更加需要整理,单个数据没有很大意义,静止的数据也没有很大意义,有价值的数据是流动的、与其他数据交互作用的。一个大杂烩的数据库,在需要时让人找不到北,没有任何意义。再次,需要技术支持,大量的数据如何检索,如何关联,单靠人脑是不行的,需要建立基于特定理论的数据处理系统来分析管理。对于一个企业,最理想的是建立一个类似人类神经系统的数据管理系统,采用各种信息终端采集内部和外部信息,通过分析、归纳、筛选,形成管理数据,某些数据可以成为系统的“本能”,一旦触发能够自动做出反应;某些数据可以成为组合信息提交大脑综合分析,作出决策和反应。数据应该为人服务,这是一条基本原则。在大数据时代始终发挥人的主观能动性,采用先进的理念和技术驾驭数据,让人们生活更方便,工作效率更高,劳动强度降低,为社会创造更多的物质财富和精神财富。

在中国,统计部门提供的数据,是各级政府部门和广大人民群众了解国家社会经济发展和人民生活状况主要渠道。只有真实可靠统计数据,才能使政府决策有的放矢,人民了解国家经济与人民生活的真实状况。如果统计数据虚假不实,就会误导政府和人民,让政府失信于人民。因此,我们一定把握好数据的生命线—质量关,确保给国家和人民提供准确、真实、可靠、无误的数据。

二、如何高效有序地收集数据?

收集数据的目的是为分析利用数据。通过数据分析挖掘数据背后隐含的经济规律及有利于提高效率、改进工作的因素,提高政府管理、决策和人民生活水平,实现“用数据改进管理”。因此,作为统计人,不仅要做好数据收集的及时有效和真实正确,更重要的是要善于分析利用数据,写好专业分析报告,发现问题、支撑决策、评估绩效的目的。

此外我们还可以看到不少政府机构或者其他一些组织也在开始大数据解决他们遇到的一些问题。在本书的最后一章,作者告诉了我们大数据可能带来的坏处。如:通过大数据可能我们的个人各种信息、隐私会很容易地被大数据的拥有者找到,这些信息,可能被政府用来监管我们等;通过大数据可以预测可能发生的事,或者预测我们人个人本书即将做的行为,书中有个例子:警察通过大数据分析得出一个人即将可能犯罪,并把它逮捕了,但事实上这个人现在并没有犯罪。也许这就限制、约束了我们个人的自由。

看完这本书,颠覆了自己之前的一些想法:以前我们认为错误的数据是没有用,我们需要保证统计的数据的准确性,但是在大数据中,错误的数据也是有用的,它和其他所有相对正确的数据一起构成了整体,也就算不了什么了。我们同样可以从这些数据中得出比较正确的预测和分析。google利用人们搜索的关键字来预测和判断某个地区是否发生流感,google通过分析这个地区的人们搜索和流感有关的词的数量等来分析得出。google从互联网抓取数以亿记的各种语言、各种翻译水平的翻译结果,使用其翻译出来的准确率比那些微软使用正确的词库翻译出来的句子准备率更高。我自己的感想是,其实大数据无处不在,只要我们细心,我们就可以挖掘出身边的那些大数据,并做一些有意义的是,就像书中说的那样,我们不需要强求每条数据都那么真实准确,但是从大量的数据中我们就可以得出相对准备的结果。未来成功的公司必定是是那些拥有大量数据、并使用那些数据为大众提供服务的公司。

大数据读后感篇十一

大数据这几个字,其实早已经听了无数遍,但在工作中接触,其实也就一年多的时间,深深的感觉后悔啊,没有早点学习这块的内容,所以赶紧补课。

经过某数据专家的推荐,选择了《大数据时代》这本书入手。对于技术小白来说,这本书的内容是比较好理解的,主要从思维变革、商业变革、管理变革三个方面讲述了大数据给整个时代带来的变化。书中的例子很多也是大家比较熟悉的例子,所以把这本书当作科普性读物快速阅读,是非常适合小白人群的。但对大数据真正的运用,还是得在工作中实践和总结了。

大数据在消费端的应用,应该是已经起步并逐渐在完善的过程,但在工业领域可能是才刚刚起步,所以这本书我觉得对我的意义,更多的是提醒我,在工作中要时刻想想,是否有哪里是应该用到大数据的。现在我也没有特别好的例子给大家,所以只能先把我的读书笔记分享给各位。如果非要用一句话来总结,我想说:时刻牢记用数据说话,但绝对不能完全依赖数据。

-->

-->。

大数据读后感篇十二

导语:维克托·迈尔·舍恩伯格在书中前瞻性地指出,大数据带来的信息风暴正在变革我们的生活、工作和思维,大数据开启了一次重大的时代转型,并用三个部分讲述了大数据时代的思维变革、商业变革和管理变革。

当我们说人类是通过因果关系了解世界时,我们指的是我们再理解和解释世界各种现象时使用的两种基本方法:一种是通过快速、虚幻的因果关系,还有一种就是通过缓慢、有条不紊的因果关系。大数据会改变这两种基本方法在我们认识世界时所扮演的角色。

大数据的精髓在于我们分析信息时的三个转变,这些转变讲改变我们理解和组建社会的方法。

第一个转变就是,在大数据时代,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机采样(样本=总体)

第二个转变就是,研究数据如此之多,以至于我们不再热衷于追求精确度

第三个转变因前两个转变而促成,即我们不再热衷于寻找因果关系,而应该寻找事物之间的相关关系。大数据告诉我们”是什么“而不是”为什么“。在大数据时代,我们不必知道现象背后的.原因,我们只要让数据自己发声。,出处:短美文(),转载请保留本出处,否则追究其责任,谢谢你的支持,我们会给做得更好!

正如大家所知道的那样,人类的大脑具备这样的功能,它会把新输入的刺激或信息与”过去的经验或积累的部分知识“相对照,然后进行调整并接受下来。如果眼前新的现实与大脑中储存的固有信息无法协调,便会在无意识中拒绝接受新的现实(当作没有看见);或者通过自己一知半解的知识任意推测,使自己认识到的情况偏离实际(产生错觉)。这是人的一种本能,目的在于使自己保持冷静。

所以作者称之为revolution。

公平正义的基础是人只有做了某事才需要对它负责,毕竟,想做而未做不是犯罪,社会关系于个人责任的基本信条是,人为其选择的行为承担责任。如果大数据分析完全准确,那么我们的未来会被精准的预测,因此在未来,我们不仅会失去选择的权利,而且会按照预测去行动。如果精准的预测成为现实的话,我们也就失去了自由意志,失去了自由选择的权利。既然我们别无选择,那么我们也就不需要承担责任。这不是很讽刺吗。

扯到这里,顺便扯一下,书中另一段关于自由意志的描述

在哲学界,关于因果关系是否存在的争论已经持续了几个世纪。毕竟,如果凡事皆有因果的话,那么我们就没有决定任何事的自由了。如果说我们做的每一个决定或者每一个想法都是其他事情的结果。而这个结果又是由其他原因导致的。以此循环往复,那么就不存在人的自由意志这一说了。——所有的生命轨迹都只是受因果关系的控制了。因此,对于因果关系在世间所扮演的角色,哲学家们争论不休,有时他们认为,这是与自由意志相对立。

书中举了个例子,举了部电影《少数派报告》,当我看到这里的时候,”哎哟,我居然看过这部电影,想想心里还是有点小激动“,有兴趣的可以去看下,大概就是讲警察通过预测来提前抓捕犯人,不过不是通过大数据,是通过超人类的方式。当你什么举动都可以被预测,相当于你完全暴露在太阳光下,换成你,你害怕不。

最后,附上两段结语,一段是书中的一段话,另一段是我自己瞎编的。

大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的未来。

大数据终将会影响到我们,也像其他技术一样会是一把双刃剑,用得好,动心,滥用,害怕。如同核技术一样,用的话,造福地球,滥用,给个金刚石地球你,照样爆。我相信,未来的大数据的发展会如作者所说的,是一场生活、工作与思维的革命。

-->

-->

-->

大数据读后感篇十三

《大数据时代》这本书主要描述的是大数据时代到临人们生活、工作与思维各方面所遇到的重大变革。

文中清晰的阐述了大数据的基本概念和特点,并列出明确的观点。不管对于产业实践者,还是对于政府和公众机构,都非常具有价值。作者将本书分为3个部分。第一部分提出了大数据时代处理数据理念上的三大转变:抽样等于全体;要效率不要绝对精确;要相关不要因果;第二部分作者从万事万物数据化和数据交叉复用的巨大价值两个方面,讲述驱动大数据战车在材质和智力方面向前滚动的最根本动力;最后一部分,作者描绘了大数据帝国前夜的脆弱和不安,包括产业生态环境、数据安全隐私、信息公正公开等问题。

本书观点掷地有声,作者观念高屋建瓴,从很多实例和经验中萃取普适性观念。例子详实丰富,囊括了进百个学术和商业实例。

引言提出了大数据将给生活、工作于思维带来重大的变革。一个例子是20xx年h1n1流行病毒背景下谷歌通过检测检索词条,处理了4.5亿个不同的数据模型,通过预测并与20xx年、20xx年美国疾控中心记录的实际流感病例进行对比后,确定了45条检索词条组合,并将其用于一个特定的数学模型后,预测的结果与官方数据的相关系数高达97%。按照传统的信息返回流程,通告新流感病毒病例将有一到两周的延迟。对于飞速传播的疾病,信息滞后两周是致命的。而谷歌运用大数据技术,以前所未有的方式,通过海量数据分析得出流感所传播的范围,为世界预测流感提供了一种更快捷的预测工具。此外,我联想到原淘宝董事长马云通过大量数据分析得出20xx年经济疲弱,为其商家提前做好迎接经济危机提供了时间缓冲。(补充并清晰描述详细)关于大数据在商业领域的应用,farecast公司是一个成功的典型范例。该公司由奥伦·埃齐奥尼创办,利用机票的销售数据来预测未来的机票价格,旨在帮助用户在购买机票方面做出预测,并对机票价格走势预测的可信度标示出来供消费者查考。farecast系统利用近十万亿条价格记录预测的准确度达75%,使得使用farecast票价预测工具购买机票的旅客,平均每张机票节约50美元。而处理如此多的数据离开了大数据技术将无法进行。

也正是由于我们进入了一个前所未有的信息化时代,人们拥有了如此多的数据,才提供给我们利用大数据的分析处理手段,创造新的价值。也许有人以为我们大数据时代的还未来临。其实大数据技术早已渗透到我们中间,它被应用在垃圾邮件的过滤,新浪微博技术平台,谷歌翻译以及输入文字的自动纠错等。

文中提出的一个观点是,预测是大数据的核心。其实从过去的时代人们就利用掌握的数据进行各种分析,从而对经济等各方面进行预测、矫正。只是进入了大数据时代人们掌握的数据爆炸性的速度在增长,从而数据的存储和分析数据分方法成了释放大数据能量的关键。

关于不是随机样本而是整体数据中。作者指出了随机取样是小数据时代用最少的数据获取最大价值的做法。作者用大数据与乔布斯的癌症治疗例子说明了使用全部数据而非样本的意义。乔布斯成为世界上第一个对自身所有dna和肿瘤dna进行排序的人。乔布斯曾开玩笑说“我要么是第一个通过这种方式战胜癌症的人,要么就是最后一个因为这种方式死于癌症的人”。虽然最后难免死于癌症但这种获得所有数据而不是仅样本的方法将他的生命延长了几年。同样,从事跨境汇款业务的xoom公司侦破一起犯罪集团的诈骗也是由于使用了整体数据。初此之外,他还列举了日本“相扑”等来证明使用全体数据的重要性。

作者同时也指出随着数据使用的越来越多,其得出的结果并一定能越来越精确,毕竟数据不能保证百分之百的正确,特别是大数据时代各种结构化与非结构化类型的数据聚集在一起难免导致结果的不太精确。大数据时代要求我们重新审视精确性的优劣。作者特别举了谷歌翻译成功的例子。谷歌翻译之所以优于ibm的candide系统并不是因为它拥有更好的算法机制。和微软的班科和布里尔一样,谷歌翻译增加了各种各样的数据,并且接受了有错误的数据。(其语库来自于未经过滤的网页内容,会包含一些不完整的句子、拼写错误、语法错误以及其他各种错误)。

在不是因果关系,而是相关关系的篇章中。作者指出在大数据时代往往知道是什么要比知道为什么来的更实在。作者列举了林登的亚马逊推荐系统的成功,证实了大数据在分析相关性方面的优势以及在销售中获得的成功。沃尔玛也是充分利用并挖掘各类数据信息的先锋和代表,从以前广为人事的啤酒和尿布的案例,以及作者举的有关蛋挞和飓风天气的案例,都说明了掌握了相关关系对于其策略的帮助。建立在相关关系分析法基础上的预测是大数据的核心。aviva保险公司利用几百种生活方式的数据,如爱好、长浏览网页等间接的预测出哪些人更可能患高血压、糖尿病和抑郁症。ups国家快递公司通过使用预测性分析检测其全美6万辆车队。进行防御性的修理,节约巨大得的成本。这些都充分显示了大数据在预测方面的优势。

本书第二部分讲的是大数据时代的商业变革。

作者用莫里绘制导航图的例子告诉我们,远在信息数字化之前,对数据的运用就已经开始了。莫里利用大量的人力去分析多年保存的航海记录,他从这些大量的数据中获取到新的利用价值。绘制的图表帮助商人节约一大笔钱,使年轻的海员们间接获取了成千上万名经验丰富的航海家的指导。日本先进工业技术研究所越水重臣教授通过安装压力传感器将人屁股特征数据化,进而形成对乘客身份的特征识别。这项技术为汽车防盗系统提供了方案。公司,致力于为顾客预测商品的价格,通过收集处理海量的价格信息,预测准确率高达77%,帮助顾客在购买一个产品时节约了大约100美元。r部门通过分析来自210个国家的15亿信用卡用户的650亿条交易记录,分析得出商业发展和客户消费趋势,如通过分析发现如果一个人下午四点左右给汽车加油的话,他很可能在接下来的一个小时内去购物或者去餐馆吃饭,且在这一小时里大约花费35到40美元。商家正可以利用这个分析结果,在加油的小票背面附加上附近商店的优惠券。

这些例子都证明了大数据蕴藏着巨大的商业价值。根据提供价值的不同来源,大数据价值链包括三大构成部分。包括第一种是基于数据本身的公司。这些公司拥有大量数据或者至少可以收集到大量数据,却不一定有从数据中提取价值或者用数据催生创新思想的技能。第二种是基于技能的公司。它们通常是咨询公司、技术供应商或者分析公司。它们掌握了专业技能但并不一定拥有数据或者提出数据创性用途的才能。比如说,沃尔玛和pop-tarts这两个零售商就是借助天睿公司的分析来获得营销点子,天睿就是一家大数据分析公司。第三种是基于思维的公司。皮特.华登,jetpac的联合创始人,就是通过想法获得价值的一个例子,他通过用户分享到网上的旅行照片来为人们推荐下一次旅行目的地。对于某些公司来说,数据和技能并不是成功的关键。挖掘数据的新价值的创新思维才是这些公司脱颖而出的优势所在。

大数据成为许多公司竞争力的来源,未来可能整个行业的结构会发生改变,大公司和小公司最有可能成为赢家。如今的核心竞争力在于快速而廉价地进行大量的数据存储和处理。当然公司要根据自己的情况进行调整。大数据向小数据时代的赢家以及那些线下大公司(如沃尔玛、联邦快递、宝洁公司、雀巢公司、波音公司)提出了挑战。同时,大数据也为小公司带来了机遇。大数据也将会影响国家竞争力。当制造业已经大幅转向发展中国家,而大家都争相发展创新行业的时候,工业化国家因为掌握了数据以及大数据技术,所以仍然在全球竞争中占据优势,但这个优势很难持续。随着技术的发展,西方世界在大数据技术的优势将会慢慢消失。对于大公司而言,好消息是大数据技术可以加剧优胜劣汰。一旦公司掌握了大数据,它不但可能超过对手还可能遥遥领先。

文章第三部分讲了大数据带来无数好处的同时带来的不良影响以及如何面对这些影响。包括如数据的收益的处理问题以及数据中用户资料的隐私和决策过程带来的影响。作者在保护个人隐私方面提出了几种想法。一种是使用数据时征询数据所有个人的知晓和授权。第二个技术途径就是匿名化。作者同时也指出了这两种方式的难度。一方面收集到的数据可能会被后续的多次利用。另一方面,匿名化会在数据收集越来越多和数据的相互结合关联使用时变得无效。作者列列举电影《少数派报告》的情节说明越来越依赖数据时,大数据可能将我们禁锢在可能性之中。当然通过分析犯罪的常发地与常发时间,合理安排警力会对治安防范提供不小的帮助。作者还指出不能尽信数据的分析结果,因为不能保证获取分析结果来源的数据准确性。大数据在给我们生活提供便利的同时,也让隐私保护的法律手段失去了作用。我们必须杜绝对数据的过分依赖。

在高速迈进大数据时代的同时,人类信息管理准则需要重新定位,这将带动社会核心价值观的转变。大数据时代,对原有规范的修修补补已经不足以抑制大数据带来的风险。保护个人隐私就需要对个人数据处理器对其政策和行为承担更多责任。同时必须重新定义公正的概念,以确保人类行为的自由。作者提出了解决这些问题的方向。如个人隐私保护方面,可以让使用者承担更多的社会责任。将责任从民众转移到数据使用者有很多意义,也有充分的理由。因为他们更清楚将如何使用数据且是数据应用最大的受益者。关于公正方面简单的讲就是个人可以并应为他们的行为而非倾向负责。就像公司有内部会计和外部审计人员一样,大数据时代,公司将设置专门的人员--内部和外部算法师对大数据活动进行监督。还有可能出现第三方的机构对大数据行为进行监督和衡量。作者甚至考虑到对大数据存在的垄断情况进行分析并在反垄断反面给了建议。最后结语中作者提出大数据提供给人们的只是参考答案,提醒我们在利用这个工具时要铭记人类的作用是无法完全替代的。

大数据时代是信息化社会发展必然趋势,我们只有紧紧跟随时代发展的潮流,在技术上、制度上、价值观念上做出迅速调整并牢牢跟进,才能在接下来新一轮的国际竞争中摆脱受制于人的弱势境地,才能把握发展的方向,冲破与西方国家的差距。对于一个国家如此,对于一个企业亦是如此。在如此快速的到来的大数据时代,我们还有很多知识需要学习,许多思维需要转变,许多技术需要研究。公司的规划中,也需充分考虑到大数据对于公司的未来发展所带来的机遇和挑战。对于掌握大量数据的公司,需要考虑有多少数字化的数据,又有哪些可以通过大数据的分析处理而带来有价值的用途?比如国内目前的社交网站,购物网站等都掌握了用户的大量的数据信息。在大数据时代制胜的良药也许是创新的点子,也许可以利用外部的数据,通过多维化、多层面的分析给其他企业或个人带来价值。

“大数据”概念早在1980年就有国外的学者提出,可是最近几年才广泛受到大家的关注。当“大数据”这个概念传到中国的时候,瞬间引起了轰动。随即,各种有关“大数据”的资料和书籍充斥的我们的视野。随意打开某个电子商务平台图书类页面,在搜索框中搜索“大数据”三个字,就会出现好多本有关“大数据”的书籍。可是,有一个很有趣的现象就是:几乎所有的平台上,出现的第一本关于“大数据”的书籍一定是《大数据时代》。一点进去,这本书推荐栏里的第一句话就是:迄今为止全世界最好的一本大数据专著。同时,为这本书做推荐的都是各行业的精英领袖。所有“大数据”方面的书籍也是这本书销量最高,评价最好。

我从来不会因为哪本书畅销和很多人推荐就盲目跟风的去看一本书。因为我知道通常在这种情况下选择一本书,整个阅读的体会和感受是无法遵从自己的内心的,整个过程都很容易夹杂着别人对这本书的感受。所以通常我读书的节奏大多都是跟不上“潮流”的,但往往经过风雨洗礼之后沉淀下来的都是精华。坦白讲,阅读这本书的初衷并不是因为我想从书中获取到多少大数据方面的精华,只是很想知道对于这么一个很直白的名词,作者是怎么写出这么厚的一本书的。这种初衷或许很无知和幼稚,可就是这种“愚蠢”的好奇心,让我更透彻的看到书中的精华。

在看《大数据时代》这本书之前,我的所有读后感都是集中在书籍给了我什么思考。对于这本书的读后感,除了观点碰撞之外,我还会加上大部分个人看这本书的体会。因为这本书,已经完全让我模糊了大多数人口中的“全世界最好的书”是一种什么标准。也许《大数据时代》真的无法承载那么高的赞美!

看完这本书,我随意调查了一些阅读过这本书并且给这本书绝对好评的朋友。询问他们这本书好在哪里?大多数的回答是说《大数据时代》这本书让对大数据一无所知的他们了解了大数据这个概念,同时通过很多案例说明原来大数据能有这么大的用处,影响会有这么大!仅此而已。我看完这本书最大的感受是这本书分为上、下两部分。前120多页为上部分,后120多页为下部分。之所以说《大数据时代》是一本关于大数据的入门书,是因为这本书用了前面120多页的篇幅反复的强调大数据的出现对社会发展影响很大,并且要人们转变小数据时代惯有的思想。所以整本书的前半部分就强调大数据时代的三个转变:1、大数据利用所有的数据,而不再仅仅依靠一小部分数据,不再依赖于随机采样。2、大数据数据多,不再热衷于追求精确性,也不再期待精确性。3、大数据时代不再热衷于寻找因果关系,而是追求相关关系。所以整个上半部分没什么可详说的。我们重点聊聊本书的后半部分。

既然一直都在强调大数据对我们的意义,总要有具体体现。整本书中,我感触最大的一个案例就是某公司通过分析大数据发现:新品发布的时候,旧一代的产品可能会出现短暂的价格上涨。因为人们在心理上就认为新产品的推出,旧产品就会便宜,从而就会提高购买量。这个发现和我们平常的心理是完全违背的,而且如果不用数据来证明,直接讲道理给大家可能还是无法相信。这就是大数据对我们很多传统思维的颠覆。一旦涉及到思维的改变,往往就会引起整个社会的大变动。

大数据这个概念的出现,让大数据逐渐发展形成一条价值链。在这条价值链上,数据本身、技能和思维是最重要的环节。随着互联网技术的发展,越来越多的公司都能收集到大量的数据,这些数据也会越来越公开。可是在这些公司中,不是所有的公司都有从数据中提取价值或者用数据催生创新思想的技能。于是就会出现以下两种公司,一种是掌握了专业技能但不一定拥有数据或者提出数据创新性用途才能的公司,另一种就是拥有超前思维,懂得怎样挖掘数据的新价值的创新公司。短时间内,我们可能会感觉拥有创新思维,懂得挖掘出数据新价值的大数据思维是最重要的。可是等到产业成熟之后,所有人都知晓了大数据的意义,所有人便开始挖掘自己的大数据思维。同时,随着科技的进步,掌握大数据技术的也将成为常态。所以到后来,整个价值链的核心环节还是回到了数据本身。而到那时候,大数据的公开性也就越来越小。

在大谈完大数据对人类发展的积极意义之后,作者也考虑到大数据时代的风险。这一部分是作者脑洞大开的精彩之处,同时也是最荒谬的一部分。书中说大数据时代将要惩罚未来犯罪,这样可以在嫌疑人在可能犯罪之前就把犯罪行为给防止。这样的社会,大数据俨然已经延伸到了我们每个人生活的点滴。几乎我们在生活中所做的一切都在大数据的“监控”之下,我想到那时候,别说我们每个人的隐私已经没有的了,严重一点可以说是我们可能连人都不算了。在我们人的社会属性中,自由权利是一项很重要的指标。通过大数据惩罚人的未来犯罪已经否定了人的自由选择能力和人的行为责任自负。同时,由于数据是永久保存,大数据预测也是通过每个人之前的数据来判断,所以大数据同样也否定了人的求善心理。还有,从现在各种大数据预测的结果来看,很多发言人都说大数据不是百分百的准确。所以利用大数据来判断人的行为发展已经违背了大数据不追求精确性的特征,这也是书中自相矛盾的地方。

对于一个新事物,如果能让大家了解这个事物并且对此产生兴趣,这已经算是一本不错的入门书了。

从小到大,鸡汤对于我们来说一直都挺珍贵的。身体虚弱了,喝点鸡汤能够补充营养。心灵受伤了,看点心灵鸡汤可以鼓舞人心。可是近几年,人们生活水平提高了,营养富余,鸡汤已经不是人们补营养的期待了。同样,心灵鸡汤也是如此。

心灵鸡汤其实是一个很虚伪的东西。很多人都被心灵鸡汤诱人的外表给迷惑。在我看来,心灵鸡汤很大的一个特征就是:立人的志,但是就不告诉你实现志的方法。很多人每次在失意的时候就喜欢看心灵鸡汤,希望能得到慰藉。看完后也觉得醍醐灌顶,感觉整个世界都亮了。但又有几个人想过喝完这些鸡汤之后你除了看似重拾梦想,你还获得了什么?你知道怎么去做吗?《大数据时代》就是这样一本书。整本书从头到尾都在向读者讲述大数据的意义,当然期间也会用相应的案例来证明大数据确实有这样的能力。但是,整本书从没有涉及到技术层面的问题。或许对于大数据这种依靠互联网技术的新事物,即使向读者讲技术,也没有几个人看得懂,可是整本书没有一点关于大数据思维的技能引导。给出的案例中只有少数案例向读者讲述了这个公司为什么要利用大数据来解决这种问题,大多数都只是告诉读者国外某家公司运用大数据得出了某种结论。同时,在本书中文译作者写的序里,强调自己翻译这本著作的一大优点是可以结合国内的案例来分析书中的理论,结果,看到最后一页都没有看到一个国内企业关于大数据运用的案例。

之所以我称之为“心灵鸡汤”,还有一个原因就是作者在书中大讲特讲的大数据的作用,事实上按照现在的经济发展水平和社会文明发展程度是很难实现的。书中很多时候的理论都是要建立在社会各项文明都发展健全的基础上才能实现。

看到这个标题,大家可能会觉得我夸大其词,受到如此多人好评的书怎么是“传销手册”呢?对于这个表达,我只想说两点:1、此说法仅代表我个人观点,是否认同是个人问题。2、此说法主要针对本书的上部分。

我们都知道传销组织在发展下线的前期是要花大力气去培训的,也就是洗脑。而对于一个陌生又很难以理解的事物,最好的“洗脑”方式就是重复。《大数据时代》这本书就是运用这种方式,前半部分为了让读者能够接受“大数据”这个概念,作者反反复复提醒读者大数据不是随机采样、不追求精确和不寻找因果关系。同时用很多看似很通俗易懂其实看完后还是不知道说了什么的案例来让人信服大数据的作用。书中的后半部分虽然也是用这种方式来感染读者,可后半部分中作者的畅想和对大数据的威胁分析还是对读者有一些实质意义的,所以后半部分的“传销”影响就不是很重要。

大数据时代是未来的趋势,这谁都不会否认。大数据改造了我们的生活,改变着我们的世界。不管它是以一种什么样的姿态面向世界,它都没有错,因为大数据只是一种工具。但当人类开始质疑甚至恐惧大数据的时候,人类就该思考自己是否利用好这个好工具了。

大数据读后感篇十四

最近看了《大数据》一书,有一点感想,在这里和大家分享。

作者在后序中写 道,这不是一本纯粹谈技术的书,而是以技术背景探讨人和社会关系的书。今天的中国,是一个人口大国、互联网大国、手机大国,却不是一个数据大国。书中有这 样一组调查数据——“麦肯锡公司以20xx年度各国新增的存储器为基准,对全世界大数据的分布做了一个研究和统计,中国20xx年新增的数据量为250 拍,不及日本的400拍、欧洲的2000拍,和美国的3500拍相比更是连十分之一都没有达到。国内的大数据步伐急需加快。

《大数据》一书对美国大数据的应用进行了十分详细的介绍与分析,我印象最深的为两点。

第一,以海量数据的处理作为政策制定的依据。看这本书的时候,我想到了这两年很火的一个美国人——斯诺登。在其曝光的“棱镜”计划中美政府直接从包括微软、谷歌、雅虎、facebook、aol、skype以及苹果在内的国际公司服务器收集信息。美国政府从这些海量数据中寻找自己需要的数据,并以此作为所谓安全政策制定的依据之一。姑且不论媒体对此计划的口诛笔伐及相应的道德风险,仅从政策制定方面来说,依据于海量数据的政策制定科学性肯定比一般计划要高得多。

20xx年,雅虎 首席执行沃兹博士在《自然》上发表的《21世纪的科学》中提到,得益于计算机技术和海量数据库的发展,我们每个人在现实世界中的活动得到前所未有的记录, 这种记录也更为细致,为社会科学的定量分析提供了极为丰富的数据。打个比方,从你的qq空间、微博、微信中一个普通朋友都能了解到你在哪儿、做了哪些事 情、现在的状态是什么,而新闻的跟帖、网站的下载记录、社交平台的互动记录等等都为社会行为的研究提供了大量的数据。我想到最近比较火爆的穿戴设备,如果 该技术得到普及过后,拥有穿戴设备的人群的生活轨迹、生理各项指标都能轻而易举地得到,相信这些大量的原始数据如能安全有效利用定能为卫生政策的制定提供 科学依据。

第二,万事万物, 凡存在,皆联网,凡联网,皆计算。20xx年起,美国食品与药品管理局开始在药品上推行配备rfid做法即每个食品包装上安装一个薄如纸张或小如豆粒的无 线传感器。通过这个移动传感器,对食品进行连续跟踪,一旦相应的安全事故爆发,就能通过数据库追踪溯源,快速确定传染源与影响范围。这一技术相对于国内尚 在起步阶段的食品追溯具有极强的借鉴性。上面提到的穿戴设备其实就可以视为一个穿戴在人身上的rfid。

20xx年的时 候,美国国家气象局在全国2000两客运大巴上装备了传感器,随着大巴的移动,沿途手机所有地点的温度、湿度、露水、光照度等数据,并立即传给国家气象局 数据中心。数据的采集是每10秒中一次,每天采集10万次以上的数据,这些实时的、高精度的数据意味着天气预报将不再仅仅是”预“,将逐渐走向“实”报、 “精”报。

作者涂子沛在书里 引用胡适与黄仁宇的话。胡适说中国人习惯于当“差不多先生”,凡是马马虎虎、不求精确。黄仁宇认为,中国不懂得用数字来管理国家。作者引用这两位先生的名 言,当然是要彰显传统中国和今天美国之间的差异。但是我们也必须认识到:这两位先生身经当时中国的混乱,激愤而出此言。在大数据浪潮迅猛而来的时候,中国 与100年前已经完全不一样了,我们已经有足够的能力与自信来面对各项挑战。20xx年中国开始着手制定医疗系统的最小数据集,3年之后卫生部出台了第一 版中国医院最小数据集的标准。也是在20xx年,中国创立了第一个全国性的大型社会调查项目,开始对社会的发展和变迁进行全方位、综合性、纵贯性的问卷访 谈调查,即“杨文昊在kod里面穿的裤子”。可以看到,中国政府和企业已经投入到了大数据时代的浪潮之中了。我个人也有几点应对的想法。

一是鼓励、扶持基 于数据的创新创业。书中提到,政策扶持的传统方法,可能是以政府主导建立大数据产业园,对新兴企业提供办公场所等便利条件或者现金支持,这固然有效,但更 为有效的是调动全社会的力量。调动全社会的力量来支持可以包括扶植民间团体,快速推进新技术、新理念在全社会的传播。现在云技术大众基本上都耳熟能详了, 而这主要是各大互联网服务上都相继推出了相应的云服务以及各大媒体对这项技术的关注,促进了大众对新技术的了解与支持。

二是政府机构要建 立专门机构来统筹管理数据工作。在大数据时代不同的数据需要整合,公安、消防、民政、社保等等数据都需要进行联动,将沉睡在数据库内的数据唤醒,为政府制 定政策所用,避免各自为政、多头管理的情况发生。数据的联通也能在一定程度上减少群众的“办证”问题,相信在大数据时代,大家可能只需要一张身份卡就能满 足绝大部分的数据需要。

三是围绕个人数据安全,加强管理。任何技术都是双刃剑,耍得好可以披荆斩棘,耍得不好则会害人伤己,大数据也不列外。如何保障个人隐私也成为了大数据时代面临的一个重大挑战。

【本文地址:http://www.pourbars.com/zuowen/11933253.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map