教案是教学过程中的有机组成部分,对教学内容、教学目标、教学方法等进行系统性的设计和安排。合理安排教学步骤是编写教案的重要环节。以下是一些经过教师精心编写的教案样本,供大家参考借鉴。
函数的应用教案及反思篇一
本节课的内容是在学生理解和掌握了五条运算定律的'基础上,进一步学习减法运算中的一些简便计算。在例1教学中,教材主要着眼于通过不同解法的比较,使学生认识一个数连续减去两个数,可以减去两个数的和。
成功之处:
234-34-66=134234-(66+34)=134,得出234-66-34=234-(66+34)=234-34-66,然后让学生举例、验证得出减法的性质——一个数连续减两个数可以减去两个数的和,也可以先减去第二个数,再减去第一个数,并用字母表示:a-b-c=a-(b+c)=a-c-b,学生理解起来比较容易。通过练习学生对于习题的掌握非常好。
不足之处:
1.从学生作业反馈来看,主要问题在于学生计算出错,抄错题目,计算中抄错数,个别学生不能灵活解决问题。
2.学生学习的积极性还有待提高,不愿意举手回答问题,比较沉默。
再教设计:
1.重点对第三种类型练习,针对学生薄弱区域进行讲解。
2.针对学生出错的原因,让学生正确对待,端正学习态度,做题要细心,认真。
函数的应用教案及反思篇二
这节课,我对教材进行了探究性重组,同时放手让学生在探究活动中去经历、体验、内化知识的做法是成功的。通过充分的过程探究,学生容易得出也是最早得出了图象的性质,借助直观图象的性质而得到一次函数的性质。花费了一番周折,说明去掉这个中介,直接让学生从单调性来接受一次函数性质是困难的。要想让学生真正理解和掌握一次函数的性质就必须放手让学生进行探究,让学生在探究中获得感性认识,同时只有放手让学生自我探究,潜力与智慧才会充分表现,学生也才会表现真实的思维和真实的自我。
在新课程理念的指导下,我们的一切教学都要围绕学生的成长与发展做文章,真正让学生理解、掌握真实的知识和真正的知识。要实现此目的:首先,要设计适合学生探究的素材。教材对一次函数的性质是从增减来描述的,我们认为这种对性质的表述是教条化的,对这种学术、文本状态的知识,学生不容易接受。当然教材强调所呈现内容的逻辑性、严密性与科学性是合理的。但是能让学生理解和接受的知识才是最好的。如果牵强的引出来,不一定是好事。其次,探究教学的过程就是实现学术形态的知识转化为教育形态知识的过程。只有这样探究才是有价值的,真知才会有生长性。要表现过程的真实与自然,从建构主义的观点出发,就是要尊重学生各自的经验与思维方式、习惯。结论是一致的,但过程可以是多元的,教师要善于恰倒好处地优化提炼学生的结论。
最后,教师在学生探究真知之旅上应是一个促进者、协作者、组织者。要做善于点燃学生探究欲望和智慧火花的人,要善于让学生说教师要说的话,做教师想做的事,这就是一个成功的促进者。数学教学的过程是师生共同活动、共同成长与发展的过程。真正的知识不全是由教材和教师讲授的途径获取的,其实学生也是课程资源的开发者,如本课例中的“走向”问题,“同向变化”等,这为函数性质的得出做了很好的铺垫。要彻底抛弃“唯书论”“唯师论”,与学生一起去探究协作,寻觅适合学生自己的真知才是最有效的教学。要开展成功的探究,教师要科学设置问题情景或问题素材,使探究的问题具有层次性和探究性,适时、适势、适度地用教学机智调控课堂。在教学设计中,要预设多种意外和可能,这样探究真知的过程虽然会艰辛但展开顺利,这才是一个成功的组织者。
但是,本节课也难免有许多不足之处,我本人认为:我关注学生还是不够,尤其对学生的反馈不能作到有效的和准确的指导和引导;讲的还是有点多,老不敢放手让学生自己去经历独学、对学和小组学习的过程,给学生思考和活动的时间和机会还是较少有的学生看似听课,其实思维根本就没有参与进来,从而影响了课堂效益的最大化。
我会继续努力,不断改进,是自己的课堂更加精彩!
函数的应用教案及反思篇三
生说:
2、能凑整。从数字上看出来的。
两个数相减得到一个整百数,减起来好算一些了。
生小结数字特点:
能凑整十、整百或整千;
尾数相同,减出整十、整百数。
(1)先计算12+8。
*(2)先计算63+37。
(5)先计算15+5。
生得出的结论:
能够直接进简算的就不必再使用减法的性质了。
生思考、表达:
购物时,在同一地点购物一般用从整体里减掉几个部分之和的方法;在不同的地点购物一般用到连减的方法。
生购物:
454-(26+174)=。
454-(154+26+174)=。
通过对问题的解决引出两步计算的算式为研究减法性质做准备。
通过解释算式的意思使学生明确算理。
通过观察发现每两个算式间的相等关系。
合作、交流中发现算式中隐藏的相同与不同之处,并能通过相同与不同建立算式间的联系。
培养学生倾听的能力与接受他人意见的好的学习品质。
增加感性的认识,加深对性质的认识与理解。
再次加深认识。
指导学生在观察、发现中抽象、概括出一定的规律,培养学生的抽象、概括的能力。
鼓励学生要有意识地锻炼自己的语言表达能力。
函数的应用教案及反思篇四
(二)解析:本节课要学的内容指的是会判定函数在某个区间上的单调性、会确定函数的单调区间、能证明函数的单调性,其关键是利用形式化的'定义处理有关的单调性问题,理解它关键就是要学会转换式子 。学生已经掌握了函数单调性的定义、代数式的变换、函数的概念等知识,本节课的内容就是在此基础上的应用。教学的重点是应用定义证明函数在某个区间上的单调性,解决重点的关键是严格按过程进行证明。
(一)教学目标:
掌握用定义证明函数单调性的步骤,会求函数的单调区间,提高应用知识解决问题的能力。
(二)解析:
会证明就是指会利用三步曲证明函数的单调性;会求函数的单调区间就是指会利用函数的图象写出单调增区间或减区间;应用知识解决问题就是指能利用函数单调性的意义去求参变量的取值情况或转化成熟悉的问题。
在本节课的教学中,学生可能遇到的问题是如何才能准确确定 的符号,产生这一问题的原因是学生对代数式的恒等变换不熟练。要解决这一问题,就是要根据学生的实际情况进行知识补习,特别是因式分解、二次根式中的分母有理化的补习。
在本节课()的教学中,准备使用(),因为使用(),有利于()。
函数的应用教案及反思篇五
教学内容:《简便运算(一)》是人教版义务教育课程标准实验教科书四年级数学下册第39页的例1以及“做一做”。
教学目标:
1、通过观察、猜想、验证、归纳,让学生经历探究发现减法的特殊规律并选择运用进行简算的过程。
2、让学生从解决生活实际问题中体会到计算方法的多样化。
3、使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。教学重点:理解一个数连续减去两个数,可以写成这个数减去后两个数的和的道理。
教学难点:灵活运用减法的性质进行简便运算。
教学过程:
一、激趣生疑。
1、竞赛。
出示两组题,分组计算,比赛看哪组同学即对又快?(幻灯片出示)第一组第二组。
72-6-472-(6+4)。
85-8-285-(8+2)。
2、发现:让学生通过观察、比较发现了什么?(学生说说自己的发现)。
3、猜想:观察三个等式,激励学生大胆猜测:这里面有没有什么规律呢?(学生发表自己的说法)。
4、师板书:从一个数里连续减去两个数可以写成这个数减去后两个数的和。
5、师提问:是不是从一个数里连续减去两个数都可以写成这个数减去后两个数的和呢?(在猜想后打上?号)。
6、举例验证。
7、师小结:大家善于观察,善于动脑,这是一种很好的学习习惯,刚才大家通过观察发现了规律,利用这些规律使计算简便。(板书:简便)。
二、自主探索,探究新知。
(创设情景引出例题)。
师:“同学们喜欢旅游吗?(喜欢)如果让你自己去旅行,你能行吗?不要着急,李叔叔给大家介绍了一个旅行法宝——《自助旅行》指南。这本书可以告诉我们旅行时应做的准备和注意事项。”
1.出示情境图。
(数学信息:李叔叔昨天看了66页,今天又看了34页。这本书一共有234页。)。
师:根据这些数学信息,你能提出哪些数学问题?
2.尝试各种算法。
师:“还剩多少页?”这个问题,你能解决吗?(能)。
师:自己先列式算算看,计算好后把你的思路跟小组内的同学交流一下,看谁的算法最多。
3.全班汇报交流。
师:你们都是怎么计算的?把你的思路跟大家分享一下。
指名上黑板板演算法。
函数的应用教案及反思篇六
使学生对反比例函数和反比例函数的图象意义加深理解。
一、新授:
1、实例1:(1)用含s的代数式表示p,p是s的反比例函数吗?为什么?
答:p=600,p是s的反比例函数。
(2)、当木板面积为0.2m2时,压强是多少?
答:p=3000pa。
(3)、如果要求压强不超过6000pa,木板的面积至少要多少?
答:2。
(4)、在直角坐标系中,作出相应的函数图象。
(5)、请利用图象(2)和(3)作出直观解释,并与同伴进行交流。
二、做一做。
1、(1)蓄电池的电压为定值,使用此电源时,电流i(a)与电阻r()之间的函数关系如图5-8所示。
(2)蓄电池的电压是多少?你以写出这一函数的.表达式吗?
电压u=36v,i=60k。
r()345678910。
i(a)。
3、如图5-9,正比例函数y=k1x的图象与反比例函数y=60k的图象相交于a、b两点,其中点a的坐标为(3,23)。
(1)分别写出这两个函数的表达式;。
(2)你能求出点b的坐标吗?你是怎样求的?与同伴进行交流;。
随堂练习:
p145~1461、2、3、4、5。
作业:p146习题5.41、2。
函数的应用教案及反思篇七
昨天听了李婷婷老师的一节问题发现生成课,老师准备充分,学生积极,交流讨论应用得当。课后蔡校长又对这堂课及时进行了点评和引领,使我对问题发现课,问题生成课有了新的认识,同时结合自己上课的情况进行了自我反思,现总结如下:
1.口号:李老师的学生设计的口号知识点概括的非常全面而且读起来朗朗上口,这是我值得学习的地方。回想自己的学生设计的口号,要么是知识点的罗列,要么是空洞的大话,每次设计都不如人意。在以后的教学中要对学生口号的设计重视起来,口号是学生预习的一种体现,也可以振奋学生的精神。
2.多媒体的使用:一直以来我有一种错误的认识,觉得在数学课上能用多媒体的地方太少了,今天看来,多媒体确实是省时省力的好帮手。也可以让学生时刻注意各项要求。
3.小组交流:李老师的小组交流有三种形式,2人小组交流,4人小组交流,8人小组交流,这三种交流方式要求各不相同,解决的任务也各不相同,一次比一次的交流的深入,一次比一次有提高,这样交流无疑大大的提高了效率。回想自己在上课时的交流,每次交流完后成果总是不尽如人意,提不出问题,或者提的问题不好。我认为这种交流方式是本节课的一大亮点,也是我非常值得学习的地方。另外我认为在交流中要使每个人都有任务,每个人都是自己任务的责任人,尤其是在交流中去抓好小组长和学科长的作用,可使交流的有秩序的进行。
4.课堂记录:李老师班里的同学的课堂记录本记录的满满当当,工工整整,有组长学科长的批阅,也有老师的批阅,学生能对课上的知识点及时整理,或者是平时做错的一些题目,或者是重要的题型,这样学生课下在复习时才能有抓手,成绩当然会提高。这也是我学习的榜样。
5.评价:在一堂课将结束时,评价是非常重要的,既可对学生起到鼓励的作用,也可以起到激励的作用,蔡校长说“评价的过程就是提高的过程”,要让学生人人都会评价,人人都被评价,在评价别人的过程中也就提高了自己。
6.读:在平时学生的预习中,学生读的遍数肯定不够,主要是监督检查的力度还不够,老师督查的角色没有扮演好,所以在上课时总是嫌学生提不出好的问题,解决不了几个问题,其实学生的可塑性是很强的,关键是看老师怎样去管理,老师给学生设置一个怎样的平台。学生的预习做的好,在上课的时候可以做到事半功倍,在下一阶段的教学中,我要重视起学生的预习来。
以上是我对听李老师课的一些认识和看法,也是我今后努力的方向。
函数的应用教案及反思篇八
教学目标:
1、继续经历利用二次函数解决实际最值问题的过程。
2、会综合运用二次函数和其他数学知识解决如有关距离等函数最值问题。
3、发展应用数学解决问题的能力,体会数学与生活的密切联系和数学的应用价值。
教学重点和难点:
重点:利用二次函数的知识对现实问题进行数学地分析,即用数学的方式表示问题以及用数学的方法解决问题。
难点:例2将现实问题数学化,情景比较复杂。
教学过程:
一、复习:
1、利用二次函数的性质解决许多生活和生产实际中的最大和最小值的问题,它的一般方法是:
(1)列出二次函数的解析式,列解析式时,要根据自变量的实际意义,确定自变量的取值范围。
(2)在自变量取值范围内,运用公式或配方法求出二次函数的最大值和最小值。
2、上节课我们讨论了用二次函数的性质求面积的最值问题。出示上节课的引例的动态。
图形(在周长为8米的矩形中)(多媒体动态显示)。
设问:(1)对角线(l)与边长(x)有什何关系?
(2)对角线(l)是否也有最值?如果有怎样求?
l与x并不是二次函数关系,而被开方数却可看成是关于x的二次函数,并且有最小值。引导学生回忆算术平方根的性质:被开方数越大(小)则它的算术平方根也越大(小)。指出:当被开方数取最小值时,对角线也为最小值。
二、例题讲解。
多媒体动态演示,提出思考问题:(1)两船的距离随着什么的变化而变化?
(2)经过t小时后,两船的行程是多少?两船的距离如何用t来表示?
设经过t小时后ab两船分别到达a’,b’,两船之间距离为a’b’=ab’2+aa’2=(26-5t)2+(12t)2=169t2-260t+676。(这里估计学生会联想刚才解决类似的问题)。
因此只要求出被开方式169t2-260t+676的最小值,就可以求出两船之间的距离s的最小值。
解:设经过t时后,a,bab两船分别到达a’,b’,两船之间距离为。
s=a’b’=ab’2+aa’2=(26-5t)2+(12t)2。
=169t2-260t+676=169(t-1013)2+576(t0)。
当t=1013时,被开方式169(t-1013)2+576有最小值576。
所以当t=1013时,s最小值=576=24(km)。
答:经过1013时,两船之间的距离最近,最近距离为24km。
练习:直角三角形的两条直角边的和为2,求斜边的最小值。
三、课堂小结。
应用二次函数解决实际问题的一般步骤。
四、布置作业。
见作业本。
函数的应用教案及反思篇九
教学目标:使学生对反比例函数和反比例函数的图象意义加深理解。
教学程序:
一、新授:
1、实例1:(1)用含s的代数式表示p,p是s的反比例函数吗?为什么?
答:p=600,p是s的反比例函数。
(2)、当木板面积为0.2m2时,压强是多少?
答:p=3000pa。
(3)、如果要求压强不超过6000pa,木板的面积至少要多少?
答:2。
(4)、在直角坐标系中,作出相应的函数图象。
(5)、请利用图象(2)和(3)作出直观解释,并与同伴进行交流。
二、做一做。
1、(1)蓄电池的电压为定值,使用此电源时,电流i(a)与电阻r之间的函数关系如图5-8所示。
(2)蓄电池的电压是多少?你以写出这一函数的表达式吗?
电压u=36v,i=60k。
r()345678910。
i(a)。
3、如图5-9,正比例函数y=k1x的图象与反比例函数y=60k的图象相交于a、b两点,其中点a的坐标为(3,23)。
(1)分别写出这两个函数的表达式;。
(2)你能求出点b的坐标吗?你是怎样求的?与同伴进行交流;。
随堂练习:
p145~1461、2、3、4、5。
作业:p146习题5.41、2。
函数的应用教案及反思篇十
2.渗透数形结合思想,提高学生用函数观点解决问题的能力。
二、重点、难点。
2.难点:分析实际问题中的数量关系,正确写出函数解析式。
3.难点的突破方法:
用函数观点解实际问题,一要搞清题目中的.基本数量关系,将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;二是要分清自变量和函数,以便写出正确的函数关系式,并注意自变量的取值范围;三要熟练掌握反比例函数的意义、图象和性质,特别是图象,要做到数形结合,这样有利于分析和解决问题。教学中要让学生领会这一解决实际问题的基本思路。
三、例题的意图分析。
教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。
教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。
函数的应用教案及反思篇十一
知识网络。
学习要求。
1.了解解实际应用题的一般步骤;。
2.初步学会根据已知条件建立函数关系式的方法;。
3.渗透建模思想,初步具有建模的'能力.
自学评价。
1.数学模型就是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题,得出关于实际问题的数学描述.
2.数学建模就是把实际问题加以抽象概括。
建立相应的数学模型的过程,是数学地解决问题的关键.
3.实际应用问题建立函数关系式后一般都要考察定义域.
【精典范例】。
例1.写出等腰三角形顶角(单位:度)与底角的函数关系.
例2.某计算机集团公司生产某种型号计算机的固定成本为万元,生产每台计算机的可变成本为元,每台计算机的售价为元.分别写出总成本(万元)、单位成本(万元)、销售收入(万元)以及利润(万元)关于总产量(台)的函数关系式.
分析:销售利润销售收入成本,其中成本(固定成本可变成本).
【解】总成本与总产量的关系为。
单位成本与总产量的关系为。
销售收入与总产量的关系为。
利润与总产量的关系为。
函数的应用教案及反思篇十二
具体分析本节课,首先简单的用几分钟时间回顾一下反比例函数的基本理论,“学习理论是为了服务于实践”的一句话,打开了本节课的课题,过渡自然。本节课用函数的观点处理实际问题,主要围绕着路程、工程这样的实际问题,通过在速度一定的条件下路程与时间的关系,认识到反比例函数与实际问题的关系,在讲解这几个例子的时候,创设了学生熟悉的情境,简单的一句话引出问题,这样更能引起学生的兴趣,使学生更积极地参与到教学中来,因为情境熟悉,也能快速地与学生产生共鸣。
创设了轻松和谐的教学环境与氛围,师生互动较好,这样能使学生主动开动思维,利用已有的知识顺利的解决这几个问题。在讲解例题的同时,试着让学生利用图象解决问题,培养学生数形结合的思想,并提示学生注意自变量在实际情境中的取值范围问题。而后,给学生几分钟的思考时间,让他们通过平时对生活的细心观察,生活中有关反比例函数的有价值的问题,说出来与全班共同分享。这一环节的设置,不仅体现新教改的合作交流的思想,更主要的培养他们与人协作的能力。更好的发展了学生的主体性,让他们也做了一回小老师,展示他们的个性,这样有益于他们健康的人格的成长。最后在总结中让学生体会到利用反比例函数解决实际问题,关键在于建立数学函数模型,并布置了作业。从总体看整个教学环节也比较完整。
函数的应用教案及反思篇十三
首先我在学案的设计上做了改进,没有象以前那样把自己的上课流程全部体现在学案上,而是让学案仅仅起到一个导学的作用,提纲挈领式,在学案上出现的问题比较多,而把问题的答案留给学生自己去总结,我认为这样可以激发学生学习中的热情,让他们在学习的过程中不断完善学案。
其次就是在新知识的展现形式方面做了改进,以前的学案我总是把本节课的知识点在学案上列出,通过教师的讲解让学生从学案上划出来然后背诵,学生没有经历新知识生成的过程,虽然在当堂课上学生看起来对新知识理解的较好,但过一段时间后遗忘的很快。本次的学案设计,我把新知识的学习定位为自主学习,在学案上提出了三个问题,让学生自己通过看书和小组内交流找出三个问题的答案,并把答案总结在学案上的空白处,使学生通过自学课本和小组交流,经历概念的生成过程,培养学生阅读课本和总结问题的能力。
二、课堂教学方面。
上面谈了自己对本节课的教学设计和一些思想,下面从两个方面谈谈自己在本节课的课堂教学方面的一点体会。我认为本堂课比较成功的做法有以下几个方面:
1、我觉得教师角色转变的重心在于使传统意义上的教师教和学生学,不断让位于师生互教互学,彼此形成一个真正的“学习共同体”。本节课,若按老的教学路子,应先告诉学生什么是反比例函数,然后让学生把反比例函数的性质背下来,最后应用反比例函数的性质去解决实际问题,这样就完成了教学任务。而新的课程标准则要求教师引导学生经历从具体情境中抽象出数学知识的过程,并在这个过程中与学生平等地交流和给以恰到好处的点拨。在这点上,我认为自己处理的比较好。我先通过两个例子让学生初步了解什么是反比例函数,让学生自己概括反比例函数的意义,画反比例函数以及将它与正比例函数比较,再通过小组讨论学生就自然而然的得出了反比例函数的的特征,且印象深刻。
2、能驾驭教材,对学生提出的问题有灵活的解决办法并且在小组合作学习产生争议的时候,教师能放能收,处理的到位,符合新的课堂教学理念。
3、在处理课堂练习时,让学生选择自己喜欢的问题来回答,照顾了学生的个体差异,关注了学生的个性发展,真正成为学生学习的组织者、参与者、合作者、促进者。特别是在处理练习时,我让学生充当老师讲解自己的观点,使我看到学生的智慧,听到了富有思想的回答,让人忍不住为他们鼓掌。在学习的过程中让学生觉得数学的简单,不仅是一种技巧,更是一种智慧,是还原数学最朴素的状态。只有这样,才能极大地释放孩子的.潜能。
本节课的不足之处:
在上课过程中,由于是借班上课,所以我对学生的情感关注太少。新课堂改革,不应该是对原有课堂的全盘否定,原有课堂教学中对学生的表扬和鼓励应该在新课堂教学中得到更好的体现,因为学生的学习是认知和情感的结合,只有给了他们情感上的极大满足,学生才会获得渴望成功的动力,我们的自主学习活动才能收到应有的效果。
通过本节课教学,使我意识到今后应注意如下几个方面:
1、教学观念还要不断更新,使数学教育面向全体学生,实现――人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。
2、要不断学习新的教育理论,充实自己头脑,指导新课程教学实践。
3、注意评价的多元化,全面了解学生的数学学习历程,对数学学习的评价不仅要关注学生学习的结果,更要关注他们学习的过程,帮助学生认识自我,建立信心。
将本文的word文档下载到电脑,方便收藏和打印。
函数的应用教案及反思篇十四
一、商品定价问题:
例1某种品牌的彩电降价30%以后,每台售价为元,则该品牌的彩电每台原价为。
二、商品降价问题:
例2某商品进价是1000元,售价是1500元。由于销售情况不好,商店决定降价出售,但又要保证利润为5%,求商店应降价多少元出售。
三、存款利率问题:
四、支付稿酬问题。
例4国家规定个人发表文章或出书获得稿费的纳税计算方法是:(1)稿费不高于800元的,不纳税;(2)稿费高于800元又不高于4000元的应交超过800元那一部分稿费的14%的税;(3)稿费高于4000元的应交全部稿费的11%的税。王老师曾获得一笔稿费,并交税280元,算一算王老师这笔稿费是元。
五、股票问题:
例5下表是某一周甲、乙两种股票每天的收盘价(每天交易结束时的价格)。
六、人员考核问题:
七、货物运费问题:
自己在讲《平方差公式》时,没有按照课本上例题和练习题的顺序讲解,自己先运用三道引例让学生观察特点总结规律,从而得出平方差公式,然后练习题分了五个梯度,供大家参考:
第一关:直接运用公式。
1.(a+3)(a-3)2..(2a+3b)(2a-3b)3.(1+2c)(1-2c)。
4.(-x+2)(-x-2)5.(2x+1/2)(2x-1/2)。
6.(a+2b)(a-2b)7.(2a+5b)(2a-5b)8.(-2a-3b)(-2a+3b)。
第二关:运用公式使计算简便。
1、×2、498×5023、999×1001。
4、1.01×0.995、30.8×29.26、100-1/3×99-2/3。
7、20-1/9×19-8/9。
例7一批货物要运往某地,货主准备租用运输公司得甲、乙两种货车,已知过去两次租用这两种货车的情况如下表:
第一次。
第二次。
甲种货车辆数。
2
5
乙种货车辆数。
3
6
累计运货吨数。
15.5。
35。
八、小康生活问题:
九、校舍建设问题:
十、水资源问题:
十一、水土流失问题:
十二、旅游事业问题:
d
图中数据为相应两点间的路程(单位:千米)。一学生从a处出发,以2千米/时的速度步行游览。每个景点的逗留时间均为0.5小时。(1)当他沿线路a-d-c-e-a游览回到a处时,共化了3小时,求ce的长。(2)若此学生打算从a处出发后,步行速度与在景点的逗留时间保持不变,且在最短时间内看完三个景点返回到a处。请你为他设计一条步行路线,并说明理由(不考虑其他因素)。
十三、飞机票价问题:
练习。
9、一条船航行于a、b两码头之间,顺流行驶40分钟还差4千米到达;逆流行驶需小时到达,已知逆流速度每小时12千米,求船在静水中的速度。
更多精彩内容请点击:初中初一数学初一数学试题。
一、选择题。
1.下列各式中,计算过程正确的是。
3.当a0,n为正整数时,(-a)5・(-a)2n的值为()。
a.正数b.负数c.非正数d.非负数。
5.计算(x3)2的结果是()a.x5b.x6c.x8d.x9。
二、填空题。
6.计算:(-2)3・(-2)2=______.7.计算:a7・(-a)6=_____.
8.计算:(x+y)2・(-x-y)3=______.9.-(a3)4=_____.
10.计算:(3×108)×(4×104)=_______.(结果用科学记数法表示)。
11.若x3m=2,则x9m=_____.12.[(-x)2]・[-(x3)n]=______.
13.若a2n=3,则(2a3n)2=____.
三、计算题。
14.计算:xm・xm+x2・x2m-215.计算:x2・x3+(x3)2.
16.计算:()100×()100×()2009×42010.
函数的应用教案及反思篇十五
本节课是一节新授课,教材所提供的信息很简单,如果直接得出结论学生也能接受。可学生只能进行简单的模仿应用,为了突出知识的发生过程,不把新授课上成习题课。设计思路如下以便教会学生会思考解决问题。
1、首先从同学们熟悉的过山车模型入手,将实际问题转化为数学模型,提出如何刻画函数的变化趋势,引出课题。研究从学生熟悉的一次函数,二次函数入手,寻找导数和单调性的`关系,用几何画板演示特殊的三次函数的图像,研究单调性和导数。在此基础上提出问题:单调性和导数到底有怎样的关系?学生通过思考、讨论、交流形成结论。也使学生感受到解决数学问题的一般方法:从简单到复杂,从特殊到一般。
2、在结论得出后,继续引导学生思考,提出自己的困惑,因为确实有学生对结论有不一样的想法,所以,尽可能地暴露问题,让学生彻底理解、掌握。
3、铺垫:在引入部分,我涉及到了一个三次的函数,而例2就是此题的变式,这样既可以在开始引起学生兴趣,后来他们自己解决了看似复杂的问题,增加了信心,也做到了首尾呼应。
4、在知识应用中重点指导学生解题步骤,在学生自己总结解题步骤时,发现学生忽略了第一点求函数定义域,所以我就将错就错,给出了求函数的单调区间,很多学生栽了跟头,然后自己总结出应该先求函数定义域。虽然这道题花了些时间,但我觉得很值得,我想学生印象也会更深刻。
5、数形结合:数形结合不是光口头去说,而是利用一切机会去实施,在例1的教学中,我让学生先熟练法则,再从形上分析,加深印象,这样在后面紧接的高考题中(没有给解析式),学生会迎刃而解。
为了培养学生的自主学习、自主思考的能力,激发学习兴趣,在教学中采取引导发现法,利用多媒体等手段引导学生动口、动脑、参与数学活动,发挥主观能动性,主动探索新知。让学生分组讨论,合作交流,共同探讨问题。但是,真正做到以学生为中心,学生100%参与,体现三维目标,培养学习能力还是比较困难。在今后的教学中,应更注重学生的参与,引发认知冲突,教会学生思考问题。
函数的应用教案及反思篇十六
本节课的教学,我本意是通过反比例函数及其图像相关问题的复习,引出本节课所要讨论的问题反比例函数的应用,而后通过对问题1的讨论切入正题,重点研究“数”与“形”的互相渗透,并通过这节课的学习让学生体会“数形结合”的数学思想,利用函数图像来解决应用题。在教学中,我发现这种教学设计出现了以下几个问题。
首先,目标教学的第一环节,前测激趣,但没有达到激趣的目的,这种引课方式,在课堂反映出来显得非常平淡,没有新意,没能引起学生的认知发生冲突,激发学生的求知欲。
其次,在导探激励环节中,问题设计较好,但问题的处理上操之过急,没能让学生切实做出函数图像,通过问题迫使学生利用函数图像来解决问题,达到真正看图说话,因此就数形的内在联系学生体会不是很深刻。
为了一开始就能充分调动学生的情商,激发他们的学习动机和好奇心,激发他们的求知欲,使他们的思维进入最佳状态,我就上面存在的问题作如下改进。
在整个题目的处理过程,鼓励学生画出函数图像,更好的认识整个过程自变量和应变量变化的整体情况,处理好题目中的量与自变量和应变量的关系。
作以上改进,可以很好地让学生体会到“数”与“形”之间的联系,并且会根据反比例函数求应用题。
【本文地址:http://www.pourbars.com/zuowen/12019786.html】