初二数学教案北师大版大全(15篇)

格式:DOC 上传日期:2023-11-16 07:57:18
初二数学教案北师大版大全(15篇)
时间:2023-11-16 07:57:18 小编:文轩

教案的编写应该注重灵活性和可操作性,以便根据实际情况进行调整和改进。教师在编写教案时,应充分考虑学生的思维方式和学习习惯。小编整理了一些优秀教案范文,供大家参考借鉴。

初二数学教案北师大版篇一

课件出示:师:2002年世界数学家大会在我国北京召开,课件显示的是本届世界数学家大会的会标.会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图案来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)。

二、探究新知。

1.探究直角三角形三边长度的平方的关系.

课件出示如下地板砖示意图,引导学生从面积角度观察图形.

师:你能发现各图中三个正方形的面积之间有何关系吗?

学生通过观察,归纳发现:

以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.

2.探索勾股定理.

师:由刚才归纳发现的结论,我们自然产生联想:一般的直角三角形是否也具有该性质呢?

初二数学教案北师大版篇二

学生的知识技能基础:学生在上节课学习了算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数,能解决有关平均数的实际问题。

学生活动经验基础:学生在算术平均数和加权平均数的学习活动中,解决了一些相关的实际问题,再次感受到了数据收集和处理的必要性和作用,又获得了一些从事统计活动的数学活动经验,具备了一定的自主探索与合作交流的能力。

二、教学任务分析。

本节课的教学任务是:进一步了解权的差异对平均数的影响,理解算术平均数和加权平均数的联系与区别,能利用平均数解决实际问题,发展数学应用能力,达成有关的情感态度目标。为此,本节课的教学目标是:

1.知识与技能:会求加权平均数,体会权的差异其平均数的影响;理解算术平均数和加权平均数的联系与区别,能利用平均数解决实际问题。

2.过程与方法:通过探索算术平均数和加权平均数的联系与区别的过程,培养学生的思维能力;通过有关平均数的问题的解决,发展学生的数学应用能力。

3.情感与态度:通过解决实际问题,体会数学与社会生活的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。

三、教学过程设计。

本节课设计了五个教学环节:第一环节:情境引入;第二环节:合作探究;第三环节:运用提高;第四环节:课堂小结;第五环节:布置作业。

第一环节:情境引入。

内容:请同学们回忆:什么是算术平均数?什么是加权平均数?

请同学们各举一个有关算术平均数和加权平均数的实例,与同伴交流。

在学生的复习交流中引入课题:本节课将继续研究生活中的加权平均数,以及算术平均数和加权平均数的联系与区别。

初二数学教案北师大版篇三

1、学习什么是三元一次方程和三元一次方程组.(2)会解简单的三元一次方程组.

过程与方法。

通过三元一次方程组的解法练习,培养学生分析能力,能根据题目的特点,确定消元方法、消元对象.培养学生的计算能力、训练解题技巧.

情感态度与价值观。

让学生通过自己的探索、尝试、比较等活动去发现一些规律,体会一些数学思想,从而激发学生的求知欲望和学习兴趣.

教学重点。

使学生会解简单的三元一次方程组,经过本课教学进一步熟悉解方程组时“消元”的基本思想和灵活运用代入法、加减法等重要方法.

教学难点:

针对方程组的特点,选择最好的解法.

教学过程。

一、复习。

二、引入新课。

甲、乙、丙三数的和是26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,求这三个数.

初二数学教案北师大版篇四

学生技能基础:学习本节之前,学生已经对命题的含义有所了解,并且已经学习过一些公理和定理,为公理化思想的培养作好了充分准备.

活动经验基础:有了上一节的活动基础,学生对本节课主要采取学生分组交流、讨论、举例说明的学习方式有比较好的活动经验.

二、教学任务分析。

在上一节课的学习中,学生对命题的概念有了清楚的认识,但学生对于命题的构造,什么是真命题,什么是假命题还不甚了解,本节课旨在让学生对真假命题有一个清楚的认识,从而进一步了解定理、公理的概念,为此,本节课的教学目标是:

1.了解命题中的真命题、假命题、定理的含义;。

2.解命题的构成,能区分命题中的条件和结论。

3.经历实际情境,初步体会公理化思想和方法,了解本教材所采用的公理.

4.培养学生的语言表达能力。

三、教学过程分析。

本节课的设计分为五个环节:回顾引入——探索命题的结构——思考探讨——读一读——课堂反思与小结.

初二数学教案北师大版篇五

4.如果一个实数的平方根与它的立方根相等,则这个数是()。

a.0b.正整数c.0和1d.1。

答案:a。

解析:解答:0的平方根是0,0的立方根还是0,故只有0的平方根和它的立方根相等。

分析:考察特殊数的平方根和立方根,注意0的平方根和立方根.

5.有下列说法正确的是:()。

a无理数就是开方开不尽的数;b无理数是无限不循环小数;。

c带根号的数都是无理数d无限小数都是无理数。

答案:b。

分析:考察算术平方根的计算.

初二数学教案北师大版篇六

教学目标:

知识与技能:

1、在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.

2、经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。

过程与方法。

1.经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,培养学生的探索能力。

情感现价值观。

1.丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。

2.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动。

3.通过“坐标与轴对称”,让学生体验数学活动充满着探索与创造。

教学重点:

经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。

教学难点:

由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识。

一创设问题情境,引入新课。

『师』:在前几节课中我们学习了平面直角坐标系的有关知识,会画平面直角坐标系;能在方格纸上建立适当的直角坐标系,描述物体的位置;在给定的直角坐标系下,会根据坐标描出点的位置,由点的位置写出它的坐标。

我们知道点的位置不同写出的坐标就不同,反过来,不同的坐标确定不同的点。如果坐标中的横(纵)坐标不变,纵(横)坐标按一定的规律变化,或者横纵坐标都按一定的规律变化,那么图形是否会变化,变化的规律是怎样的,这将是本节课中我们要研究的问题。

探索两个关于坐标轴对称的图形的坐标关系。

1.在如图所示的平面直角坐标系中,第一、二象限内各有一面小旗。

2.在右边的坐标系内,任取一点,做出这个点关于y轴对称的点,看看两个点的坐标有什么样的位置关系,说说其中的道理。

初二数学教案北师大版篇七

学生在练习本上列式计算。

2.说一说哪个图形的面积大,哪个图形的面积小。

1、说一说每种颜色图形的面积是多少。

3、小组长取出信封里的纸片,这些纸片是干什么的?

5、互相说一说测量的结果,由小组长把这些结果记录下来。

d读作:平方分米。

读作:平方米。

公顷。

平方千米。

初二数学教案北师大版篇八

教学内容:

1.分数的乘法。

2.分数混合运算。

3.用分数解决问题。

教材分析:本单元是在整数乘法、分数的意义和性质的基础上进行教学的,同时又是学习分数除法和百分数的重要基础。与整数、小数的计算教学相同,分数乘法的计算同样贯彻《标准》提出的让学生在现实情景中体会和理解数学的理念,通过实际问题引出计算问题,并在练习中安排一定数量的解决实际问题的内容,以丰富练习形式,加强计算与实际应用的联系,培养学生应用数学的意识和能力。根据本套教材的编写思路,本单元将解决一些特殊数量关系问题的内容单独安排。

三维目标:

知识和技能:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。使学生能够应用分数乘整数的计算法则,比较熟练的进行计算。通过观察比较,培养学生的抽象概括能力。知道分数乘整数的意义,学会分数乘整数的计算方法。

情感、态度和价值观:通过引导学生探究知识间的内在联系,激发学生学习兴趣,感悟数学知识的魅力,领会数学美。

教法和学法:通过演示,使学生初步感悟算理。

指导学生通过体验,归纳分数乘整数的计算方法。

教学重点、难点:使学生理解分数乘整数的意义。掌握分数乘整数的计算方法;。

引导学生总结分数乘整数的计算方法。

授课时数:10课时。

第1课时。

学期总第1课时。

教学课题分数乘整数。

主备教师使用教师授课时间月日。

标知识。

技能在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

过程。

方法通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

情感。

态度。

与价。

值观引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

教学重点使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

教学难点引导学生总结分数乘整数的计算法则。

教法与学法直观演示法。

教学准备及手段课件。

教学流程二次备课。

初二数学教案北师大版篇九

一、激趣导入。

你玩过七巧板吗?

七巧板是中国唐朝发明的一种非常有趣的游戏,它由一个正方形分割成五个三角形、一个平行四边形和一个正方形,19世纪初流传到西方,引起人们广泛的兴趣,并迅速传播,被称为“东方魔板”。下面是一年时你们用七巧板拼出的图形。

初二数学教案北师大版篇十

1.师生谈话由学生最近看过什么电影,在哪个电影院看的,电影院每排有多少个座位,有多少排,引出电影院座位问题。

请几个同学介绍。

师:谁仔细观察过,你去的电影院每排大约有多少个座位?有多少排?

生发言,教师对注意观察电影院座位的学生给予表扬。

师:-同学真不错,到电影院不光是看电影,还特别注意观察电影院的座位情况。今天我们就来解决一个电影院的座位问题。

用小黑板出示问题(1)。

2.用小黑板出示问题(1),让学生读题,了解其中的信息和要解决的问题。

师:请同学们认真读题,说说从中你了解到哪些数学信息?要解决的问题是什么?

学生说电影院原来的座位情况和问题。

二、解决问题。

1.提出问题(1),师生共同列出算式,鼓励学生自主计算。

师:求原来一共有多少个座位,怎样列式呢?

学生说,教师板书:36×30=。

师:36×30,这个算式你们都会计算,用自己的方法试着算一算吧!

学生自主计算,教师巡视,了解学生的计算方法。

2.交流学生个性化的计算方法,鼓励学生大胆介绍自己的想法和计算过程。

师:谁来说一说你是怎么想的?怎么计算的?

学生可能会有以下方法。

(1)先算10排共有多少个座位。

36×10=360(个)。

360×3=1080(个)。

(2)把30看成3个十,36乘3个十等于108个十,也就是1080。所以,36×3=1080(个)。

(3)用竖式计算。

第(2)种方法如果没有出现,教师可以交流,并接着列出竖式的简便算法。

如果出现,教师就结合学生的算法介绍简便算法。

3.介绍竖式计算的简便算法。

师:36乘30,可以把30看成3个十,这样写竖式。

边说边板书。

师:计算时,先算36乘3,得108,也就是108个十,在108的前面添上一个0。

边说边完成板书。

生:这样写很简便。

用小黑板出示问题(2)。

4.教师谈话,并说明要解决的问题。然后,用小黑板出示问题(2),让学生列出算式,用口算,说一说是怎样想的。

师:谁来说一说现在这个电影院的座位情况?

生:这个电影院现在每排有40个座位,还是有30排。

师:谁来说一说怎么列式?

生:40×30。

师:口算结果是多少?

学生可能会直接说出结果1200。

师:说一说你是怎样想的。

学生可能回答。

把40看成4个十,4个十乘30等于120个十,就是1200。

先算4乘3等于12,再在12的后面添两个0,就是1200。

教师重点指导口算方法。

5.教师介绍竖式计算,边说边写出竖式。

师:整十数乘整十数,可以直接利用口诀计算。先把整十数十位上的数相乘,再在积的后面添两个0。用竖式可以这样算。

教师介绍竖式的简便算法。

三、尝试练习。

1.教师在黑板上写。

出试一试中的6道题,让学生独立计算,然后进行交流。

师:同学们刚才用不同的方法解决了电影院的座位问题,而且学会了用竖式计算乘数末尾有0的乘法。现在,请同学们计算一下黑板上的几道题,看谁算得又快又正确。

学生自主计算,请两个人到黑板上板演。64×30和99×99。

10×10不要求有竖式。

全班交流。

2.提出议一议的问题,启发学生根据三道题的.乘数和积回答问题。

师:观察这几道题中乘数和积,想一想,两位数乘两位数,积最多是几位数,最少是几位数?说一说你判断的理由。

学生可能回答。

两位数乘两位数,积最多是四位数。因为99是的两位数,99×99=9801,所以两位数乘两位,积最多是四位数。

两位数乘两位数,积最小是三位数。因为10是最小的两位数,10×10=100,100是个三位数。所以,两位数乘两位数的积最小是三位数。

学生如果有困难,教师启发或参与交流。

四、课堂巩固。

1.练一练第1题。

(1)师生一起估计积是几位数。要给学生充分地表达不同想法的机会。

师:看来同学们不但学会了两位数乘两位数的计算方法,又知道积最多是几位数,最少是几位数。下面看练一练第1题,我们一起估计一下积是几位数。说一说你是怎样想的。

学生可能会出现不同说法。

26×40可能出现两种意见。

积最多是三位数,因为十位上的两个数2乘4等于8,不进位;。

积最多是四位数。把26看成25,40看成4个十,25乘4个十等于100个十,就是1000,所以积一定是四位数。

要给学生充分的讨论时间。

74×36,也可以有两种算法。

因为十位上的两个数7乘3等于21,要进位,所以积一定是四位数;。

因为70×30=2100,所以,70×36的积一定是比2100大的四位数。

(2)鼓励学生自己计算,检验估算的结果。

使学生了解判断积是几位数的一般方法:先看两位数十位上的数,十位上的两个数相乘超过或等于10,积一定是四位数。

师:好!现在请同学们自己计算一下,看看估计的结果对不对。

学生计算后,再总结估计积是几位数的方法:两位数乘两位数,十位上的两个数相乘进位,积一定是四位数。

2.练一练第2题,口算比赛。

师:这节课同学们表现得都非常棒,下面我们举行一个口算竞赛,看谁是咱们班的“口算能手”!

3.练一练第3题,先读题明确图意后,让学生独立解答,再交流解答问题的过程和结果。

学生回答后,自己列式计算,然后交流。

4.练一练第4题让学生先读题,弄懂题意,再计算。交流时,重点说一说是怎样判断的。

五、课堂小结。

同学们我们这节课学习了什么?你有什么收获?

初二数学教案北师大版篇十一

可翻书回顾所学的分数的知识,并和同桌说一说。

1、学生独立完成后,当“小老师”检查同桌作业并交流做法,评价作业。

练习课。

初步理解分数的意义。

二、师生互动,探究新知。

独立完成后,全班交流,订正答案。

四、合作交流,取长补短。

1.小组讨论:我的成长足迹。

(1)我解决了一个生活中的问题……。

(2)我读了一本有趣的数学读物……。

(3)我学会了有条理地思考问题……。

2.分组交流,然后全班交流。

小组总结汇报,师总结板书。

生独立思考,自由说:

学过平方厘米,平方分米、平方米、公顷、平方千米等。

平方厘米可用来测量橡皮、书本等的面积……米可用来测量教室的面积、黑板的面积等……。

学生讨论,小结:图形必须是封闭的。

独立做提。(可以拿出面积单位比一比,再思考。又组长主持讨论、评估、反思)。

生独立看图。

小组合作学生可能提:

(1)房间面积?

(2)瓷砖面积?

(3)需要多少块砖?

小组汇报,解决问题。

初二数学教案北师大版篇十二

知识技能1、了解无理数及实数的概念,并会对实数进行分类.

2、知道实数与数轴上的点具有一一对应关系.

3、学会使用计算器探求将有理数化为小数形式的规律.

4、学会使用计算器估算无理数的近似值.

5、学会使用计算器计算实数的值.

数学思考。

1、通过计算器探求将有理数化为小数形式的规律,使学生经历观察、猜想、实验等数学活动过程,培养学生数学探究能力和归纳表达能力.

2、在使用计算器估算和探究的过程中,使学生学会用计算器探究数学问题的方法.

3、经历从有理数逐步扩充到实数,了解到人类对数的认识是不断发展的.

4、经历对实数进行分类,发展学生的分类意识.

5、通过使用计算器估算无理数的近似值和计算实数的活动,使学生建立对无理数的初步数感.

解决问题1、通过无理数的引入,使学生对数的认识由有理数扩充到实数.

2、通过计算器对无理数近似值的估算和对实数计算,使学生发展实践能力.

3、在交流中学会与人合作,并能与他人交流自己思维的过程和结果.

情感态度1、通过计算器探求将有理数化为小数形式的规律,激发学生的求知。

欲,使学生感受数学活动充满了探索性与创造性,体验发现的快乐,获取成功的体验.

2、通过了解数系扩充体会数系扩充对人类发展的作用.

3、敢于面对数学活动中的困难,并能有意识地运用已有知识解决新。

问题.

重点了解无理数和实数的概念,以及实数的分类;会用计算器计算实数.

难点对无理数的认识.

教学流程安排。

活动流程图活动内容和目的。

活动1通过对有理数探究,激发进一步学习的欲望.

通过用计算器计算有理数和研究有理数的规律,得出对数的进一步研究的重要性,引出本节课要研究的课题.

活动3通过教师演示和学生活动,建立实数与数轴上的点的一一对应.通过在数轴上找到表示的点,认识无理数可以用数轴上的点表示,理解实数与数轴上的点建立一一对应的关系.

活动4用计算器估算无理数近似值.在使用计算器估算和验证的过程中,使学生学会用计算器求无理数近似值的方法,渗透用有理数逼近无理数的思想,加深对无理数的理解.

活动5用计算器求实数的值.学会用计算器求实数的精确值或近似值.

活动6小结归纳,课后作业.回顾梳理,总结本节课所学到的知识,完善原有认知结构,升华数学思想.

教学过程设计。

问题与情境师生行为设计意图。

[活动[活动1]。

通过对有理数探究,激。

发进一步学习的欲望.

问题:。

(1)利用计算器,把下列有理数3,-,,,,转换成小数的形式,你有什么发现?

(2)我们所学过的数是否都具有问题(1)中数的特征,即是否都是有限小数和无限循环小数?教师提出问题(1).

教师引导学生观察计算结果,得出任何一个整数或整数比即有理数都可以写成有限小数或无限循环小数的形式.

教师提出问题(2).

学生回顾思考,通过学生对有理数的再认识,师生共同归纳无理数是无限不循环小数,从而得出无理数既不是整数也不是分数的结论.

活动1中,教师应关注:(1)学生通过实际计算实现有理数到小数的转化,激发进一步学习无理数的欲望;(2)学生了解无理数的主要特征.计算器是将有理数转化为小数的主要计算工具,通过组织学生的计算活动,发现规律,并与学过的无限不循环小数作对比,为学习无理数概念作准备.

通过让学生参与无理数的概念的建立和发现数系扩充必要性的过程,促进学生对数学学习的兴趣,培养学生初步的发现能力.

注重新旧知识的连贯性,使学生体会到学习的内容是融会贯通的。激发学生的求知欲。

[活动2]。

通过对数的归纳辨析,教师引出无理数和实数的概念,并引导学生学会对实数如何分类.

问题:。

你能对我们学过的数进行合理的分类吗?教师引出无理数和实数的概念,。

教师引导学生独立思考:当对数的认识扩充到实数范围之后,怎样在实数范围内对学过的数进行分类整理?教师在参与讨论时启发学生类比有理数的分类,同时鼓励学生相互补充、完善,并帮助总结出实数的分类结构图.

实数。

活动2中,教师应关注:。

(1)学生对有理数和无理数的概念以及它们之间的差异与联系的了解程度;。

(2)学生在讨论中能否发表自己的见解,倾听他人的意见,并从中获益;。

(3)学生是否能用语言准确地表达自己的观点.

通过对实数进行分类,让学生进一步领会分类的思想,培养学生从多角度思考问题,为他们以后更好地学习新知识作准备.同时也能使学生加深对无理数和实数的理解.

通过学生互相的讨论和交流,可以深刻地体验知识之间的内在联系,初步形成对实数整体性的认识.

[活动3]。

通过教师演示和学生活动,建立实数与数轴上的点的一一对应。

问题:。

教师提出问题.

学生独立思考后小组讨论交流,学生借助的得出过程进行探究,。

教师参与并指导实际操作(利用多媒体课件演示圆滚动的过程).

本节由于学生知识水平的限制,教师直接给出有理数和无理数与数轴上的点是一一对应的结论.

活动3中,教师应关注:。

(1)学生利用边长为1的正方形的对角线为的结论,在数轴上找到表示的点;。

(3)学生是否主动参与探究活动,是否能用语言准确地表达自己的观点.本次活动是从学生已有的知识水平出发,找到数轴上的位置,体会无理数也可以用数轴上的点来表示.

借助数轴对无理数进行研究,从形的角度,再一次体会无理数.同时也感受实数与数轴上的点的一一对应关系.进一步体会数形结合思想.

通过多媒体教学使学生了解无理数数也可以用数轴上的点来表示,从而引发学生学习兴趣.

通过探究活动,在数轴上找到了表示无理数的点,使学生了解无理数的几何意义.

数学教学是在教师的引导下,进行的再创造、再发现的教学.通过数学活动,让学生进行探究学习,促使学生主动参与数学知识的“再发现”,培养学生动手实践能力,观察、分析、抽象、概括的思维能力.

[活动4]。

用计算器估算的近似值.

1、讨论:到底有多大?

问题:。

(1)哪个数的平方最接近3?

(2)在哪两个数之间?

并将讨论结果,发现结论通过表格明晰出来.(填〉,〈).

〈_3__〉3。

〈_3__〉_3。

〈_3_〉_3。

〈_3_〉_3。

2、验证.

用计算器估算的近似值.

教师利用有理数逼近无理数的方法,引导学生逐步估算的范围.

学生通过用计算器估算,可以寻找到的范围.

用计算器的计算功能估算的近似值。在此使学生对无理数有进一步的感知.

活动4中,教师应关注:(1)学生能否估算出。

的范围;。

(2)学生是否学会了用。

计算器估算无理数近似值的方法.如何求无理数的近似值?在此给出来两种估算的方法:对于第一种方法,利用夹逼的办法,通过分析的一系列不足近似值和过剩近似值来估计它的大小,加深对无理数的理解.而第二种方法,则是直接用计算器求值.

利用计算器的计算功能可提高这节课的实效性.在教学中计算器可作为一种探究工具,在这节课中让学生自己动手实验、验证,调动学生学习的积极性,增强数感,利用计算器的计算功能探究用有理数逼近无理数,使学生感受计算器在求无理数近似值的优越性.

[活动5]。

用计算器求实数的值.

例1:计算.

(1)。

(结果保留3个有效数字);。

(2)。

(精确到0.01);。

例2:比较下列各组数的大小.

(1)4,;。

(2)-2,-。

当数的范围由有理数扩充到实数以后,对于实数的运算,教师强调两点:一是有理数的运算率和运算性质在实数范围内仍然成立;二是涉及无理数的计算,利用计算器求其近似值,转化为有理数进行计算.

教师布置练习后,巡视辅导,并通过投影展示同学的计算过程。

活动5中,教师应关注:。

(1)学生是否会正确使用计算器计算实数;。

(2)是否按所要求的精确度正确地用相应的近似有限小数来代替无理数.安排例1的目的是想通过具体例子说明,有理数的运算律和运算性质同样适合于实数的运算,同时巩固使用计算器求实数的方法.

例2是比较数的大小,教学中可以引导学生运用多种方法,比如可以先求出无理数的近似值,把无理数化成有理数,再比较两个有理数的大小等.

活动5使学生能够熟练运用计算器求实数的值.使学生加深对实数的认识.

[活动6]。

小结归纳,课后作业.

问题:。

1、本节课你学到了什么知识?你有什么收获?

2、本节课如何发挥计算器的功能帮助你进行数学探究的?

课后作业:。

(1)课本第22页习题5.3之复习巩固1,2,4;。

(2)第23页课本习题之综合运用8.如图。

教师提出问题.

学生独立回答,教师根据学生的回答,结合结构图总结本节知识.

活动7中,教师应关注(1)学生对无理数和实。

数概念的理解程度;。

(2)学生是否能够认真地倾听与思考;。

(3)学生是否能够发现其中的数学题,并有意识地运用所学知识解决;。

(4)学生能够对知识的归纳、梳理和总结的能力的提高;。

(5)学生能否在本节知识的基础上主动思考,类比有理数的性质和运算来学习实数;。

(6)学生能否学会用计算器进行计算、探究解决数学问题.通过共同小结使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联结,再一次突出本节课的学习重点,改善学生的学习方式。有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感.同时为以后的学习作知识储备.

学生通过独立思考,完成课后作业,教师能够及时发现问题并反馈学生的学习情况,以便于查漏补缺,优化课堂教学.

教学设计说明。

(1)本节是在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数范围.从有理数到实数,这是数的范围的一次重要扩充,对今后学习数学有重要意义.在中学阶段,多数数学问题是在实数范围内研究.例如,函数的自变量和因变量是在实数范围内讨论,平面几何、立体几何中的几何量(长度、角度、面积、体积等)都是用实数表示等.实数的知识贯穿于中学数学学习的始终,学生对于实数的运算,以后还要通过学习二次根式的运算来加深认识.同时在本节课中充分发挥计算器的计算、验证、探究功能。因此本节的作用十分重要.

在本节课中为了突出重点,突破难点,我将教学分层次进行,先从从一个探究活动开始,活动中要求学生把几个具体的有理数写成小数的形式,并分析这些小数的共同特征,从而得出任何一个有理数都可以写成有限小数和无限循环小数的形式.把有理数与有限小数和无限循环小数统一起来以后,指出在前两节学过的很多数的平方根和立方根都是无限不循环小数,它们不同于有限小数和无限循环小数,也就是一类不同于有理数的数,由此给出无理数的概念.无限不循环小数的概念在前面两节已经出现,通过强调无限不循环小数与有限小数和无限循环小数的区别,以使学生更好地理解有理数和无理数是两类不同的数.帮助学生建立有意义的知识联结,顺应认知结构中的原有体系,以逐步探究的思路实现对问题的深层次理解,增强思维的深刻性。

(2)在探究有理数规律的过程中,使学生在探究时,经历了观察、实验、归纳、总结以及由具体到抽象、由特殊到一般的学习过程,体会到了研究问题、解决问题的方法,加深了对无理数的理解。在处理这段教材时,没有刻意地增加难度,而是立足教材,紧紧围绕课本,尊重教材,挖掘教材,从情境设计-例题选择-课堂引申都是以教材内容为载体,充分开发教材的功能。循序渐进地引导学生去学习新知,使学生能准确地把握学习重点,突破学习难点。

(3)计算器在本节课的教学中,起到了重要作用,体现在三个活动过程:第一个过程是利用计算器探求有理数的规律,从而引出无理数的概念;第二个过程是利用计算器估算无理数的近似值;第三个过程用计算器计算实数的值.发挥了计算器的计算功能和探究功能。

(4)本节课通过学生的主动智力参与,动手实践、自主探索与合作交流等活动,使学生在教师的主导作用下,实现对实数概念的自我建构。

(5)教师在培养学生学习兴趣,激发良好学习动机中承担一定的责任。恰当地提出问题和恰当地运用课堂互动策略十分重要。在课堂的准备与指导阶段充分了解学生,进行有效提问,为学生提供及时适当的反馈,运用课堂竞争、合作策略来促进良性课堂互动,实现教学目标。

初二数学教案北师大版篇十三

1.同学们真厉害,这样小明就能准时参加淘气和笑笑的生日party了。既然你那么聪明,那你能计算出4个星期、5个星期、6个、7个、8个、9个星期更有多少天吗?(课件)请把你的结果填写在教材74页填一填的表格中。(填好的同学自己小声的说说你是怎样计算的)。

2.汇报交流。

师:谁愿意和大家说说你的结果和想法?

3.编口??

师:同学们,还记得老师教过大家编口诀的方法吗?

(齐说)一算,算什么?(用连加法计算结果)二编,编什么?(根据表格编口诀)三看,看什么?(看其中的规律和需要注意之处)四记,记什么?(根据规律记口诀)。

师:同学们真厉害,下面就转动自己的小脑筋用我们的方法快速的编口诀,记口诀吧。完成教材74页第2题。

4.汇报。

有没有别的办法呢?把你记口诀的方法说给同桌听听,比比谁的方法好(同桌交流)。

5.记忆口诀:下面就请大家在下面用自己喜欢的方法背一背这些口诀。

6.游戏(多种形式背口诀)。

(1)拍掌齐背。

你们记住了吗?老师准备考考大家,伸出你的双手,让我们一起背一遍。

(2)师生对口令。

我来问,你来答,准备好了吗?(打乱顺序问)。

(3)同桌对口令。

同桌两个人像老师这样对口令。

初二数学教案北师大版篇十四

3.培养学生的观察、归纳与概括的能力.

重点:理解的意义,理解的代数定义与几何定义的一致性.

难点:多重符号的化简.

一、从学生原有的认知结构提出问题

二、师生共同研究的定义

特点?

引导学生回答:符号不同,一正一负;数字相同.

像这样,只有符号不同的两个数,我们说它们互为,如+5与

应点有什么特点?

引导学生回答:分别在原点的两侧;到原点的距离相等.

这样我们也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为.这个概念很重要,它帮助我们直观地看出的意义,所以有的书上又称它为的几何意义.

3.0的是0.

这是因为0既不是正数,也不是负数,它到原点的距离就是0.这是等于它本身的的数.

三、运用举例 变式练习

例1 (1)分别写出9与-7的;

例1由学生完成.

在学习有理数时我们就指出字母可以表示一切有理数,那么数a的如何表示?

引导学生观察例1,自己得出结论:

数a的是-a,即在一个数前面加上一个负号即是它的

1.当a=7时,-a=-7,7的是-7;

2.当-5时,-a=-(-5),读作“-5的”,-5的是5,因此,-(-5)=5.

3.当a=0时,-a=-0,0的是0,因此,-0=0.

么意思?引导学生回答:-(-8)表示-8的;-(+4)表示+4的;

例2 简化-(+3),-(-4),+(-6),+(+5)的符号.

能自己总结出简化符号的规律吗?

括号外的符号与括号内的符号同号,则简化符号后的数是正数;括号内、外的符号是异号,则简化符号后的数是负数.

课堂练习

1.填空:

(1)+1.3的是______; (2)-3的是______;

(5)-(+4)是______的; (6)-(-7)是______的

2.简化下列各数的符号:

-(+8),+(-9),-(-6),-(+7),+(+5).

3.下列两对数中,哪些是相等的数?哪对互为?

-(-8)与+(-8);-(+8)与+(-8).

四、小结

指导学生阅读教材,并总结本节课学习的主要内容:一是理解的定义――代数定义与几何定义;二是求a的;三是简化多重符号的问题.

五、作业

1.分别写出下列各数的:

2.在数轴上标出2,-4.5,0各数与它们的

3.填空:

(1)-1.6是______的,______的是-0.2.

4.化简下列各数:

5.填空:

(3)如果-x=-6,那么x=______; (4)如果-x=9,那么x=______.

教学过程 是以《教学大纲》中“重视基础知识的教学、基本技能的训练和能力的培养”,“数学教学中,发展思维能力是培养能力的核心”,“坚持启发式,反对注入式”等规定的精神,结合教材特点,以及学生的学习基础和学习特征而设计的由于内容较为简单,经过教师适当引导,便可使学生充分参与认知过程.由于“新”知识与有关的“旧”知识的联系较为直接,在教学中则着力引导观察、归纳和概括的过程.

探究活动

有理数a、b在数轴上的位置如图:

将a,-a,b,-b,1,-1用“”号排列出来.

解:在数轴上画出表示-a、-b的点:

点评:通过数轴,运用数形结合的方法排列三个以上数的大小顺序,经常是解这一类问题的最快捷,准确的方法.

初二数学教案北师大版篇十五

1?使学生理解、掌握单项式的有关概念,能准确地说出给定单项式的系数和次数;。

教学重点和难点。

重点:单项式的定义;单项式的系数和次数?

难点:单项式的系数和次数?

课堂教学过程设计。

一、提出问题,引入“单项式”概念。

1?列出代数式。

(1)若用x表示正方形的边长,则正方形的周长为___,面积为_____?

(2)若长方形的长、宽分别是a,b,则它的面积为_____?

(3)若用n表示一个有理数,则它的相反数为____?

答案:(1)4x,x2;(2)ab;(3)-n?

2?提出问题:以上几个代数式有什么共同特征?

二、新知识的学习。

此定义前半部分由学生总结,后半部分由教师补充?

练指出下列代数式中,哪些是单项式:

2xy,-4x,a+b,,,m,-,-ab?

本练习答案:单项有2xy,-4x,,-,m,-ab?

2?单项式的系数。

在刚才的练习中,单项式2xy,-4x,,-,m,-ab的数字因数分别是几?

定义:单项式中的数字因数,叫做单项式的系数?

练指出以下单项式的系数:

3x2,-x2y2z,a2b,-2.15ab3,-m3,0.12h.

本练习答案:3,-,1,-2?15,-1,0?12。

3?单项式的次数。

定义:一个单项式中,所有字母的指数的和,叫做这个单页式的次数。

练指出下列单项式的次数:

2a2,-x2,0.75ab2c,32a0b2,x5y?

本练习答案:2,2,4,4,6?

三、进一步巩固新知识。

1?填表。

学生填,对答案?

2?当x=2,y=-1时,求下列各单项式的值:

(1)3xy;(2)0.25xy2?

四、小结。

1?今天这节课我们学习了哪一类代数式?(单项式)。

关于单项式,我们又学习了什么?(定义、系数、次数)。

五、作业。

1?下列代数式中,哪些是单项式?填在单项式集合中:

单项式集合。

2?当x=2,y=-1时,计算下列各单项式的值:

(1)x3y;(2)-xy5?

3?填表。

课堂教学设计说明。

【本文地址:http://www.pourbars.com/zuowen/12355473.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map