教案应该具备可操作性,让教师在教学过程中能够准确按照教案进行教学。教案的结构要合理,包括导入、展示、讲解、练习和总结等环节。教案范文的分享,希望能够为你的备课工作提供一些参考和思路。
六年级数学圆柱与圆锥教案篇一
(1)圆锥的高是。圆锥有()条高。
(2)将一个圆锥沿着它的.高平均切成两半,截面是一个()形。
(3)下图圆锥的高是()cm。
(4)圆柱的侧面展开,得到一个()形,把圆锥的侧面展开,得到一个()。
二、填一填。
1.指出圆锥的“底面”和“高”。
2.圆锥的底面形状是(),侧面是()面。
3.从圆锥的顶点到底面圆心的距离是圆锥的()。
六年级数学圆柱与圆锥教案篇二
1、使学生认识圆柱和圆锥的特征,能看懂圆柱、圆锥的平面图;认识圆柱和圆锥的底面、侧面和高,并会测量高。
2、通过观察、操作、思考、讨论等活动,培养同学们发现问题、分析问题、解决问题的能力。
3、从实际生活入手,通过解决实际问题,发展学生的空间观念。
六年级数学圆柱与圆锥教案篇三
教学要求:
l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。
2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。
3.培养学生初步的空间观念和发展学生的思维能力。
教具准备:长方体、正方体、圆柱体等,根据教材第14页“练一练”第1题自制的圆锥,演示测高、等底、等高的教具,演示得出圆锥体积等于等底等高圆柱体积的的教具。
教学重点:掌握圆锥的特征。
教学难点:理解和掌握圆锥体积的计算公式。
教学过程:
一、复习引新。
1.说出圆柱的体积计算公式。
2.我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第13页插图)。这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)。
二、教学新课。
1.认识圆锥。
我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?
2.根据教材第13页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。
3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。
(1)圆锥的底面是个圆,圆锥的侧面是一个曲面。
4.学生练习。
口答练习八第1题。
5.教学圆锥高的测量方法。(见课本第13页有关内容)。
6.让学生根据上述方法测量自制圆锥的高。
7.实验操作、推导圆锥体积计算公式。
(1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第14页上面的图)。
(3)实验操作,发现规律。
在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的。
(4)是不是所有的.圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的。
(5)启发引导推导出计算公式并用字母表示。
圆锥的体积=等底等高的圆柱的体积×。
=底面积×高×。
用字母表示:v=sh。
8.教学例l。
(1)出示例1。
(2)审题后可让学生根据圆锥体积计算公式自己试做。
(3)批改讲评。注意些什么问题。
三、巩固练习。
1.做“练一练”第2题。
指名一人板演,其余学生做在练习本上。集体订正,强调要乘以。
2.做练习三第2题。
学生做在课本上。小黑板出示,指名口答,老师板书。错的要求说明理由。
3.做练习三第3题。
让学生做在课本上。小黑板出示、指名口答,老师板书。第(3)、(4)题让学生说说是怎样想的。
四、课堂小结。
这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?
五、课堂作业。
练习三第4、5题。
六年级数学圆柱与圆锥教案篇四
1、使学生认识圆柱和圆锥,掌握它们的特征,知道圆柱是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的;认识圆柱的底面、侧面和高;认识圆锥的底面和高。进一步培养学生的空间观念,使学生能举例说明。圆柱和圆锥,能判断一个立体图形或物体是不是圆柱或圆锥。
2.使学生知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识取近似数的进一法。
3.使学生理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。
单元教学重点:圆柱体积计算公式的推导和应用。
单元教学难点:灵活运用知识,解决实际问题。
(一)圆柱的认识。
教学内容:教材第3~4页圆柱和圆柱的侧面积、“练一练”,练习一第1—3题。
1.使学生认识圆柱的特征,能正确判断圆柱体,培养学生观察、比较和判断等思维能力。
2.使学生认识圆柱的侧面,理解和掌握圆柱侧面积的计算方法。进一步培养学生的空间观念。
教具学具准备:教师准备一个长方体模型,大小不同的圆柱实物(如铅笔、饮料罐、茶叶筒等)若干,圆柱模型;学生准备圆柱实物(要有一个侧面贴有商标纸或纸的圆柱体),剪下教材第127页图形、糨糊。
:认识圆柱的特征,掌握圆柱侧面积的计算方法。
认识圆柱的侧面。
一、复习旧知。
1.提问:我们学习过哪些立体图形?(板书:立体图形)长方体和正方体有什么特征?
2.引入新课。
出示事先准备的圆柱形的一些物体。提问学生:这些形体是长方体或正方体吗?说明:这些形体就是我们今天要学习的新的立体图形圆柱体。通过学习要认识它的特征。(板书课题)。
二、教学新课。
1.认识圆柱的特征。
2.认识圆柱各部分名称。
(1)认识底面。
出示圆柱,让学生观察上下两个面。说明圆柱上下两个面叫做圆柱的底面。(板书:——底面)你认为这两个底面的大小怎样?老师取下两个底面比较,得出是完全相同或者大小相等的两个圆。(把上面板书补充成:上下两个面是完全相同的圆)。
(2)认识侧面。
请大家把圆柱竖放,用手摸一摸周围的面,(用手示意侧面)你对这个面有什么感觉?说明:围成圆柱除上下两个底面外,还有一个曲面,叫做圆柱的侧面。追问:侧面是怎样的一个面?(接前第二行板书:侧面是一个曲面)。
(3)认识圆柱图形。
请同学们自己再摸一摸自己圆柱的两个底面和侧面,并且同桌相互说一说哪是底面,哪是侧面,各有什么特点。
说明:圆柱是由两个底面和侧面围成的。底面是完全相同的'两个圆,侧面是一个曲面。
在说明的基础上画出下面的立体图形:
(4)认识高。
长方体有高,圆柱体也有高。请看一下自己的圆柱,想一想,圆柱体的高在哪里?试着量一量你的圆柱高是多少。(板书:高)谁来说说圆柱的高在哪里?说明:两个底面之间的距离叫做高。(在图上表示出高,并板书:两个底面之间的距离)让学生说一说自己圆柱的高是多少,怎样量出来的。提问:想一想,一个圆柱的高有多少条?它们之间有什么关系?(板书:高有无数条,高都相等)。
3.巩固特征的认识。
(1)提问:你见过哪些物体是圆柱形的?
(2)做练习一第1题。
指名学生口答,不是圆柱的要求说明理由。
(3)老师说一些物体,学生判断是不是圆柱:汽油桶、钢管、电线杆、腰鼓……。
4.教学侧面积计算。
(1)认识侧面的形状。
六年级数学圆柱与圆锥教案篇五
1、通过对圆柱和圆锥知识的复习,进一步熟练解答基本的数学问题。
2、通过猜想、估算、验证等数学活动,应用圆柱圆锥之间的内在联系解决生活中的问题,同时培养学生的估算能力。
教学重、难点:灵活计算圆柱体的表面积,圆柱体和圆锥的体积,解决实际问题。
师:还记得哪些与圆柱圆锥有联系的计算公式?
生:回答相联系的数学公式。
师:到底同学们的掌握情况怎样呢?我们一起来做个抢答练习好吗?
生:回忆基本知识。
1、抢答练习,请说出你的思考过程。
(1)一个圆柱体底面周长12.56米,求它的底面积是多少平方米?
学生抢答,并说出自己的思考过程,教师板书。
2、解决数学问题:
(1) 出示一圆柱图
师:看到这个圆柱体,你能提出哪些有关圆柱、圆锥的数学问题?怎样解答?
竞赛的形式来解决,竞赛要求:
1、时间3分钟。
2、请把问题、列式和结果写下来。比一比看谁的问题最多、列式和结果最正确。
(1) 学生独立完成;
(2) 同桌互查;
(3) 学生汇报;
(半径是多少?周长是多少?圆柱体的侧面积是多少?底面积是多少?圆柱体的体积是多少?等底等高的圆锥的体积是多少?剩余的部分是多少?)
(4)如果出现问题下面改正。
最佳设计方案。
有一张长方形的铁板长9.42米,宽6.28米。请你设计出一种就地围装粮食最多的方案。(接口忽略不计)
学生活动,老师巡视。小组成员汇报方案。
师:如果每立方米可装粮食400千克,能算出最佳方案中大约可装多少粮食吗?
师:刚才同学们都能全身心地投入到猜想、验证、合作、估算中,老师很高兴。哪些同学可以得到仓库保管员的应聘书呢?请来谈一谈你现在的.心情及感受。
课前思考:
潘老师设计的本课时教案在教学组织形式上与以往的复习课有所不同,重在将所学知识以竞赛的形式进行系统复习,估计这样的形式会让学生对复习产生一些兴趣。
因为这一单元涉及到的知识较多,而且相关的一些实际问题也都比较复杂,所以我们在复习时还要结合班级实际情况,有针对性地开展复习。
下面补充这样几题:
市民广场砌了一个圆柱形的喷水池,从里面量水池的底面半径是5米,深1.2米。
1.
(1)这个水池占地多少平方米?
(2)要在这个水池的四周和底面抹上水泥,抹水泥部分的面积是多少?
(3)这个水池装满水,最多能装多少立方米?
(4)在池口围一圈栏杆,栏杆长多少米?
六年级数学圆柱与圆锥教案篇六
一、填空:
1,把一根圆柱形木料截成3段,表面积增加了45.12平方厘米,这根木料的底面积是()平方厘米。
2,一个圆锥体的底面半径是6厘米,高是1分米,体积是()立方厘米。
3,等底等高的圆柱体和圆锥体的体积比是(),圆柱的体积比圆锥的体积多()%,圆锥的体积比圆柱的体积少()。
4,把一个圆柱体钢坯削成一个最大的圆锥体,要削去1.8立方厘米,未削前圆柱的体积是()立方厘米。
5,一个圆柱体的侧面展开后,正好得到一个边长25.12厘米的正方形,圆柱体的高是()厘米。
6,用一个底面积为94.2平方厘米,高为30厘米的圆锥形容器盛满水,然后把水倒入底面积为31.4平方厘米的圆柱形容器内,水的高为()。
7,等底等高的一个圆柱和一个圆锥,体积的和是72立方分米,圆柱的体积是(),圆锥的体积是()。
8,底面直径和高都是10厘米的圆柱,侧面展开后得到一个()面积是()平方厘米,体积是()立方厘米。
9,把一根长是2米,底面直径是4分米的圆柱形木料锯成4段后,表面积增加了()。
10,底面半径2分米,高9分米的圆锥形容器,容积是()毫升。
11,已知圆柱的底面半径为r,高为h,圆柱的体积的计算公式是()。
12,容器的容积和它的体积比较,容积()体积。
二、判断:
1,圆柱体的体积与圆锥体的体积比是3∶1。()。
2,圆柱体的高扩大2倍,体积就扩大2倍。()。
3,等底等高的圆柱和圆锥,圆柱的体积比圆锥的体积大2倍.()。
4,圆柱体的侧面积等于底面积乘以高。()。
5,圆柱体的底面直径是3厘米,高是9.42厘米,它的侧面展开后是一个正方形。()。
三、选择:(填序号)。
1,圆柱体的底面半径扩大3倍,高不变,体积扩大()。
a、3倍b、9倍c、6倍。
2,把一个棱长4分米的正方体木块削成一个最大的圆柱体,体积是()立方分米。
a、50.24b、100.48c、64。
3,求长方体,正方体,圆柱体的体积共同的`公式是()。
a、v=abhb、v=a3c、v=sh。
a、16b、50.24c、100.48。
5,把一团圆柱体橡皮泥揉成与它等底的圆锥体,高将()。
a、扩大3倍b、缩小3倍c、扩大6倍d、缩小6倍。
四、应用题:
1,一个圆锥体的体积是15.7立方分米,底面积是3.14平方分米,它的高有多少分米。
3,圆柱形无盖铁皮水桶的高与底面直径的比是3∶2,底面直径是4分米。做这样的2只水桶要用铁皮多少平方分米?(得数保留整十平方分米)。
六年级数学圆柱与圆锥教案篇七
(一)教材简析。
我执教的内容是义务教育课程规范实验教科书小学数学第二单元《圆柱》的第二课时。
本单元教学内容要求同学在认识圆柱的基础上,会求圆柱的侧面积和外表积,会应用圆柱的侧面积和外表积公式解决实际问题。本节课的重点是要求同学掌握圆柱体的侧面积、外表积的计算方法。学好这局部内容,可以进一步发展同学的空间观念,培养同学的空间想象能力、概括思维能力、分析综合等数学能力,为以后学习其它几何形体打下坚实的基础。
(二)学情简析。
这局部内容是在同学掌握长方形面积、圆的面积计算方法的基础上布置的,因而要以这些知识为基础,运用迁移规律使圆柱体的侧面积、外表积的计算方法这一新知识纳入同学原有的认知结构之中。而且六年级的同学,已经具备一定的独立思维、探究能力。针对这一现状,我遵循“同学是学习的主人”这一原则,努力创设情境,让同学动手操作、观察发现,鼓励同学积极、主动地获取新知,促进知识的迁移,通过同学自身的“再发明”,轻松地获取圆柱侧面积的计算方法,从而突破教学重点,充沛体现“同学是知识的发现者”这一理念。
二、说理念。
新课程倡议让同学动手实践、自主探索与合作交流的学习方式,把操作看成是培养同学创新思维的源头活水,是实现课程理念的'重要途径。在本节课中,我创设利于同学探究的活动,充沛调动同学的手、眼、口、脑,放开同学的思维,让同学亲自去实践,动脑去想,发现问题,解决问题。在探究活动中,完成探究、发现和应用的过程。
三、说教学目标。
1、知识目标:在探究活动中,使同学理解和掌握圆柱体侧面积和外表积的计算方法,能正确计算圆柱的侧面积和外表积。
2、能力目标:培养同学观察、操作、概括的能力,以和利用知识合理灵活地分析、解决实际问题的能力。
3、情感目标:培养同学初步的逻辑思维能力和空间观念,向同学渗透事物间的相互联系和相互转化的观点。
4、教学重点:能应用圆柱体侧面积、外表积的计算方法解决实际问题。
5、教学难点:探究圆柱体侧面积、外表积的计算方法。
四、说教法与学法。
根据本节课知识特点以和同学的认知规律,我采用直观演示、动手操作、引导发现等方法,充沛发挥同学的主体作用,引导同学在操作中观察、发现、概括,尝试总结出圆柱体的侧面积、外表积的计算方法。
练习设计遵循了由易到难、循序渐进的原则,采用了填空、选择、解决问题等形式,使同学在交流、合作中,内化知识、训练思维、培养能力、形成技能,感受数学的魅力。
五、教学程序设计。
为了充沛体现教师的主导和同学的主体作用,能让同学积极主动、生动活泼地参与到教学过程中来,我以遵循同学的认知规律,组织合理有效的教学程序为原则,以动手操作为切入点设计了以下四个教学环节。
(一)变魔术,激趣导入。
平面的面积同学已经会求了,而圆柱的侧面是个“曲面”,怎么样才干求出这个“曲面”的面积就成了圆柱外表积教学过程中的难点。于是让圆柱的侧面“由曲变直”,使新知识在一定的条件下统一起来就成了一个关键性的问题。
上课伊始,我发给每个同学一张完全一样的长方形的纸和两个完全一样的圆形(这两个圆形与用长方形纸卷成的圆柱体的侧面正好可以组成一个圆柱体)。让同学采用实验法,随意卷一卷、分一分,把一张长方形的纸变成一个圆柱形的纸筒。同学带着兴趣,开始尝试,兴趣有了,自主探究的欲望自然也就强烈了。
(二)动手操作,探求新知。
1、动手操作,自主发现。
然后,我直接抛出问题:那么,这个圆柱的侧面的面积你能求吗?
在同学自主探究以后,我点拨同学发现长方形纸的长和宽与用它卷成的圆柱形纸筒的底面周长和高的关系。
这样抓住新旧知识内在联系,布置同学动手操作,引导同学在发现问题后和时动脑考虑,不只激发同学兴趣,同时也促进了同学思维能力的发展。
2、尝试探究,引导发现。
然后小结:他摸过的所有这些面的面积的和就是这个圆柱体的外表积。
接下来我请同学以同桌为单位,想方法求出这个圆柱体的外表积。
在同学活动的过程中,我巡视、指导,协助有困难的同学。
在本环节中,在同学的眼、手、脑等多种感官参与感知活动中,探究的精神得到了张扬,自主学习的能力得到了实在的体现与培养。教学的重点、难点在同学的亲历探究实践中得到了突破。
3、和时巩固,内化知识。
在教学重点基本突破后,我联系生活实际投影出示例4的厨师帽,让同学认真审题,并说厨师帽有几个面,再计算出用了多少面料,同学计算完后,要求得数保存整十平方厘米。启发同学看书发现新问题,讨论计算使用资料取近似值时,要用“四舍五入”法还是用“进一法”。从而使同学理解“进一法”的意义。这样充沛发挥了同学的主体作用,也培养了同学独立考虑能力和初步的逻辑思维能力。
(三)尝试应用,解决问题。
这一环节是内化知识、训练思维、培养能力、形成技能的重要环节,因而我设计了多样的练习题。这些练习题注重了基本训练,又注重了能力训练,在形式上注意新颖、多样,在内容上注意采取循序渐进的原则,由易到难,这样既符合儿童的认知特点,又能兼顾大多数同学。
(四)总结提升,思维延伸。
在课堂小结后,我提出“大家想一想,还有什么方法能求出计算圆柱体的外表积?”让同学充沛考虑、继续动手操作,将同学的思维向广度、深度延伸。例如,可以把圆柱切开,拼成近似的长方体,由长方体的外表积计算公式推导出圆柱的外表积计算公式;还有的同学可能会联系圆的面积公式推导过程,把圆柱的两个底面分成若干个小扇形后拼成一个与侧面同长的长方形,然后与侧面再拼成一个大长方形,那么整个圆柱的外表积=底面周长×(圆柱的高+底面半径),用字母表示即s=2лr×(h+r)。
这不只让同学知道了解决问题的方法是多种的,还使同学亲自参与了对新知的探索,使知识掌握得更加牢固,并对旧知进行再发明并萌发了创新意识,培养了同学的创新思维和创新能力。也有利于挖掘优生的潜能,还能为求圆柱的体积埋下伏笔。将课堂的尾声又推向一个新的高潮。
六、说教学手段。
本节课,我充沛运用动手操作、观察、比较等手段,使同学明确圆柱侧面积与长方形面积之间的关系。自身探究出求圆柱侧面积、外表积的方法。
七、说板书、板绘的设计。
板书采用了图示式的设计,直观展示本节课的知识点,与旧知的关系也表示得清晰、明了。有利于同学系统、清晰地掌握本节课的知识体系。同时圆柱的侧面积和外表积的计算方法都用红色显示,更加突出了本课重点,体现了板书的记忆理解功能。
八、说预设效果:
概括的说,本节课的教学过程设计,我力求体现以下几点:
一是注重数学学习与实际生活的联系,本节课的教学从引入到过程的操作,我都注意引导同学用数学的眼光去观察认识身边的各种事物,体验到数学来源于生活,对研究数学发生比较浓厚的兴趣。
二是强调数学学习的探索性、实践性。教学的引入,到教学过程的实践,乃至本节课的结尾始终都是同学在探究的过程。我力求在探究活动中增强数学内容的开放性,注重同学的情感体验和个性发展,强调同学学习数学的过程。
三是注重师生交流、生生交流。做到让同学多考虑、多动手、多实践,自主探究、合作学习、师生一起活动相结合,尽可能提高同学思维的参与程度,最大限度地拓宽同学的思维,使课堂充溢生机与活力。
六年级数学圆柱与圆锥教案篇八
《过零丁洋》是文天祥《指南录》中的一篇,是其代表作之一。是文天祥于1278年十二月被元军所俘,囚于零丁洋的战船中,元军强逼文天祥写信招降在海上坚持抗元斗争的宋军将领。文天祥断然拒绝。他面对浩渺沧海,感慨国家命运,心潮起伏汹涌,于是写下了这首流传千古,光照天地的爱国诗篇。诗歌回顾了诗人从读书入仕到救亡报国,直至被俘所经历的艰辛危难,抒写“山河破碎”、“身世浮沉”的沉痛,表明自己誓死不屈的意志和以身殉国的决心。前六句写国家和个人遭遇的悲惨。先从自己的出身说到报国。表明原先就有艰苦奋斗的阅历,暗示经得起后来的艰危的磨炼,而儒家思想则是他的精神支柱。接着连用两个形象、贴切的比喻概括抒写奋战中的感受:以“风飘絮”表现大好河山遭受蹂躏的惨相和诗人对时局的悲痛,以“雨打萍”表现诗人在抗元斗争中遭受的种.种打击和挫折。“惶恐”二句则借典型事件实写感受。上句说兵败,“说惶恐”含有与士卒共度艰危的意思。下句说被俘,“叹零丁”兼有将士伤亡殆尽的孤独感。巧用地名作对,运用语义双关,把纪实与抒写特有的心情结合得天衣无缝。尾联直抒胸臆,表白自己置生死于度外的爱国忠心。出语斩截有力,气贯长虹,是千古名句,曾鼓舞无数仁人志士取义成仁。前六句悲凉沉痛,后二句转悲为壮,构成了全诗沉郁悲壮的风格。
二、教学目标。
依据《语文课程标准》对古代诗歌的教学要求,结合授课学生实际情况,及本课内容为古代诗歌的特点,我认为教学诗歌,首先应引导学生从整全上把握内容,领会诗歌的意境,其次通过研读、赏析,领悟诗作的精妙,理解诗人的思想感情。重要的是指导学生反复吟诵,只有朗读成诵,才能深刻理解作品的内涵。所以本人在设计本课教学时,我设计了以下三维目标:
知识和能力目标:掌握本文的关于作者,作品的文学知识。背诵并默写这首诗。
过程和方法目标:阅读理解诗歌内容,品味鉴赏诗歌语言。
情感态度和价值观目标:感受、理解文天祥高尚的民族气节和挚诚的爱国情怀。
教学重点:1、理解诗歌的内容。2、熟读并背诵诗作。
课时安排:一课时。
三、教学方法:
1、朗读法:俗话说,书读百遍,其义自见,特别是古诗词。诗的节奏、韵律,所蕴含的感情内涵都要靠读来感受体会,因此,朗读应贯穿整个教学过程中。2、自主合作、讨论探究法:让学生作为学习的主体,自主合作,全身心地参与教学活动的全过程,让学生相互讨论,主动质疑,以学定教。
四、教学手段:
以学生为主体,以教师为主导,配以多媒体课件辅助教学。
五、教学过程:
(一)、导入新课:同学们,“国家兴亡,匹夫有责”。爱国是每个中国人的责任,更是中华民族自古以来优秀的传统。那么,大家知道哪些爱国的名人名言或爱国故事呢?(学生回答,由“人生自古谁无死,留取丹心照汗青”顺势导入)。
(二)、简介作者:简介文天祥生平。
(三)、简介写作背景。
1278年,文天祥率兵与元军作战于广东潮阳一带,不幸在五坡岭被俘。元军把文天祥囚于船上,元将劝他写信招降宋将张世杰,文天祥拒绝。经过零丁洋时,他面对浩渺沧海,感慨国家命运,于是写下了这首诗以表明自己的心志。
(四)、学生听读范读录音,强调学生注意朗读节奏、重音及感情基调。
(五)、教师进行适当的朗读提示。
(六)、学生尝试有感情地朗读诗文,感知诗文主要内容。
(七)、指名个别学生朗读,师生对其朗读进行适当点评。
(八)、学生齐读诗作,增强对诗歌内容的感知。
(九)、组织学生结合课本注释,逐句阅读理解诗作,引导、帮助学生说说诗文的大意。
1、首联回顾了诗人怎样的经历?
明确:一是读经书入仕途(状元出身);二是起兵抗元,战斗了四年。
2、颔联“风飘絮”“雨打萍”比喻什么?
明确:“风飘絮”比喻国家命运惨淡,危在旦夕;“雨打萍”比喻自己家破人亡,孤苦伶仃。
3、颈联两个“惶恐”,两个“零丁”各有什么含义?表达了作者怎样的思想感情?
明确:前者各表地名,后者各表心绪。表达对抗战局势的忧恐不安和对自身处境的自怜、哀怨。
4、尾联表明了诗人怎样的气节?
明确:表明诗人舍生取义的决心,充分体现了他宁为玉碎,不为瓦全的崇高民族气节。
教师小结:“人生自古谁无死,留取丹心照汗青”这句千古传诵的名句,是诗人用自己的。
鲜血和生命谱写的一曲理想人生的赞歌。确是一首动天地、泣鬼神的伟大爱国主义诗篇。
(十)、品味探究:你最喜欢这首诗中的哪一句?试说说自己的看法。
(十一)、拓展延伸。
推荐学生课外阅读《正气歌》,感受文天祥高尚的节操。
(十二)、布置课堂巩固练习。
1、《过零丁洋》一诗押韵,韵脚是。
2、《过零丁洋》前三联与尾联在感情格调上有何区别?
3、熟诵并默写这首诗。
(十三)、板书设计:
首联:读经入仕、起兵抗元。
颔联:“风飘絮”、“雨打萍”
颈联:“惶恐”、“零丁”
尾联:宁为玉碎,不为瓦全。
死观。
颈联:对仗双关。
尾联:名句磅礴的气势、高亢的情调。
六年级数学圆柱与圆锥教案篇九
1、联系同学们的生活实际,通过观察、操作,了解点的移动可以得到线,线的移动可以得到面,面的旋转可以得到体,认识圆柱和圆锥,掌握圆柱和圆柱的基本特征,激发同学们的探究欲望。
2、通过观察、思考、操作、讨论等活动,培养同学们自主学习、合作探究的良好品质。
理解并掌握圆柱、圆锥的基本特征。
最后总结出点的移动可以得到线,线的移动可以得到面,面的旋转可以得到体的结论。
2、教师出示一个袋子,里面装着各种物体(长方体、正方体、球、圆柱、圆锥、圆台)。
游戏规则:一人上台摸,并描述你摸到的这个物体的最典型的特征,使下面同学能在最短的时间内猜出你摸的这个物体的名称。
师生共同活动。在摸出物体后,教师让学生回忆一下以前学过的长方体、正方体的特征。
引出这节课要探究圆柱和圆锥。板书课题:圆柱和圆锥。
1、从生活的实景图中发现圆柱和圆锥。
从书第2页找一找的实景图,找出我们学过的立体图形,与同伴互相指一指,哪些是圆柱和圆锥,并指名回答。
2、小组合作学习,探究圆柱、圆锥的特征。
用各种方法,如摸、量、画等,观察带来的圆柱、圆锥形实物,你们有哪些发现?用手中的工具验证你们的猜想。并填写小组合作学习的报告。
小组合作学习表格:研究对象。
你们猜想它有哪些特征?
你们是用怎样的方法验证你们的猜想的?把验证方法记录下来,与同学交流。
3、小组汇报反馈。
教师抓住几个关键点进行引导:
圆柱的特征:
(1)两个底面、一个侧面。底面是由两个大小完全相等的圆组成。侧面是一个弯曲的面。
(2)认识圆柱的高,并会测量圆柱的高。如果没有学生探究这个问题,教师要示范两个底面大小差不多的圆柱,让学生观察它们的高不同,从而引导学生关注圆柱的高(圆柱两个底面的距离叫做高)。圆柱有无数条高,每条高的长度相等。
圆锥的特征:
(1)由一个底面(圆)、一个侧面(曲面)组成。
(2)从圆锥的顶点到底面圆心的距离是圆锥的高。引导学生掌握测量圆锥的高的方法。
4、说一说。
课本3页,让学生再次系统地看一看圆柱和圆锥各部分的名称。拿一个你准备好的圆柱和圆锥,同桌互相说一说它们各部分的名称。
说一说,在生活中见到的哪些物体的形状像圆柱、圆锥?指名回答。
六年级数学圆柱与圆锥教案篇十
单元总目标:
1、认识圆柱、圆锥的各部分的名称,掌握圆柱、圆锥的特征。
2、理解圆柱的表面积、侧面积、体积的意义。会推导表面积、侧面积、体积的公式,认识进一法取近似值,能灵活解决实际问题。
3、掌握圆锥体积公式的推导过程,能灵活解决实际问题。
4、培养学生观察、比较、归纳的能力,以及空间观念。
5、培养学生逻辑思考能力,有条理性的解决问题的能力。
单元重点:圆柱体体积的计算。
单元难点:
(1)圆柱体体积公式的推导过。
(2)圆柱体侧面积、表面积的计算。
(2)利用圆柱体、圆锥体等底等高条件下的关系解有关复杂应用题。
突出重点、突破难点的关键:充分运用直观教具,进行割拼演示、实验,有目的、有步骤地引导学生观察、思考,推导出计算公式和有关概念。
单元难点的剖析:
(1)表现为:学生难于想到把一圆柱体的立体图形转化成什么图形来研究。怎样把它转化。
原因:圆柱体和长方体在表面看来并没有什么联系。并且学生还很难由圆与圆柱的联系,而想到圆能转化成长方形来研究,圆柱就可以转化成长方体来研究。
解决策略:首先回忆研究圆的面积计算时把圆转化成什么图形?如何剪拼成了这个学过的图形?借助多媒体课件把一个个完全一样的圆形堆成一个圆柱体,通过这个过程发展学生的空间想象力进行猜想:圆柱体能剪拼成什么图形,请学生试试看。
(2)表现为:对圆柱体的侧面积公式容易获得,但学生对已知r或d求侧面积的问题,学生转不过,容易用底面积乘高来计算。而对表面积的计算,由于表面积公式中涉及的公式较多,学生往往不小心就弄混公式。
(3)表现为:在具体的问题情境中会用错公式,如:求侧面积的求成了表面积,求体积的求成了表面积等。
原因:学生可能对概念、公式记忆较熟,但在具体的问题环境下用错公式。主要还是学生对概念的感知不够。
解决策略:
(1)为新课教学做好准备,充分复习好圆的周长的计算方法、面积公式的推导过程。
(2)借助实物多让学生感知概念的意义,不能死记硬背,要能用自己话说清楚。特别对中下生应多结合实物或图形指出问题要求的部分。
(3)公式一定让学生动手操作参与到推导过程中,不能把公式直接交给学生。
(4)学生自备圆柱体形状的物体,每节课的新课铺垫、例题教学、或是练习讲评都借助于具体的实物,让学生一边口述、一边指着实物来说,加强感知。
单元策略:基于本单元是研究几何图形的有关知识,教学中主要采用学生动手操作、观察、实验等直观手段辅助教学。多让学生参与获得公式或经验。如:圆柱体展开图的特征、侧面积、表面积、体积及圆锥体的体积计算。
分析及策略:这些属于概念不清的问题,因为这些知识点本身有联系又有区别,所以易混,因此教学中重点在新授中注意让学生多体验、多感受。还要在综合练习中加强对比,沟通它们的联系和区别。
分析及策略:此类型的错误主要是公式用错,原因还是对概念不清,解题思路不明,因此,教学中在保证理解概念的前提下多让学生讲思路、强调解答步骤的书写要有条理。
有关圆柱体和圆锥体的混合题:(1)等底等高的圆柱体和圆锥体,圆锥体的体积是圆柱体的体积的,圆柱体体积比圆锥体体积多,圆锥体积比圆柱体少。
(2)一个圆柱体积是96立方厘米,与它等底等底高的圆锥体积是立方厘米,圆锥体积比圆柱体积少立方厘米。
(3)一个圆锥和一个圆柱等底等高,它们体积之和是36立方分米,圆柱体积比圆锥大立方分米。
分析及策略:此类型题的错因主要是对圆锥体积公式的推导过程还只是一个圆锥体积公式的获得过程,是停在表面上的认识,并没有真正通过实验过程对两者在一定条件下的关系弄清楚。因此这个推导过程中应让学生把两种几何体的体积关系,能反说、正说、比多少等都能说清。
练习题的分析:重点讲解的题目:39页第10题(重点说明生活中常说的圆柱体的长也就是数学意义上的圆柱体的高)。40页的13题(体积公式与比例知识的综合运用,即利用底面积一定时体积和高成正比例的关系来确定两个圆柱体体积的比,求出第二个圆柱体的体积,最后求出它们的差。)45页的第6题(关键是培养学生的实践能力,了解测量圆锥的高的方法。)、第8题(训练学生的解题思路,先算什么,再算什么。)、第11题(由圆锥的体积:等底等高的圆柱的体积=1:3,那么现在它们的比是1:6,底是相等的那说明圆柱的高是圆锥高的2倍,于是圆柱的高是9.6。实际上是圆锥与圆柱体积关系的灵活应用。)。
课时安排:1、圆柱的认识31页至33页及例1。
2、圆柱的表面积33页例2--例3。
3、圆柱的体积公式的推导36页例4及补充一道已知r求v的例题。
4、认识圆柱的容积37页例5。
5、圆柱有关公式的对比练习39页8、9(增加不同位置类型的圆柱体)39页7、10。
6、圆锥的认识41页。
7、圆锥的体积公式的推导42页至43页例1。
8、圆锥体积的应用43页例2。
六年级数学圆柱与圆锥教案篇十一
单元总目标:
1、认识圆柱、圆锥的各部分的名称,掌握圆柱、圆锥的特征。
2、理解圆柱的表面积、侧面积、体积的意义。会推导表面积、侧面积、体积的公式,认识进一法取近似值,能灵活解决实际问题。
3、掌握圆锥体积公式的推导过程,能灵活解决实际问题。
4、培养学生观察、比较、归纳的能力,以及空间观念。
5、培养学生逻辑思考能力,有条理性的解决问题的能力。
单元重点:圆柱体体积的计算。
单元难点:
(1)圆柱体体积公式的推导过。
(2)圆柱体侧面积、表面积的计算。
(2)利用圆柱体、圆锥体等底等高条件下的关系解有关复杂应用题。
突出重点、突破难点的关键:充分运用直观教具,进行割拼演示、实验,有目的、有步骤地引导学生观察、思考,推导出计算公式和有关概念。
单元难点的剖析:
(1)表现为:学生难于想到把一圆柱体的立体图形转化成什么图形来研究。怎样把它转化。
原因:圆柱体和长方体在表面看来并没有什么联系。并且学生还很难由圆与圆柱的联系,而想到圆能转化成长方形来研究,圆柱就可以转化成长方体来研究。
解决策略:首先回忆研究圆的面积计算时把圆转化成什么图形?如何剪拼成了这个学过的图形?借助多媒体课件把一个个完全一样的圆形堆成一个圆柱体,通过这个过程发展学生的空间想象力进行猜想:圆柱体能剪拼成什么图形,请学生试试看。
(2)表现为:对圆柱体的侧面积公式容易获得,但学生对已知r或d求侧面积的问题,学生转不过,容易用底面积乘高来计算。而对表面积的计算,由于表面积公式中涉及的公式较多,学生往往不小心就弄混公式。
(3)表现为:在具体的问题情境中会用错公式,如:求侧面积的求成了表面积,求体积的求成了表面积等。
原因:学生可能对概念、公式记忆较熟,但在具体的问题环境下用错公式。主要还是学生对概念的感知不够。
解决策略:
(1)为新课教学做好准备,充分复习好圆的周长的计算方法、面积公式的推导过程。
(2)借助实物多让学生感知概念的意义,不能死记硬背,要能用自己话说清楚。特别对中下生应多结合实物或图形指出问题要求的部分。
(3)公式一定让学生动手操作参与到推导过程中,不能把公式直接交给学生。
(4)学生自备圆柱体形状的物体,每节课的新课铺垫、例题教学、或是练习讲评都借助于具体的实物,让学生一边口述、一边指着实物来说,加强感知。
单元策略:基于本单元是研究几何图形的有关知识,教学中主要采用学生动手操作、观察、实验等直观手段辅助教学。多让学生参与获得公式或经验。如:圆柱体展开图的特征、侧面积、表面积、体积及圆锥体的体积计算。
错例的估计和采集:概念辨析题:(1)一只铁皮水桶能装水多少升是求水桶的。(2)做一只圆柱体的油桶,至少用多少铁皮,是求油桶的()(3)做一节铁皮水管,要多少铁皮是求水管的()(4)给个圆柱体的花瓶包装在盒子里,需用多大的盒子是求花瓶的()。
分析及策略:这些属于概念不清的问题,因为这些知识点本身有联系又有区别,所以易混,因此教学中重点在新授中注意让学生多体验、多感受。还要在综合练习中加强对比,沟通它们的联系和区别。
分析及策略:此类型的错误主要是公式用错,原因还是对概念不清,解题思路不明,因此,教学中在保证理解概念的前提下多让学生讲思路、强调解答步骤的书写要有条理。
有关圆柱体和圆锥体的混合题:(1)等底等高的圆柱体和圆锥体,圆锥体的体积是圆柱体的体积的(),圆柱体体积比圆锥体体积多(),圆锥体积比圆柱体少()。
(2)一个圆柱体积是96立方厘米,与它等底等底高的圆锥体积是()立方厘米,圆锥体积比圆柱体积少()立方厘米。
(3)一个圆锥和一个圆柱等底等高,它们体积之和是36立方分米,圆柱体积比圆锥大()立方分米。
分析及策略:此类型题的错因主要是对圆锥体积公式的推导过程还只是一个圆锥体积公式的获得过程,是停在表面上的认识,并没有真正通过实验过程对两者在一定条件下的关系弄清楚。因此这个推导过程中应让学生把两种几何体的体积关系,能反说、正说、比多少等都能说清。
练习题的分析:重点讲解的题目:39页第10题(重点说明生活中常说的圆柱体的长也就是数学意义上的圆柱体的高)。40页的13题(体积公式与比例知识的综合运用,即利用底面积一定时体积和高成正比例的关系来确定两个圆柱体体积的比,求出第二个圆柱体的体积,最后求出它们的'差。)45页的第6题(关键是培养学生的实践能力,了解测量圆锥的高的方法。)、第8题(训练学生的解题思路,先算什么,再算什么。)、第11题(由圆锥的体积:等底等高的圆柱的体积=1:3,那么现在它们的比是1:6,底是相等的那说明圆柱的高是圆锥高的2倍,于是圆柱的高是9.6。实际上是圆锥与圆柱体积关系的灵活应用。)。
课时安排:1、圆柱的认识31页至33页及例1。
3、圆柱的体积公式的推导36页例4及补充一道已知r求v的例题。
5、圆柱有关公式的对比练习39页8、9(增加不同位置类型的圆柱体)39页7、10。
6、圆锥的认识41页。
7、圆锥的体积公式的推导42页至43页例1。
8、圆锥体积的应用43页例2。
六年级数学圆柱与圆锥教案篇十二
1.正确流利地朗读课文。复述故事。
2.了解鲁滨孙在荒岛战胜困难、谋求生存的非凡经历,体会鲁滨孙敢于战胜困难的积极的生活态度。
了解鲁滨孙在荒岛战胜困难、谋求生存的非凡经历,体会鲁滨孙敢于战胜困难的积极的生活态度。
第二至八自然段鲁滨孙战胜困难的经历。
本课是略读课文,内容比较浅显。教学过程主要是引导学生自读自悟。鉴于个别学生已经大概知道这个故事的原因,可以让学生先根据自己的印象讲述故事,以激发其他学生的学习兴趣。然后再让学生读一读“阅读提示”,按要求读课文,多读几遍,整体把握课文内容。接着,读课文重点部分第二至八自然段,讲一讲鲁滨孙的种.种困难的经历。最后交谈一下自己学习本课的感受。
建议学生在课前阅读《鲁滨孙飘流记》原著。
1课时。
遇险上岛。
建房定居。
养牧种植不畏艰险、机智坚强、聪明能。
救“星期五”
回到英国。
启示:一个人在逆境中不要悲观绝望,而要努力看到积极的因素,从而改变自己被动的局面。
一、导入新课:
同学们,上学期我们学习了《向命运挑战》这篇课文。通过学习,霍金那种向命运抗争的勇气,顽强的斗志,给我们留下了深刻的印象。今天,我们再来结识一位与困难作斗争的勇士,他就是在荒无人烟的小岛上生活了二十多年的鲁滨孙。(板书课题)。
二、检查预习:
1.通过预习课文,查找资料,你们对鲁滨孙知道了些什么?
2.哪位同学讲讲这个故事,也可以几位同学共同完成?
3.指名读课文,指导读正确、读流利。
三、自读课文,理解内容。
1.先阅读课文前面的“阅读提示”,明确阅读要求,然后按阅读提示自行阅读。边读边想课文的主要内容。
2.把不理解的语句画下来。
四、小组合作学习。
请大家自由组合,三五人一组,先交流对画出的难理解语句的理解,再讲讲鲁滨孙的`故事。
教学内容。
教师活动。
学生活动。
自由说,如,课文是长篇小说的缩写,小说的其他内容等。
讲故事,听故事。
阅读“阅读提示”,并按阅读提示自行阅读。边读边想课文的主要内容。
画出不理解的语句。
交流难理解的语句,讲讲鲁滨孙的故事。
阅读第二至八自然段并思考。
讨论并归纳。
交流体会并自由发言。
五、重点研读感悟。
1.仔细阅读第二至八自然段,思考鲁滨孙在荒岛上生存下来克服了哪些方面的困难?
2.师生共同讨论,从“食物、住处、安全”等方面进行归纳,使学生认识到:这是生存下来的必备条件,为此,鲁滨孙想了不少办法,很不简单。
3.交流体会。引导学生自由发言,从鲁滨孙的非凡经历中,感悟学会生存的道理。如要有生存的勇气,要善于因地制宜想办法,要不断改善生存环境。
六年级数学圆柱与圆锥教案篇十三
一、填空。
1、圆柱的上、下两个面叫做________,它们是________的两个面;圆柱有一个曲面,叫做________;圆柱两个底面之间的距离叫做________。
2、把圆柱的侧面展开,得到一个长方形。这个长方形的长等于________;宽等于________。
3、填写下图各部分的名称。
4、(1)已知圆柱的半径和高,侧面积公式________;表面积公式________;体积公式________。
(2)已知圆柱的直径和高,侧面积公式________;表面积公式________;体积公式________。
(3)已知圆柱的周长和高,侧面积公式________;表面积公式________;体积公式________。
二、应用题。
1.求下面各圆柱的侧面积。
(1)底面周长1.6米,高0.7米。(2)底面半径3.2分米,高是5分米。
4、(1)两个底面积相等的圆柱,高和体积成()比例。
5、求下列图形的表面积和体积。(图中单位:厘米。)。
【本文地址:http://www.pourbars.com/zuowen/12369736.html】