教案应该包含教学目标、教学内容、教学方法和教学活动等方面的内容。教案应该注重培养学生的思维能力和创新意识。教案的编写是教学艺术的体现,这些范文展示了教师们的创造力和教学智慧。
八年级数学教案沪科版篇一
教学目标:
1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。
2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。
3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。
重点与难点:
重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。
难点:分析典型图案的设计意图。
疑点:在设计的图案中清晰地表现自己的设计意图。
教具学具准备:
提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的动画演示。
教学过程设计:
1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23)。
明确在欣赏了图案后,简单地复习旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。
2、课本。
1欣赏课本75页图3—24的图案,并分析这个图案形成过程。
评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。
评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。
(二)课内练习。
(1)以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。
(2)利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。
(三)议一议。
生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。
(四)课时小结。
本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。
通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。)。
进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。
八年级数学教案沪科版篇二
1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。
2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。
算术平方根的概念。
根据算术平方根的概念正确求出非负数的算术平方根。
这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.
1、提出问题:(书p68页的问题)
你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)
这个问题相当于在等式扩=25中求出正数x的值.
一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作根号a,a叫做被开方数.规定:0的算术平方根是0.
也就是,在等式=a (x0)中,规定x = .
2、试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来.
3、想一想:下列式子表示什么意思?你能求出它们的值吗?
建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如表示25的算术平方根。
4、例1求下列各数的算术平方根:
(1)100;(2)1;(3) ;(4)0.0001
p69练习1、2
怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?
方法1:课本中的方法,略;
方法2:
可还有其他方法,鼓励学生探究。
问题:这个大正方形的边长应该是多少呢?
大正方形的边长是,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?
建议学生观察图形感受的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.
1、这节课学习了什么呢?
2、算术平方根的具体意义是怎么样的?
3、怎样求一个正数的算术平方根
p75习题13.1活动第1、2、3题
八年级数学教案沪科版篇三
1、了解方差的定义和计算公式。
2、理解方差概念产生和形成过程。
3、会用方差计算公式比较两组数据波动大小。
重点:掌握方差产生的必要性和应用方差公式解决实际问题。
难点:理解方差公式。
(一)知识详解:
方差:设有n个数据,各数据与它们的平均数的差的平方分别为。
用它们的平均数表示这组数据的方差,即。
给力小贴士:方差越小说明这组数据越稳定,波动性越低。
(二)自主检测小练习:
1、已知一组数据为2.0、-1.3、-4,则这组数据的方差为。
2、甲、乙两组数据如下:
甲组:1091181213107;
乙组:7891011121112。
分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小。
引例:问题:从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下(单位:cm):
甲:9.10.10.13.7.13.10.8.11.8;
乙:8.13.12.11.10.12.7.7.10.10;
问:(1)哪种农作物的苗长较高(可以计算它们的平均数:=)?
(2)哪种农作物的苗长较整齐?(可以计算它们的极差,你可以发现)。
归纳:方差:设有n个数据,各数据与它们的平均数的差的平方分别为。
用它们的平均数表示这组数据的方差,即用来表示。
(一)例题讲解:
金志强1013161412。
提示:先求平均数,然后使用公式计算方差。
(二)小试身手。
1、甲、乙两名学生在相同条件下各射击靶10次,命中的环数如下:
甲:7.8.6.8.6.5.9.10.7.4。
乙:9.5.7.8.7.6.8.6.7.7。
经过计算,两人射击环数的平均数是,但s=,s=,则ss,所以确定去参加比赛。
1、求下列数据的众数:
(1)3.2.5.3.1.2.3(2)5.2.1.5.3.5.2.2。
方差公式:
提示:方差越小,说明这组数据越集中。波动性越小。
每课一首诗:求方差,有公式;先平均,再求差;求平方,再平均;所得数,是方差。
1、小爽和小兵在10次百米跑步练习中的成绩如下表所示:(单位:秒)。
如果根据这些成绩选拔一人参加比赛,你会选谁呢?
必做题:教材141页练习1.2;选做题:练习册对应部分习题。
写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!
八年级数学教案沪科版篇四
1、掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用。
2、使学生理解判定定理与性质定理的区别与联系。
3、会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理。
1、通过“探索式试明法”开拓学生思路,发展学生思维能力。
2、通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力。
通过一题多解激发学生的学习兴趣。
通过学习,体会几何证明的方法美。
构造逆命题,分析探索证明,启发讲解。
1、教学重点:平行四边形的判定定理1、2、3的应用。
2、教学难点:综合应用判定定理和性质定理。
(强调在求证平行四边形时用判定定理在已知平行四边形时用性质定理)。
八年级数学教案沪科版篇五
调查中,所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。
例如,某班10名女生的考试成绩是总体,每一名女生的考试成绩是个体。
从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。
例如,要调查全县农村中学生学生平均每周每人的零花钱数,由于人数较多(一般涉及几万人),我们从中抽取500名学生进行调查,就是抽样调查,这500名学生平均每周每人的零花钱数,就是总体的一个样本。
将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数称为这组数据的中位数。
一组数据中出现次数最多的数据就是这组数据的众数。
例如:求一组数据3,2,3,5,3,1的众数。
解:这组数据中3出现3次,2,5,1均出现1次。所以3是这组数据的众数。
又如:求一组数据2,3,5,2,3,6的众数。
解:这组数据中2出现2次,3出现2次,5,6各出现1次。
所以这组数据的众数是2和3。
【规律方法小结】。
(1)平均数、中位数、众数都是描述一组数据集中趋势的量。
(2)平均数反映一组数据的平均水平,与这组数据中的每个数据都有关,是最为重要的量。
(3)中位数不受个别偏大或偏小数据的影响,当一组数据中的个别数据变动较大时,一般用它来描述集中趋势。
(4)众数只与数据出现的频数有关,不受个别数据影响,有时是我们最为关心的统计数据。
探究交流。
1、一组数据的中位数一定是这组数据中的一个,这句话对吗?为什么?
解析:不对,一组数据的中位数不一定是这组数据中的一个,当这组数据有偶数个时,中位数由中间两个数的平均数决定,若中间两数相等,则这组数据的中位数在这组数据之中,反之,中位数不在这组数据之中。
总结:
(1)中位数在一组数据中是唯一的,可能是这组数据中的一个,也可能不是这组数据中的数据。
(2)求中位数时,先将数据按由小到大的顺序排列(或按由大到小的顺序排列)。若这组数据是奇数个,则最中间的数据是中位数;若这组数据是偶数个,则最中间的两个数据的平均数是中位数。
(3)中位数的单位与数据的单位相同。
(4)中位数与数据排序有关。当一组数据中的个别数据变动较大时,可用中位数来描述这组数据的集中趋势。
课堂检测。
基本概念题。
1、填空题。
(1)数据15,23,17,18,22的平均数是;
(4)为了考察某公园一年中每天进园的人数,在其中的30天里,对进园的人数进行了统计,这个问题中的总体是________,样本是________,个体是________。
基础知识应用题。
2、某公交线路总站设在一居民小区附近,为了了解高峰时段从总站乘车出行的人数,随机抽查了10个班次的乘车人数,结果如下:20,23,26,25,29,28,30,25,21,23。
(1)计算这10个班次乘车人数的平均数;
(2)如果在高峰时段从总站共发车60个班次,根据前面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少。
八年级数学教案沪科版篇六
(1)调查样本是按随机的原则抽取的,在总体中每一个单位被抽取的机会是均等的,因此,能够保证被抽中的单位在总体中的均匀分布,不致出现倾向性误差,代表性强。
(2)是以抽取的全部样本单位作为一个“代表团”,用整个“代表团”来代表总体。而不是用随意挑选的个别单位代表总体。
(3)所抽选的调查样本数量,是根据调查误差的要求,经过科学的计算确定的,在调查样本的数量上有可靠的保证。
(4)抽样调查的误差,是在调查前就可以根据调查样本数量和总体中各单位之间的差异程度进行计算,并控制在允许范围以内,调查结果的准确程度较高。
课后练习。
1.抽样成数是一个(a)。
a.结构相对数b.比例相对数c.比较相对数d.强度相对数。
2.成数和成数方差的关系是(c)。
a.成数越接近于0,成数方差越大b.成数越接近于1,成数方差越大。
c.成数越接近于0.5,成数方差越大d.成数越接近于0.25,成数方差越大。
3.整群抽样是对被抽中的群作全面调查,所以整群抽样是(b)。
a.全面调查b.非全面调查c.一次性调查d.经常性调查。
4.对400名大学生抽取19%进行不重复抽样调查,其中优等生比重为20%,概率保证程度为95.45%,则优等生比重的极限抽样误差为(a)。
a.40%b.4.13%c.9.18%d.8.26%。
5.根据5%抽样资料表明,甲产品合格率为60%,乙产品合格率为80%,在抽样产品数相等的条件下,合格率的抽样误差是(b)。
a.甲产品大b.乙产品大c.相等d.无法判断。
初二数学知识点归纳。
四边形性质探索。
定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。
菱形:一组邻边相等的平行四边形??(平行四边形的性质)。四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。一组邻边相等的平行四边形是菱形,对角线互相垂直的平行四边形是菱形,四条边都相等的四边形是菱形。
矩形:有一个内角是直角的平行四边形??(平行四边形的性质)。对角线相等,四个角都是直角。有一个内角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形。
正方形:一组邻边相等的矩形。正方形具有平行四边形、菱形、矩形的一切性质。一组邻边相等的矩形是正方形,一个内角是直角的菱形是正方形。
梯形:一组对边平行而另一组对边不平行的四边形。一组对边平行而另一组对边不平行的四边形是梯形。等腰梯形:两条腰相等的梯形。同一底上的两个内角相等,对角线相等。两腰相等的梯形是等腰梯形,同一底上两个内角相等的梯形是等腰梯形。
直角梯形:一条腰和底垂直的梯形。一条腰和底垂直的梯形是直角梯形。
多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。多边形的外角和都等于360°。三角形、四边形和六边形都可以密铺。
定义:在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
初二数学学习方法技巧。
学好初中数学课前要预习。
初中生想要学好数学,那么就要利用课前的时间将课上老师要讲的内容预习一下。初中数学课前的预习是要明白老师在课上大致所讲的内容,这样有利于和方便初中生整理知识结构。
初中生课前预习数学还能够知道自己有哪些不明白的知识点,这样在课上就会集中注意力去听,不会出现溜号和走神的情况。同时课前预习还可以将知识点形成体系,可以帮助初中生建立完整的知识结构。
学习初中数学课上是关键。
初中生想要学好学生,在课上就是一个字:跟。上初中数学课时跟住老师,老师讲到哪里一定要跟上,仔细看老师的板书,随时知道老师讲的是哪里,涉及到的知识点是什么。有的初中生喜欢记笔记,在这里提醒大家,初中数学课上的时候尽量不要记笔记。
你的主要目的是跟着老师,而不是一味的记笔记,即使有不会的地方也要快速简短的记下来,可以在课后完善。跟上老师的思维是最重要的,这就意味着你明白了老师的分析和解题过程。
课后可以适当做一些初中数学基础题。
在每学完一课后,初中生可以在课后做一些初中数学的基础题型,在做这样的题时,建议大家是,不要出现错误的情况,做完题后要学会思考和整理。当你的初中数学基础题没问题的时候,就可以做一些有点难度的提升题了,如果做不出来可以根据解析看题。
数学是由简单明了的事项一步一步地发展而来,所以,只要学习数学的人老老实实地、一步一步地去理解,并同时记住其要点,以备以后之需用,就一定能理解其全部内容.就是说,若理解了第一步,就必然能理解第二步,理解了第一步、第二步,就必然能理解第三步.这好比梯子的阶级,在登梯子时,一级一级地往上登,无论多小的人,只要他的腿长足以跨过一级阶梯,就一定能从第一级登上第二级,从第二级登上第三级、第四级,…….这时,只不过是反复地做同一件事,故不管谁都应该会做.
八年级数学教案沪科版篇七
《基础教育课程改革纲要(试行)》指出:“大力推进多媒体信息技术在教学过程中的普遍应用,促进信息技术与学科课程的整合,逐步实现教学内容的呈现方式、学生的学习方式、教师的教学方式和师生互动方式的变革,充分发挥信息技术的优势,为学生的学习和发展提供丰富多彩的教育环境和有力的学习工具。”教师运用现代多媒体信息技术对教学活动进行创造性设计,发挥计算机辅助教学的特有功能,把信息技术和数学教学的学科特点结合起来,可以使教学的表现形式更加形象化、多样化、视觉化,有利于充分揭示数学概念的形成与发展,数学思维的过程和实质,展示数学思维的形成过程,使数学课堂教学收到事半功倍的效果。
本节课内容是学生在小学阶段初步了解特殊四边形以及学过《三角形》这章的基础上进行的,在知识结构上打破了教材的编写顺序,从整体的角度探究特殊四边形性质。运用多媒体教学体现出直观、课容量大、容易接受的特点,为进一步的理论证明及应用起着提供数据和宏观指导作用,使学生学习本章具体内容时知道身在何处,使知识体系更加系统。本节课内容是四边形这章的理论基础,在该章占有非常重要的地位。
本班经历了一年多课改实践,学生对运用现代多媒体信息技术的教学方式有浓厚的兴趣,能运用《几何画板》这一工具进行简单的操作,形成自主探索和合作交流的学风,从而乐于在教师的指导下主动与同学探索、发现、归纳、经历数学知识于实践的过程。
本节课充分利用现有的先进教学设备(两名学生一台电脑),利用笔者自制,借助《几何画板》把学生带入数学模拟实验室,以研究电动门的机械原理为切入点,从学生已有的生活经验出发,让学生亲身经历数学知识的形成并进行解释与应用过程。组员相互配合分别测量、搜集、分析、整理特殊四边形的边长、角度、对角线长度等数据,并总结其性质,通过人机对话方式把静态、抽象的几何图形变为动态、直观地演示出来。在此过程中教师当好课堂教学的组织者、决策者、创造者和参与者,教给学生自觉主动地探究新知识的方法,激发学生的思维,培养学生的科学精神和创新思维习惯,使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到发展。
1、初步理解特殊四边形性质;
2、培养学生自主收集、描述和分析数据的能力;
1、了解特殊四边形性质的形成过程;
2、初步了解探究新知识的一些方法;
1、了解特殊四边形在日常生活中的应用;
2、学生在观察、归纳、类比及实验教学活动中,体会成功后的喜悦;
3、初步具有感性认识上升到理性认识的辩证唯物主义思想。
教学环境:
多媒体计算机网络教室。
教学课型:
试验探究式。
教学重点:
特殊四边形性质。
教学难点:
特殊四边形性质的发现。
一、设置情景,提出问题。
提出问题:
1、电动门的网格和结点能组成哪些四边形?
2、在开(关)门过程中这些四边形是如何变化的?
3、你还发现了什么?
解决问题:
学生猜想:包括平行四边形、矩形、菱形、等腰梯形、直角梯形……;
当我们学习完本节知识后,其他问题就容易解决了。
(意图:用《几何画板》的动态演示生活事例,充分展示了数学的美妙,可以使学生容易进入情境和保持积极学习状态,激起学生探究解决问题的求知欲望。)。
二、整体了解,形成系统。
本节课从整体角度研究特殊四边形性质,为今后的个体研究打下良好的基础。我们先研究四边形中的特殊与一般的关系。
提出问题:
1、本章主要研究哪些特殊四边形?
2、从哪几方面研究这些特殊四边形?
解决问题:
学生操作电脑(用几何画板),了解本章研究的主要图形;教师个别指导。
1、包括:平行四边形、矩形、菱形、梯形、等腰梯形、直角梯形。
3、等腰梯形和直角梯形后面应该是矩形,但不符合梯形定义,所以没有图形。
(意图:学生自主观察、分组讨论了解本章知识结构,从而形成系统;通过假设、猜想、推理、论证、否定假设获得新知识)。
三、个体研究、总结性质。
1、平行四边形性质。
提出问题:
在平行四边形的形状、位置、大小变化过程中,请观察数据并找出边长、角度、对角线长度相对不变的性质。
解决问题:
教师引导学生拖动b点(学生操作电脑),改变平行四边形的形状、位置、大小,并观察数据的变化,从中找出相对不变的要素。
在图形变化过程中,
(1)对边相等;
(2)对角相等;
(3)通过ao=co、bo=do,可得对角线互相平分;
(4)通过邻角互补,可得对边平行;
(5)内外角和都等于360度;
(6)邻角互补;
……。
指导学生填表:
平行四边形性质矩形性质正方形性质。
菱形性质。
梯形性质等腰梯形性质。
直角梯形性质。
(既属于平行四边形性质又属于矩形性质可以画箭头)。
按照平行四边形性质的探索思路,分别研究:
2、矩形性质;
3、菱形性质;
4、正方形性质;
5、梯形性质;
6、等腰梯形性质;
7、直角梯形的性质。
(意图:学生运用电脑自主收集、描述、分析数据,把抽象的性质变为直观化、形象化,培养独立探究,自主自信,使学生体验到科学探索的乐趣。)。
教师总结:
(意图:掌握画箭头的方法,使学生了解事物个体既有该事物一般性质,又有自己的特点。既清楚地表达,又节省时间。)。
四、联系生活,解决问题。
解决问题:
学生操作电脑,观察图形、分组讨论,教师个别指导。
学生在分别演示开(关)门过程中,观察数据并总结:边长、角度、对角线长度的变化引起四边形的形状、大小、位置的变化。
四边形具有不稳定性,而三角形没有这个特点……。
(意图:使学生体会到数学于生活、又服务于生活,更重要的是培养学生应用知识解决实际问题的能力,体会成功后的喜悦。)。
五、小结。
1.研究问题从整体到局部的方法;
2.主要从边长、角度、对角线长度三方面研究特殊四边形性质。
六、作业。
1.平行四边形内角中,既有两个相邻的角相等,又有一组邻边相等,试判断它是什么图形。
2.观察实际生活中的电动门,在开(关)门过程中特殊四边形的变化。
针对教学内容、学生特点及设计方案,预计下列学习效果:
利用多媒体信息技术图文并茂、形象直观的特点,通过学生自主测量、分析、整理数据并总结其性质,培养学生收集、描述和分析数据的能力,并达到初步理解特殊四边形性质的目标。
在问题引入、了解整体、测量个体、总结性质的过程中,符合事物的认识规律及探究新知识的一般方法,初步形成感性认识上升到理性认识的辩证唯物主义思想。
由于个体差异,针对教学目标难以达到的个别学生,根据教学的进展,通过师生之间、学生之间的对话交流及时指导,使教学目标得以实现。
八年级数学教案沪科版篇八
本节内容的重点是线段垂直平分线定理及其逆定理.定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.
本节内容的难点是定理及逆定理的关系.垂直平分线定理和其逆定理,题设与结论正好相反.学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.
本节课教学模式主要采用“学生主体性学习”的教学模式.提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳.教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人.具体说明如下:
学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点p,它到线段两端的距离有何关系?学生会很容易得出“相等”.然后学生完成证明,找一名学生的证明过程,进行投影总结.最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理.这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.
线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.
八年级数学教案沪科版篇九
1.经历分式方程的概念,能将实际问题中的等量关系用分式方程 表示,体会分式方程的模型作用.
2.经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。
3.在活动中培养学生乐于探究、合作学习的习惯,培养学 生努力寻找 解决问题的进取心,体会数学的应用价值.
将实际问题中的等量 关系用分式方程表示
找实际问题中的等量关系
有两块面积相同的小麦试验田,第一块使用原品种,第二 块使用新品种,分别收获小麦9000 kg和15000 kg。已知第一块试验田每公顷的产量比第二块少3000 kg,分别求这两块试验田每 公顷 的产量。你能找出这一问题中的所有等量关系吗?(分组交流)
如果设第一块试验田 每公顷的产量为 kg,那么第二块试验田每公顷的产量是________kg。
根据题意,可得方程___________________
从甲地到乙地有两条公路:一条是全长600 km的普通 公路,另一条是全长480 km的高速公路。某客 车在 高速公路上行驶的平均速度比在普通公路上快45 km/h,由高速 公路从甲地到乙地所需的时间 是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从 甲地到乙地所需的时间。
这 一问题中有哪些等量关系?
如果设客车由高速公路从甲地到乙地 所需的时间为 h,那么它由普通公路从甲地到乙地所需的时间为_________h。
根据题意,可得方程_ _____________________。
学生分组探讨、交流,列出方程.
上面所得到的方程有什么共同特点?
分母中含有未知数的方程叫做分式方程
分式方程与整式方程有什么区别?
(3)根据分式方程 编一道应用题,然后同组交流,看谁编得好
本节课你学到了哪些知识?有什么感想?
八年级数学教案沪科版篇十
《正方形》这节课是九年义务教育人教版数学教材八年级下册第十九章第二节的内容。纵观整个初中教材,《正方形》是在学生掌握了平行线、三角形、平行四边形、矩形、菱形等有关知识及简单图形的平移和旋转等平面几何知识,并且具备有初步的观察、操作等活动经验的基础上出现的。既是前面所学知识的延续,又是对平行四边形、菱形、矩形进行综合的不可缺少的重要环节。
本节课的重点是正方形的概念和性质,难点是理解正方形与平行四边形、矩形、菱形之间的内在联系。根据大纲要求,本节课制定了知识、能力、情感三方面的目标。
(一)知识目标:
1、要求学生掌握正方形的概念及性质;
2、能正确运用正方形的性质进行简单的计算、推理、论证;
(二)能力目标:
1、通过本节课培养学生观察、动手、探究、分析、归纳、总结等能力;
2、发展学生合情推理意识,主动探究的习惯,逐步掌握说理的基本方法;
(三)情感目标:
1、让学生树立科学、严谨、理论联系实际的良好学风;
2、培养学生互相帮助、团结协作、相互讨论的团队精神;
3、通过正方形图形的完美性,培养学生品格的完美性。
该段学生具有一定的独立思考和探究的能力,但语言表达能力方面稍有欠缺,所以在本节课的教学过程中,特意设计了让学生自己组织语言培养说理能力,让学生们能逐步提高。
针对本节课的特点,采用"实践--观察--总结归纳--运用"为主线的教学方法。
通过学生动手,采取几种不同的方法构造出正方形,然后引导学生探究正方形的概念。通过观察、讨论、归纳、总结出正方形性质定理,最后以课堂练习加以巩固定理,并通过一道拔高题对定义、性质理解、巩固加以升华。
本节课重点是从培养学生探索精神和分析归纳总结能力为出发点,着重指导学生动手、观察、思考、分析、总结得出结论。在小组讨论中通过互相学习,让学生体验合作学习的乐趣。
第一环节:相关知识回顾。
以提问的形式复习平行四边形、矩形、菱形的定义及性质之后,引导学生发现矩形、菱形的实质是由平行四边形角度、边长的变化得到的。并启发学生考虑,若这两种变化同时发生在平行四边形上,则会得到什么样的图形?让学生们通过手上的学具演示以上两种变化,从而得出结论。
第二环节:新课讲解通过学生们的发现引出课题“正方形”
1、正方形的定义:引导学生说出自己变化出正方形的过程,并再次利用课件形象演示出由平行四边形的边、角的变化演变出正方形的过程。请同学们举手发言,归纳总结出正方形定义:一组邻边相等,且一个角是直角的平行四边形是正方形。再由此定义启发学生们发现正方形的三个必要条件,并且由这三个条件通过重新组合即一组邻边相等与平行四边形组成菱形再加上一个角是直角可得到正方形的另两个定义:一个角是直角的菱形是正方形;一组邻边相等的矩形是正方形。此内容借助课件演示其变化过程,进一步启发学生发现,正方形既是特殊的菱形,又是特殊的矩形,从而总结出正方形的性质。
2、正方形的性质定理1:正方形的四个角都是直角,四条边都相等;
定理2:正方形的两条对角线相等,并且互相垂直、平分,每条对角线平分一组对角。
以上是对正方形定义和性质的学习,之后是进行例题讲解。
4、课堂练习:第一部分采用三道有关正方形的周长、面积、对角线、边长计算的填空题,目的是对正方形性质的进一步理解,并考察学生掌握的情况。
第二部分是选择题,通过体现生活中实际问题,来提升学生所学的知识,并加以综合练习,提高他们的综合素质,使他们充分认识到数学实质是来源于生活并要服务于生活。
5、课堂小结:此环节我是通过图框的形式小结正方形和前阶段所学特殊四边形之间的内在联系,通过对所学几种四边形内在联系体现正方形完美的本质,渲染学生们应追求象正方形一样方正的品质,从而要努力学习以丰富的知识充实自己,达到理想中的完美。
6、作业设计:作业是教材159页,第12、14两小道证明题,通过此作业让同学们进一步巩固有关正方形的知识。
八年级数学教案沪科版篇十一
1、通过色散实验,知道白光是由红、橙、黄、绿、蓝、靛、紫七种色光组成的。用实验让学生体验色光的混合和颜料混合是不同的。
2、能用色光的混合和颜料的混合知识简单解释五光十色的世界,使学生对探索自然充满兴趣。
1、重点。
(1)光的色散及色光的复合。
(2)引导学生观察自然现象,并使学生了解通过实验探究自然现象的基本方法。
2、难点。
光的色散及色光的复合实验。
实验法、观察法、科学探究法。
演示实验:水槽、平面镜、光碟、两个相同的三棱镜、投影仪、铁架台、光屏。
学生实验:三只聚光灯、红、绿、蓝三种颜色的透明胶片、光屏、放大镜、颜料盒、调色板。
一、课题引入。
师:欣赏一幅美术作品,用什么灯光照明最合适?
生甲:用柔合的灯光最合适。
生乙:用柔合的白色灯光最合适。
师:对,用柔合的白光最合适。你知道吗?一朵红色的月季花在阳光下十分鲜艳可爱,可是当它受到蓝光照射时就失去了光彩。所以欣赏一幅美术作品,用柔和的白光最合适,这节课我们就来研究白光的色散现象。
二、新课教学。
导入。
生:看到了白色的太阳光变成彩色的了。
师:将光碟放在阳光或日光灯下,你们又看到了什么现象?
生甲:从第一个三棱镜射出的光不是白光,是七种颜色的光,分别叫红、橙、黄、绿、蓝、靛、紫。
生乙:七色光从第二个三棱镜射出后又变成一束白光。
师:白光分解成七种颜色光的现象叫光的色散,七种颜色的光汇合后变成一条白色光带,叫色光的复合。
板书:第四节光的色散。
1、光的色散。
生:夏天雨后的天空中看到过彩虹。
是红色。如图4、4—24所示。
2、色光的混合。
学生探究实验:4个人一组在聚光灯前蒙一块有颜色(红色、黄色或蓝色)的透明胶片,再将其发出的光投射出白色屏幕上,形成有部分光交汇。如课本p6l图4—35。让学生观察。
师:你们观察到什么现象?
生甲:透明物体的颜色与透过的光的颜色相同。
生乙:不同颜色的光能混合成另一种颜色的光。
生丙:红、绿、蓝三种颜色的光混合在一起,可以得到白光。
生:看到了彩色扇面。
师:可能有的同学课前没有做以上两个实验,请课后留下来补做。
演示实验:取两个三棱镜,一个带狭缝的挡光板和一个白色光屏,按图4—32,4—33所示操作。
绕自身的轴线微微转动,就可以在光屏上得到彩色的光谱带。光屏与棱镜的.距离调节在0、5m左右为宜,这样得到的彩色光谱带清晰。
做七色光的混合实验时,两块棱镜的相对的边要平行。光屏距棱镜的距离约1m,这样才能观察到混合后的白光。
实验光源也可以是日光灯、功率较大的白炽灯等。
也可利用投影仪来做以上实验。
如图4、4—2所示,用一块开有窄缝的硬纸板放在投影仪面板上,调节投影仪的镜头,从平面镜中反射的光束与水平面夹角约60度左右为宜,在竖直屏幕上得到一条清晰的狭窄的白光带。把三棱镜固定在铁架台上,使三棱镜可绕轴转动。
实验时,开启投影仪,调节三棱镜高度并转动三棱镜,可观察到屏幕上白色光带被分解成红、橙、黄、绿、蓝、靛、紫的七色光带现象。
将另一个三棱镜也安装到铁架台上,位置如图4、4—3所示,适当调节后,可观察到七色光带又汇合成一条狭窄的白色光带。
师:实验研究表明,自然界中红、绿、蓝三种颜色的光是无法用其他颜色的光混合而成的,而其他颜色的光则都可以通过红、绿、蓝的适当混合而得到的,因此,红、绿、蓝三种颜色被称为光的“三基色”。
彩色电视机的荧光屏和计算机显示器的屏幕上艳丽的画面是由红、绿、蓝:三色光合成的。
板书:2、光的三基色。
生:探究、交流。
师:各种颜色的颜料的混合能否调出红、黄、蓝?
生:调不出。
师:红、黄、蓝被称为颜料的“三原色”
板书:3、颜料三原色。
师:你们将这三种颜色调在一起,试试会调出什么颜色?
生:黑色。
师:光的三基色是红、绿、蓝混合在一起,会产生白光,颜料的三原色调在一起会变成黑色。
生:看到暖色我会联想到太阳、火等,看到冷色我会联想到草地、水等。
师:冷暖色的对比与协调,能产生美妙、生动的色感。
三、归纳与学习过程评估。
师:本节课我们学到了什么?
生:讨论、交流后得出,通过本节课的学习,我们知道了白光可以分解为红、橙、黄、绿、蓝、靛、紫七种颜色,这叫光的色散。自然界中的彩虹就是光的色散现象。七种颜色的光混合在一起,又会变为白色,这叫光的复合,光的三基色是红、绿、蓝颜料的三原色是红、黄、蓝。
师:每位同学都对自己在本节课的学习情况进行评估。
教师简要地对本节课全班同学学习情况进行评估。
四、课后练习。
1、课本p63,作业1、2。
2、选用课时作业设计。
五、板书设计。
第四节光的色散。
1、光的色散:太阳光(白光)可分解成红、橙、黄、绿、蓝、靛、紫七种颜色的光。
2、光的三基点:红、绿、蓝。
3、颜料的三原色:红、黄、蓝。
六、课后反思。
八年级数学教案沪科版篇十二
1、理解速度的概念,能用速度描述物体的运动。
2、了解测量速度的一些方法,能用速度公式进行简单的计算。
3、知道匀速直线运动和变速直线运动的特征。
4、用实验方法科学地判定一个直线运动的物体是处于匀速运动状态还是变速度状态。
速度的概念;速度的测量的一些方法;能用速度公式进行简单的计算;匀速直线运动和变速运动的特征。
能用速度公式进行简单的计算。
(二课时)。
一、新课引入。
师:生活中人们是怎样比较物体运动的快与慢?
学生回答:
(1)比一比,跑一段相同的距离,看谁先到达终点。
(2)比一比,用相同的距离,看谁跑得远。
可见,比较物体运动快慢有两种方法。通常情况下,人们用在“相同时间内比较通过的路程的多少米表示物体运动的快慢”。在“相同时间内”最简单的情况是取单位时间,物体在单位时间内通过的路程的多少就可以表示物体运动快慢,物理学中用速度来表示物体运动的快慢。
二、新课教学。
(一)速度。
1、速度的物理意义。
速度用来表示什么?(速度用来表示物体的运动快慢。)。
2、速度的概念。
在通常情况下,速度等于什么?(速度等于物体在单位时间内通过的'路程。)。
3、速度的公式。
如果用“s”表示路程,用“t”表示时间,用“v”表示速度,则三者之间的关系是什么?(v=s/t速度=路程/时间)。
4、速度的单位。
在国际单位制中,路程的单位是“米”(m),时间的单位是“秒”(s)那么速度的单位就是“米/秒”,读作“米每秒”,可用符号“m/s”或“m·s—1”表示。
日常生活中常用的速度单位是“千米/时”,读作“千米每时”,用符号“km/h”或“km·h—1”表示。
师边讲解边板书两速度公式之间的换算关系。
1m/s=3、6km/h1km/h=(1/3、6)m/s。
5、课堂巩固练习(写出换算过程)。
54km/h=m/s15m/s=km/h。
720km/h=m/s0、6m/s=km/h。
三、速度公式的简单应用。
学生阅读课本p25例一,观察计算方法与小学的计算过程有什么不同?
板书解题过程,强调计算格式。
课堂练习。
一物体在10min内通过600米,求这个物体运动的平均速度?
四、本课,作业。
阅读例题,预习速度公式的应用。
五、板书设计。
第三节快与慢。
一、速度。
1、速度的物理意义:表示物体运动快慢程度。
2、速度的概念:速度等于物体在单位时间内通过的路程。
3、速度的公式:v=s/t。
4、速度的单位:km/hm/s。
5、速度的测量。
六、教学后记。
八年级数学教案沪科版篇十三
在推理判断中得出同底数幂乘法的运算法则,并掌握“法则”的应用.2.过程与方法。
在小组合作交流中,培养协作精神、探究精神,增强学习信心.重、难点与关键。
1.重点:同底数幂乘法运算性质的推导和应用.2.难点:同底数幂的乘法的法则的应用.
一、创设情境,故事引入【情境导入】。
力一劈,把混沌的宇宙劈成两半,上面是天,下面是地,从此宇宙有了天地之分,盘古完成了这样一个壮举,累死了,他的左眼变成了太阳,右眼变成了月亮,毛发变成了森林和草原,骨头变成了高山和高原,肌肉变成了平原与谷地,血液变成了河流.
八年级数学教案沪科版篇十四
各位专家评委、各位老师:
大家好!我说课的内容是八年级物理上册第四章的第三节《平面镜成像》。下面我将从以下五个方面对本节课的教学设计进行说明。
一、说教材。
1、教材的地位和作用。
本节课主要有三个内容:1、探究平面镜成像特点;2、虚像的概念;3、日常生活中平面镜成像的现象。它在光的直线传播与光的反射定律之后,学习、认识平面镜的成像,是前两节所学知识的应用;另外,学生将首次较完整的研究“像”这个新概念,为进一步学习凸透镜成像奠定基础。同时,通过平面镜成像的探究活动,有助于加深学生对科学探究的理解,增强学生的科学探究能力,激发学生的学习兴趣。因此,本节课具有承上启下的重要作用,是这一章的重点内容之一。
2、教学目标。
根据新课程标准重视过程与方法、重视科学探究的要求,结合教材的内容以及学生认知发展的水平,我将本节课的教学目标确定为以下三个维度:
知识与技能:能说出平面镜成像的特点;了解虚像是怎样形成的;了解日常生活中平面镜成像的现象。
过程与方法:经历“平面镜成像特点”的探究,学习对实验过程中有用信息的记录;观察实验现象,感知虚像的含义。
情感态度价值观:在探究过程中,领略平面镜成像现象中的对称之美,体会克服困难、解决问题的喜悦。
3、重点和难点。
科学探究活动,有利于学生独立获取知识、学习、体验科学方法,因此,“探究平面镜成像的特点”是本节课的重点。由于“虚像”比较抽象,“看得见”,却“摸不着”,因此,虚像的概念是本节课的一个难点;由于学生缺乏经验,思维能力不强,很难提出确定虚像位置的方法,如何解决这一问题是探究活动中的又一个难点。
二、说教法。
八年级的学生正处于从形象思维向抽象思维过渡的时期,对身边的事物充满好奇心,具有强烈的操作兴趣。同时,学生在生活中经常接触平面镜,容易使他们产生浓厚的探究兴趣。根据学生这些心理特征,结合教材内容的编排,我采用的教学方法主要为教师引导发现,学生自主探究的方法;另一方面,学生虽然对平面镜成像有一定的感性认识,但由于思维定势的影响,往往得出一些错误的结论,例如:他们会认为“物体离平面镜越近,所成的像就越大”;把“像”与“影”混淆等,这些先入为主的错误观念,对本节课的学习会产生不利的影响。对于这些带有普遍性的问题,则通过多媒体动画展示、演示实验、教师讲解等教学手段,来突破难点。
三、说学法。
在教师的引导下,要使学生领会物理学的基本方法之一——科学探究,让学生从观察现象入手,在质疑、探究、观察、思考、讨论、交流中学到知识,同时,体验实验的基本思想方法,学习科学探究。
四、说教学过程。
1、引入新课。
首先通过一个魔术视频引入新课。不仅能够激发学生的好奇心,引起他们的有意注意;还暗示出将“平面镜改为玻璃板”有助于确定虚像的位置,为学生设计探究方案搭建一个“支架”。
2、组织探究。
第二个环节我将组织探究平面镜成像规律,按照提出猜想,设计实验、进行实验、得出结论的顺序进行。考虑到学生的心理发展水平和教学时间的限制,探究活动的重点放在设计探究方案上。
(1)提出猜想:
在板书课题之后,展示一幅平静的水面成像的图片。这样,一方面可以拓展平面镜的概念,还可以使学生感受到大自然之美。然后,让学生观察自己在平面镜内所成的像,并对成像的特点提出猜想,将猜想一一列在黑板上,作为后面探究的课题。
(2)制定计划与设计实验:
引导学生制定计划与设计实验是突破探究过程中难点的关键。首先提出:“如何来探究像与物体大小的关系呢?”以明确探究目的。如果学生感到困难,可以适时提出启发性的问题,“我们怎样比较两个物体大小?”使学生明确解决问题的关键。然后,学生以小组为单位设计实验方案。之所以以小组为单位,一方面是由于该探究活动与以前接触到的探究活动相比,难度要大一些,以小组为单位,便于学生随时交流、相互启发,共同获得发展;另一方面,通过交流,还可以培养学生的合作精神与合作能力。
(3)进行实验。
提供实验器材时,将平面镜和玻璃板同时给出,让学生自主选择。直接选平面镜的学生在实验中会发现一个问题:无法同时看到物体的像与替代物,所以无法比较像与物的大小。学生就会陷入如何解决这一问题的思考。此时,可能会有学生受到“水中蜡烛”的实验启发,想到把平面镜改为玻璃板做实验。如果学生没有想到,可以提醒学生回想该演示实验。这样,学生通过实验的亲身体会,产生认知冲突,再联系已有信息,解决冲突,体会更加深刻。这样就突破了探究过程中的难点。
在得出像与物体大小相等的关系后,近一步提出“怎样研究像距与物距的关系?”以引导学生进行下一步的探究。由于学生在前一步的探究活动中已掌握了确定虚像位置的方法,学生完全可以自主进行探究。
(4)交流探究成果,及时矫正。
各小组在教师指导下,对实验数据进行对比、分析,得出“像物等大等距”的结论,同时对学生掌握知识、参与实验的态度和效果进行反馈,在这一阶段,通过教师的引导和针对性反馈练习,学生将完成从感性认识向理性认识飞跃。
3、理解“虚像”
首先借助多媒体课件,根据光的反射定律作图,进行动态分析,使学生从理论上知道平面镜成像是反射光线反向延长线的交点形成的。并由非实际光线相交形成。
接着再演示:把蜡烛点燃放在玻璃板前,把白纸放在玻璃板后面的“像”的位置上。会发现纸上并没有像,从而说明并没有光到达成像的位置,再次证明平面镜所成的像确实不是实际光线相交而成的,使学生从实际中感受什么是虚像。这样,通过理论分析、实验验证等教学手段变抽象为形象,变静为动,突破“虚像”这一难点。
4、平面镜成像的应用。
为了开阔学生的视野,使学生认识到平面镜成像在生活中的应用,播放一段有关平面镜成像应用的影片,通过这段影片不仅可以激发学生的学习兴趣,还可以使学生认识到科技对生产、生活产生的重要影响,加深他们对科学的理解和认识。
五、板书设计。
第三节平面镜成像。
一、平面镜成像的特点:
(1)等大:像物大小相等;。
(2)等距:像与物到镜面距离相等。
(3)虚象:像与物连线与镜面垂直。
二、平面镜成像原理:光的反射。
反射光线的方向延长线形成虚像。
以上是我对《平面镜成像》教学设计的一些认识,有不妥之处恳请各位专家老师批评指正。
八年级数学教案沪科版篇十五
学会可化为一元一次方程或一元二次方程的分式方程的解法,会用去分母求方程的解、掌握解分式方程的一般步骤。
去分母法解可化为一元一次方程或一元二次方程的分式方程、验根的方法、
解分式方程的一般步骤。
1、什么叫分式方程?
2、解分式方程的基本思想:
分式方程整式方程。
3、解方程(学生板演)。
1、由上述学生的板演归纳出解分式方程的一般步骤。
(1)去分母:在方程的两边都乘以最简公分母,化为整式方程;
(2)解这个整式方程;
2、范例讲解。
(学生尝试练习后,教师讲评)。
例1:解方程例2:解方程例3:解方程讲评时强调:
1、怎样确定最简公分母?(先将各分母因式分解)。
2、解分式方程的步骤、
巩固练习:p1471t,2t、
课堂小结:解分式方程的一般步骤。
布置作业:见作业本。
八年级数学教案沪科版篇十六
可化为一元二次方程的分式方程的解法.。
教学难点:解分式方程,学生不容易理解为什么必须进行检验.。
一、新课引入:
1.什么叫做分式方程?解可化为一元一次方程的分化方程的方法与步骤是什么?
2.解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?
3、产生增根的原因是什么?.。
二、新课讲解:
八年级数学教案沪科版篇十七
常识性了解照度的概念。
2、能力目标。
培养学生用物理知识解决实际问题的能力。
3、情感目标。
通过照度对视力影响的介绍,激发学生的求知欲。
本节是选学内容,我们知道照明与人类的日常生活密切相关,现实生活中特别是学校、家庭学习环境照度达不到标准,危害学生眼睛健康,为了提起人们对此关注,为保护视力,国家规定了照度标准,以保证日常生活工作的最好条件。因此照度作为常识介绍还是有其必要性的。
教材通过把光源设置在不同位置,观察桌面的明暗程度给出照度的概念和单位,然后介绍了自然界中典型情况下的照度和国家规定标准中的学校用房的平均照度。最后通过实验照度与光源距离、与光照面的倾斜程度的关系。
1)通过实验观察与测量加强学生对照度的感性认识。
2)让学生通过实际测量教室各位置的照度,判断是否达到国家标准。从而使学生增强“标准”意识。
3)照度与光源距离、与光照面的倾斜程度的关系,最好让学生通过实验自己归纳得出。
照度与光源距离、与光照面的倾斜程度的关系。
照度计、点光源、每个同学带一个手电筒。
一、新课引入。
在暗室中进行学生实验:用手电筒垂直照射桌面,改变与桌面的距离,观察桌面明亮程度的变化,引入照度的概念。
二、新课教学。
1、照度的概念。
给出照度的概念后,介绍自然界中典型情况下的照度,以及国家规定的`照度卫生标准。
让学生感知照度:给出国家规定的教室桌面的照度标准,通过改变教室内灯的个数,来达到桌面的规定照度标准,若教室灯的亮度不够,可采用手电筒辅助照明。
2、影响照度的因素。
提出问题:照度与哪些因素有关?
学生猜想:学生可能猜测出很多方面,如与光源有关等,正确的给与肯定。属于本节课实验探究活动范围的不予判断。
设计实验:
实验探究:
限定条件:同一光源。
研究内容:
1)照度与光源距离的关系。
2)照度与光照面倾斜程度的关系。
学生交流分析得出结论:
对同一个光源来说,光源离光照面越远,光照面上的照度越小;光源离光照面越近,光照面上的照度越大。
光源与光照面距离一定的条件下,垂直照射与斜射比较,垂直照射的照度大;光线越倾斜,照度越小。
进行眼睛的保健卫生教育。
三、板书设计。
八年级数学教案沪科版篇十八
(一)、知识与技能:
(1)使学生了解因式分解的意义,理解因式分解的概念。
(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。
(二)、过程与方法:
(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。
(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。
(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。
(三)、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。
二、教学重点和难点。
重点:因式分解的概念及提公因式法。
难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。
三、教学过程。
教学环节:
活动1:复习引入。
看谁算得快:用简便方法计算:
(1)7/9×13-7/9×6+7/9×2=;
(2)-2.67×132+25×2.67+7×2.67=;
(3)992–1=。
设计意图:
注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。
活动2:导入课题。
p165的探究(略);
2.看谁想得快:993–99能被哪些数整除?你是怎么得出来的?
设计意图:
引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。
活动3:探究新知。
看谁算得准:
计算下列式子:
(1)3x(x-1)=;
(2)(a+b+c)=;
(3)(+4)(-4)=;
(4)(-3)2=;
(5)a(a+1)(a-1)=;
根据上面的算式填空:
(1)a+b+c=;
(2)3x2-3x=;
(3)2-16=;
(4)a3-a=;
(5)2-6+9=。
在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力。
活动4:归纳、得出新知。
比较以下两种运算的联系与区别:
a(a+1)(a-1)=a3-a。
a3-a=a(a+1)(a-1)。
在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?
【本文地址:http://www.pourbars.com/zuowen/12577990.html】