多项式的因式分解教案(优质12篇)

格式:DOC 上传日期:2023-11-17 04:42:10
多项式的因式分解教案(优质12篇)
时间:2023-11-17 04:42:10     小编:ZS文王

编写教案是教师备课工作的重要组成部分。教案应该根据教材内容和学科特点,选取合适的教学资源。想要写好一份教案,不妨参考一下小编为大家准备的教案范文。

多项式的因式分解教案篇一

2、巩固因式分解常用的三种方法。

3、选择恰当的方法进行因式分解。

4、应用因式分解来解决一些实际问题。

5、体验应用知识解决问题的乐趣。

一、创设情景:若a=101,b=99,求a2-b2的值。

利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。

二、知识回顾。

1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式.

判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)。

(7).2πr+2πr=2π(r+r)因式分解。

2、.规律总结(教师讲解):分解因式与整式乘法是互逆过程.

分解因式要注意以下几点:(1).分解的对象必须是多项式.

(2).分解的结果一定是几个整式的乘积的形式.(3).要分解到不能分解为止.

4、强化训练。

试一试把下列各式因式分解:。

(3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)。

三、例题讲解。

例1、分解因式。

(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。

(3)(4)y2+y+例2、分解因式。

4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。

例3、分解因式。

1、72-2(13x-7)22、8a2b2-2a4b-8b3。

三、知识应用。

1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。

3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。

四、拓展应用。

2、20042+2004被2005整除吗?

3、若n是整数,证明(2n+1)2-(2n-1)2是8的倍数.

五、课堂小结:今天你对因式分解又有哪些新的认识?

多项式的因式分解教案篇二

课标要求:理解多项式与多项式相乘的法则,并运用法则进行准确运算。

选用教材:选自华东师范大学出版社出版的《数学》八年级上册第十三章第3节。课题是《多项式与多项式相乘》,课时为1课时。

教材地位:本课学习多项式与多项式相乘的法则,对学生初中阶段学好必备的基础知识与基本技能、解决实际问题起到基础作用,在提高学生的运算能力方面有重要的作用。同时,对平方差与完全平方公式的应用以及杨辉三角等后续教学内容起到奠基作用。

2、教学目标

知识与技能目标:理解并掌握多项式乘以多项式的法则,能够按步骤进行简单的多项式乘法的运算。

过程与方法目标:

1、通过创设情景中的问题的探索,体验数学是一个充满观察、归纳的过程;

3、通过为学生提供自主练习的活动空间,提高学生的运算能力;

4、借助具体到一般的认知规律,培养学生探索问题的能力和创新的品质。

情感、态度与价值观目标:

学生通过主动参与探索法则和拓展探索等的学习活动,领悟转化思想,体会数学与生活的联系,感受数学的应用价值,从而激发学习数学的兴趣。

3、教学重点:多项式乘以多项式法则的理解和应用;

4、教学难点:将多项式与多项式的乘法转化为单项式与多项式的乘法,防止漏乘、重复乘和看错符号。

本节课是在学习了“单项式与多项式相乘”的基础上进行的,学生已经掌握了“单项式与多项式相乘”的运算法则,因此没有把时间过多地放在复习旧知上,而是让学生亲身参加探索发现,从而获取新知。在法则的得出过程中,让学生在探索的过程中自己发现总结规律,提高了学生的积极性。在法则的应用这一环节选配一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。

注重体现教师的导向作用和学生的主体地位。教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习。

1、自主学习归纳

2、小组讨论

多项式的因式分解教案篇三

“整式的乘法”是整式的加减的后续学习从幂的运算到各种整式的乘法,整章教材都突出了学生的自主探索过程,依据原有的知识基础,或运用乘法的各种运算规律,或借助直观而又形象的图形面积,得到各种运算的基本法则、两个主要的乘法公式及因式分解的基本方法学生自己对知识内容的探索、认识与体验,完全有利于学生形成合理的知识结构,提高数学思维能力.利用公式法进行因式分解时,注意把握多项式的特点,对比乘法公式乘积结果的形式,选择正确的分解方法。

因式分解是一种常用的代数式的恒等变形,因式分解是多项式乘法公式的逆向变形,它是将一个多项式变形为多项式与多项式的乘积。

2、教学目标。

(1)会推导乘法公式。

(2)在应用乘法公式进行计算的基础上,感受乘法公式的作用和价值。

(3)会用提公因式法、公式法进行因式分解。

(4)了解因式分解的一般步骤。

(5)在因式分解中,经历观察、探索和做出推断的过程,提高分析问题和解决问题的能力。

3、重点、难点和关键。

重点:乘法公式的意义、分式的由来和正确运用;用提公因式法和公式法进行因式分解。

难点:正确运用乘法公式;正确分解因式。

关键:正确理解乘法公式和因式分解的意义。

3.让学生掌握基本的数学事实与数学活动经验,减轻不必要的记忆负担.。

2.1平方差公式1课时。

2.2完全平方公式2课时。

初中优秀......

初中(通用13篇)作为一位不辞辛劳的人民教师,通常需要用到教案来辅助教学,教案有利于教学水平的提高,有助于教研活动的开展。来参考自己需要的教案吧!下面是小编为......

多项式的因式分解教案篇四

因式分解是代数式的一种重要恒等变形。《数学课程标准》虽然降低了因式分解的特殊技巧的要求,也对因式分解常用的四种方法减少为两种,且公式法的应用中,也减少为两个公式,但丝毫没有否定因式分解的教育价值及其在代数运算中的重要作用。本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系。分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续—分式的化简、解方程等—恒等变形的基础,为数学交流提供了有效的途径。分解因式这一章在整个教材中起到了承上启下的作用。本章的教育价值还体现在使学生接受对立统一的观点,培养学生善于观察、善于分析、正确预见、解决问题的能力。

通过探究平方差公式和运用平方差公式分解因式的活动中,让学生发表自己的观点,从交流中获益,让学生获得成功的体验,锻炼克服困难的意志建立自信心。

1、在分解因式的过程中体会整式乘法与因式分解之间的联系。

2、通过公式a-b=(a+b)(a-b)的逆向变形,进一步发展观察、归纳、类比、等能力,发展有条理地思考及语言表达能力。

3、能运用提公因式法、公式法进行综合运用。

4、通过活动4,能将高偶指数幂转化为2次指数幂,培养学生的化归思想。

灵活运用平方差公式进行分解因式。

平方差公式的推导及其运用,两种因式分解方法(提公因式法、平方差公式)的综合运用。

多项式的因式分解教案篇五

“整式的乘法”是整式的加减的后续学习从幂的运算到各种整式的乘法,整章教材都突出了学生的自主探索过程,依据原有的知识基础,或运用乘法的各种运算规律,或借助直观而又形象的图形面积,得到各种运算的基本法则、两个主要的乘法公式及因式分解的基本方法学生自己对知识内容的探索、认识与体验,完全有利于学生形成合理的知识结构,提高数学思维能力.利用公式法进行因式分解时,注意把握多项式的特点,对比乘法公式乘积结果的形式,选择正确的分解方法。

因式分解是一种常用的代数式的恒等变形,因式分解是多项式乘法公式的逆向变形,它是将一个多项式变形为多项式与多项式的乘积。

2、教学目标。

(1)会推导乘法公式。

(2)在应用乘法公式进行计算的基础上,感受乘法公式的作用和价值。

(3)会用提公因式法、公式法进行因式分解。

(5)在因式分解中,经历观察、探索和做出推断的过程,提高分析问题和解决问题的能力。

3、重点、难点和关键。

重点:乘法公式的意义、分式的由来和正确运用;用提公因式法和公式法进行因式分解。

难点:正确运用乘法公式;正确分解因式。

关键:正确理解乘法公式和因式分解的意义。

二、本单元教学的方法和策略:

3.让学生掌握基本的数学事实与数学活动经验,减轻不必要的记忆负担.。

三、课时安排:

2.1平方差公式1课时。

2.2完全平方公式2课时。

多项式的因式分解教案篇六

1、会运用因式分解进行简单的多项式除法。

二、教学重点与难点教学重点:

教学重点。

因式分解在多项式除法和解方程两方面的应用。

教学难点:

应用因式分解解方程涉及较多的推理过程。

三、教学过程。

(一)引入新课。

(二)师生互动,讲授新课。

一个小问题:这里的x能等于3/2吗?为什么?

想一想:那么(4x—9)(3—2x)呢?练习:课本p162课内练习。

合作学习。

等练习:课本p162课内练习2。

(三)梳理知识,总结收获因式分解的两种应用:

(四)布置课后作业。

作业本6、42、课本p163作业题(选做)。

多项式的因式分解教案篇七

知识点:

因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。

教学目标:

理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。

考查重难点与常见题型:

考查因式分解能力,在中考试题中,因式分解出现的频率很高。重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。习题类型以填空题为多,也有选择题和解答题。

教学过程:

多项式的因式分解,就是把一个多项式化为几个整式的积。分解因式要进行到每一个因式都不能再分解为止。分解因式的常用方法有:

如多项式。

其中m叫做这个多项式各项的公因式,m既可以是一个单项式,也可以是一个多项式。

(2)运用公式法,即用。

写出结果。

(3)十字相乘法。

(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。

分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。

(5)求根公式法:如果有两个根x1,x2,那么。

1、教学实例:学案示例。

2、课堂练习:学案作业。

3、课堂:

4、板书:

5、课堂作业:学案作业。

6、教学反思:

多项式的因式分解教案篇八

根据大纲要求,结合本教材特点和学生认知能力,将教学目标确定为:

知识与技能:1、理解因式分解的含义,能判断一个式子的变形是否为因式分解。

2、熟练运用提取公因式法分解因式。

过程与方法:在教学过程中,体会类比的数学思想逐步形成独立思考,主动探索的习惯。

情感态度与价值观:通过现实情景,让学生认识到数学的应用价值,并提高学生关注生存环境的环保意识。

多项式的因式分解教案篇九

教学过程中渗透类比的数学思想,形成新的知识结构体系;设置探究式教学,让学生经历知识的形成,从而达到对知识的深刻理解与灵活应用。

学法:自主、合作、探索的学习方式。

在教学活动中,既要提高学生独立解决问题的能力,又要培养团结协作精神,拓展学生探究问题的深度与广度,体现素质教育的要求。

多项式的因式分解教案篇十

教学设计示例。

――完全平方公式(1)。

教学目标。

2.理解完全平方式的意义和特点,培养学生的判断能力.

3.进一步培养学生全面地观察问题、分析问题和逆向思维的能力.。

4.通过分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想。

教学重点和难点。

重点:运用完全平方式分解因式.

难点:灵活运用完全平方公式公解因式.

教学过程设计。

一、复习。

1.问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法?

答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解.我们学过的因式分解的方法有提取公因式法及运用平方差公式法.

2.把下列各式分解因式:

(1)ax4-ax2(2)16m4-n4.

解(1)ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)。

(2)16m4-n4=(4m2)2-(n2)2。

=(4m2+n2)(4m2-n2)。

=(4m2+n2)(2m+n)(2m-n).

问:我们学过的乘法公式除了平方差公式之外,还有哪些公式?

答:有完全平方公式.

请写出完全平方公式.

完全平方公式是:

(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.

这节课我们就来讨论如何运用完全平方公式把多项式因式分解.

二、新课。

和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到。

a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式.运用这两个式子,可以把形式是完全平方式的多项式分解因式.

问:具备什么特征的多项是完全平方式?

答:一个多项式如果是由三部分组成,其中的两部分是两个式子(或数)的平方,并且这两部分的符号都是正号,第三部分是上面两个式子(或数)的乘积的二倍,符号可正可负,像这样的式子就是完全平方式.

问:下列多项式是否为完全平方式?为什么?

(1)x2+6x+9;(2)x2+xy+y2;

(3)25x4-10x2+1;(4)16a2+1.

答:(1)式是完全平方式.因为x2与9分别是x的平方与3的平方,6x=2·x·3,所以。

x2+6x+9=(x+3).

(2)不是完全平方式.因为第三部分必须是2xy.

(3)是完全平方式.25x=(5x),1=1,10x=2·5x·1,所以。

25x-10x+1=(5x-1).

(4)不是完全平方式.因为缺第三部分.

答:完全平方公式为:

其中a=3x,b=y,2ab=2·(3x)·y.

例1把25x4+10x2+1分解因式.

分析:这个多项式是由三部分组成,第一项“25x4”是(5x2)的平方,第三项“1”是1的平方,第二项“10x2”是5x2与1的积的2倍.所以多项式25x4+10x2+1是完全平方式,可以运用完全平方公式分解因式.

解25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2.

例2把1-m+分解因式.

问:请同学分析这个多项式的特点,是否可以用完全平方公式分解因式?有几种解法?

答:这个多项式由三部分组成,第一项“1”是1的平方,第三项“”是的平方,第二项“-m”是1与m/4的积的2倍的相反数,因此这个多项式是完全平方式,可以用完全平方公式分解因式.

解法11-m+=1-2·1·+()2=(1-)2.

解法2先提出,则。

1-m+=(16-8m+m2)。

=(42-2·4·m+m2)。

=(4-m)2.

第12页。

多项式的因式分解教案篇十一

3、通过总结法则,培养学生的抽象概括能力、训练学生的综合解题能力和计算能力。

4、培养学生耐心细致、严谨的数学思维品质。

2、理解法则导出的根据。

一课时。

投影仪、胶片。

(1)用式子表示乘法分配律。

(3)计算:

(4)填空:

规律:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。

(1)多项式除以单项式,商式与被除式的项数相同,不可丢项,如(1)中容易丢掉最后一项。

(2)要求学生说出式子每步变形的依据。

(3)让学生养成检验的'习惯,利用乘除逆运算,检验除的对不对。

说明:注意弄清题中运算顺序,正确运用有关法则、公式。

练习:

(1)p1501,2。

(2)错例辩析:

有两个错误:

第一,丢项,被除式有三项,商式只有二项,丢了最后一项1;

第二项是符号上错误,商式第一项的符号为“-”,正确答案为()。

2、运用该法则应注意什么?

正确地把多项式除以单项式问题转化为单项式除以单项式问题。计算不可丢项,分清“约掉”与“消掉”的区别:“约掉”对乘除法则言,不减项;“消掉”对加减法而言,减项。

p152a组1,2。

多项式的因式分解教案篇十二

1、知识与能力:

1)进一步巩固相似三角形的知识.

2)能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题)等的一些实际问题.

2.过程与方法:

经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力。

3.情感、态度与价值观:

1)通过利用相似形知识解决生活实际问题,使学生体验数学来源于生活,服务于生活。

2)通过对问题的探究,培养学生认真踏实的学习态度和科学严谨的学习方法,通过获得成功的经验和克服困难的经历,增进数学学习的信心。

(三)教学重点、难点和关键。

重点:利用相似三角形的知识解决实际问题。

难点:运用相似三角形的判定定理构造相似三角形解决实际问题。

关键:将实际问题转化为数学模型,利用所学的知识来进行解答。

【教法与学法】。

(一)教法分析。

为了突出教学重点,突破教学难点,按照学生的认知规律和心理特征,在教学过程中,我采用了以下的教学方法:

1.采用情境教学法。整节课围绕测量物体高度这个问题展开,按照从易到难层层推进。在数学教学中,注重创设相关知识的现实问题情景,让学生充分感知“数学来源于生活又服务于生活”。

2.贯彻启发式教学原则。教学的各个环节均从提出问题开始,在师生共同分析、讨论和探究中展开学生的思路,把启发式思想贯穿与教学活动的全过程。

3.采用师生合作教学模式。本节课采用师生合作教学模式,以师生之间、生生之间的全员互动关系为课堂教学的核心,使学生共同达到教学目标。教师要当好“导演”,让学生当好“演员”,从充分尊重学生的潜能和主体地位出发,课堂教学以教师的“导”为前提,以学生的“演”为主体,把较多的课堂时间留给学生,使他们有机会进行独立思考,相互磋商,并发表意见。

(二)学法分析。

按照学生的认识规律,遵循教师为主导,学生为主体的指导思想,在本节课的学习过程中,采用自主探究、合作交流的学习方式,让学生思考问题、获取知识、掌握方法,运用所学知识解决实际问题,启发学生从书本知识到社会实践,学以致用,力求促使每个学生都在原有的基础上得到有效的发展。

【教学过程】。

一、知识梳理。

1、判断两三角形相似有哪些方法?

1)定义:2)定理(平行法):。

3)判定定理一(边边边):。

4)判定定理二(边角边):。

5)判定定理三(角角):。

2、相似三角形有什么性质?

对应角相等,对应边的比相等。

(通过对知识的梳理,帮助学生形成自己的知识结构体系,为解决问题储备理论依据。)。

二、情境导入。

胡夫金字塔是埃及现存规模的金字塔,被喻为“世界古代七大奇观之一”。塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米。据考证,为建成大金字塔,共动用了10万人花了时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀.所以高度有所降低。

(数学教学从学生的生活体验和客观存在的事实或现实课题出发,为学生提供较感兴趣的问题情景,帮助学生顺利地进入学习情景。同时,问题是知识、能力的生长点,通过富有实际意义的问题能够激活学生原有认知,促使学生主动地进行探索和思考。)。

三、例题讲解。

例1(教材p49例3——测量金字塔高度问题)。

《相似三角形的应用》教学设计分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的判定和性质,根据已知条件,求出金字塔的高度.

解:略(见教材p49)。

问:你还可以用什么方法来测量金字塔的高度?(如用身高等)。

解法二:用镜面反射(如图,点a是个小镜子,根据光的反射定律:由入射角等于反射角构造相似三角形).(解法略)。

例2(教材p50练习?——测量河宽问题)。

《相似三角形的应用》教学设计《相似三角形的应用》教学设计分析:设河宽ab长为xm,由于此种测量方法构造了三角形中的平行截线,故可得到相似三角形,因此有,即《相似三角形的应用》教学设计.再解x的方程可求出河宽.

解:略(见教材p50)。

问:你还可以用什么方法来测量河的宽度?

解法二:如图构造相似三角形(解法略).

四、巩固练习。

五、回顾小结。

一)相似三角形的应用主要有如下两个方面。

1测高(不能直接使用皮尺或刻度尺量的)。

2测距(不能直接测量的两点间的距离)。

二)测高的方法。

测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长的比例”的原理解决。

三)测距的方法。

测量不能到达两点间的距离,常构造相似三角形求解。

(落实教师的引导作用以及学生的主体地位,既训练学生的概括归纳能力,又有助于学生在归纳的过程中把所学的知识条理化、系统化。)。

六、拓展提高。

怎样利用相似三角形的有关知识测量旗杆的高度?

七、作业。

课本习题27.210题、11题。

【本文地址:http://www.pourbars.com/zuowen/12596866.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map