初中数学几何教案(优质14篇)

格式:DOC 上传日期:2023-11-17 13:04:15
初中数学几何教案(优质14篇)
时间:2023-11-17 13:04:15     小编:JQ文豪

教案有助于教师合理分配教学时间,确保教学进度和教学质量。在编写教案时,教师应当注意合理利用课堂时间,避免教学过程冗长或紧张。下面的教案范例涵盖了各个学科的不同教学内容和教学方法。

初中数学几何教案篇一

(1)经历探究物体的形状与几何体的关系过程,能从现实物体中抽象得出立体图形.

(2)经历立体图形与平面图形的转换过程,掌握一些简单的立体图形与平面图形的互相转化的技能.

(3)经历对点、线、面、体关系的研究的数学活动过程,建立平面图形与立体图形的联系.

(4)经历画图等数学活动过程,掌握直线和角的一些简单性质;掌握直线、射线、线段和角的表示方法;掌握角的度量方法.

(5)在现实情境中,探索两条线段、两个角的比较方法及比较的结果,探索线段与线段之间、角与角之间的数量关系.

(6)认识线段的等分点,角的平分线、角角和补角的概念.

(1)会用掌握的几何体知识描述现实物体的形状,在探索立体图形与平面图形的关系中,发展空间观念.

(2)通过对本章的学习,学会在具体的现实情境中,抽象概括出数学原理.

(3)学会在解决问题的过程中,进行合理的想象,进行简单的、有条理的思考.

(4)能在现实物体中,发现立体图形和平面图形.

(5)能在具体的现实情境中,发现并提出一些数学问题.

(6)通过小组合作、动手操作、实验验证的方法解决数学问题.

3.情感态度与价值观.

(1)积极参与数学活动的过程,敢于面对数学活动中的困难,并能独立地或通过小组合作的方法,运用数学知识克服困难,解决问题.

(2)通过对本章的学习,培养和提高抽象概括能力和空间想象能力,体验数学活动中探索性和创造性,感受丰富多彩的图形世界.

1.重点:

(1)掌握立体图形与平面图形的关系,学会它们之间的相互转化;初步建立空间观念.

(2)掌握两点确定一条直线的性质,掌握两点之间线段最短的性质,会用符号表示直线、射线和线段,会比较线段的大小,会画一条线段等于已知线段,了解两点距离的定义.

(3)会用符号表示一个角,学会度量一个角,掌握余角和补角的性质,理解角的平分线的定义,会比较两个角的大小,确定几个角的运算关系.

2.难点:

(1)立体图形与平面图形之间的互相转化.

(2)从现实情境中,抽象概括出图形的性质,用数学语言对这些性质进行描述.

3.关键:

(1)从实际出发,用直观的形式,让学生感受图形的丰富多彩,激发学生学习的兴趣.

(2)结合具体问题,让学生感受到学习空间与图形知识的重要性和必要性.

4.1.1几何图形。

教学内容。

课本第116~120页.

初中数学几何教案篇二

很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取。我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。

标记。

这里的记有两层意思。第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示。第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。

引申。

难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论(就像电脑一样,你一点击开始立刻弹出对应的菜单),然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。

分析综合法。

如证明角相等的方法有1.对顶角相等2.平行线里同位角相等、内错角相等3.余角、补角定理4.角平分线定义5.等腰三角形6.全等三角形的对应角等等方法。然后结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一起,很条理的写出证明过程。

归纳总结。

很多同学把一个题做出来,长长的松了一口气,接下来去做其他的,这个也是不可取的,应该花上几分钟的时间,回过头来找找所用的定理、公理、定义,重新审视这个题,总结这个题的解题思路,往后出现同样类型的题该怎样入手。

以上是常见证明题的解题思路,当然有一些的题设计的很巧妙,往往需要我们在填加辅助线,分析已知、求证与图形,探索证明的思路。对于证明题,有三种思考方式:

正向思维。

对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

逆向思维。

顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。

如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。

正逆结合。

对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。

初中数学几何教案篇三

本考点含圆周、圆弧、扇形等概念,圆的周长和弧长的计算,圆的面积和扇形面积的计算三个部分,考核要求是:(1)理解圆周、圆弧、扇形等概念;(2)掌握圆的周长和弧长的计算;(3)掌握圆的面积和扇形面积计算,理解与掌握圆的周长和弧长、圆的面积和扇形面积公式是解决有关问题的关键,在解有关问题时,要注意:(1)正确的识别圆心、半径和圆心角:(2)进行有关计算时,中间过程可适当保留;(3)注意精确度的要求(尤其要注意精确度的要求,在).

考核要求:(1)能对线段中点、角的平分线进行文字语言、图形语言、符号语言的互译;(2)初步掌握和余角、补角有关的计算。注意:余角、补角的定义中,只和角的大小有关,和位置无关。

考点56:长方体的元素及棱、面之间的位置关系,画长方体的直观图。

长方体的元素及棱、面之间的位置关系是直线之间、直线和平面之间及平面和平面之间位置关系的缩影,基本要领比较多,掌握这一知识点的关键在于从概念出发,结合长方体的直观图来理解这些位置关系,画长方体的直观图主要掌握“斜二侧画法”,关键是理解12条棱之间的位置关系。

考点57:图形平移、旋转、翻折的有关概念。

图形平移、旋转、翻折是平面内图形运动的三种基本形式,主要性质是运动前后相比,只是图形的位置发生了变化,但图形的大小和形状并没有改变(即运动前后的两图形全等),决定图形平移的主要因素是移动的方向和移动的距离,平移前后的位置是解决平移问题的关键,图形旋转的主要因素是旋转中心和旋转角、旋转过程中的不动点即为旋转中心,任意一对对应点与旋转中心的连线所成的角为旋转角,翻折的主要因素是折痕,联结任意一对对应点所成的线段都被折痕垂直平分。

考点58:轴对称、中心对称的有关概念和的关性质。

轴对称是指两个图形中某一个沿一条直线翻折后与另一个图形重合;中心对称是其中一个图形绕旋转180度后能与另一个图形重合,联结对称点的连线都经过对称中心,并且被对称中心所平分,要确定两个成中心对称图形的对称中心,只要将其中的两个关键点与它们的对应点相连,连线的交点即为对称中心。

考点59:画已知图形关于某一直线对称的图形、已知图形关于某一点对称的图形。

考点60:平面直角坐标系的有关概念,直角坐标平面上的点与坐标之间的——对应关系。

直角坐标系把平面分成了六部分;第一、二、三、四象限和轴、轴。各部分的符号特征分别为:第一象限(+、+),第二象限(-、+),第三象限(-、-),第四象限(+、-);轴上的纵坐标为0,轴上的点横坐标为0,直角坐标平面上的点与坐标——对应,即:任意一个点的坐标唯一确定,同时任意一个坐标所对应的点也唯一确定,确定一个点的坐标往往需要确定点到、轴的距离和点所在的象限。注意:坐标(a、b)是一个有序实数对,即当时,(a,b)和(b,a)表示的点完全不同。

考点61:直角坐标平面上的点的平移、对称以及简单图形的对称问题。

考点62:相交直线的有关概念和性质。

考点63:画已知直线的垂线、尺规作线段的垂直平分线。

考点64:同位角、内错角、同旁内角的概念。

考点65:平行线的判定与性质。

考点66:三角形的有关概念、画三角形的高、中线、角平分线、三角形外角的性质。

考点67:三角形的任意两边之和大于第三边的性质、三角形的内角和。

考点68:全等形、全等三角形的概念。

考点69:全等三角形的判定与性质。

考点70:等腰三角形的性质与判定(含等边三角形)。

考点71:命题、定理、证明、逆命题、逆定理的有关概念。

考点72:直角三角形全等的判定。

考点73:直角三角形的性质、勾股定理及其逆定理。

考点74:直角坐标平面内两点间的距离公式。

考点75:角的平分线和线段的垂直平分线的有关性质。

考点76:轨迹的意义及三条基本轨迹(圆、角平分线、中垂线)。

考点77:多边形及其有关概念、多边形外角和定理。

考点78:多边形内角和定理。

考点79:平行四边形(包括矩形、菱形、正方形)的概念。

初中数学几何教案篇四

1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

12.两圆的内(外)公切线的长相等。

13.等于同一线段的两条线段相等。

二、证明两角相等。

1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8.相似三角形的对应角相等。

9.圆的内接四边形的外角等于内对角。10.等于同一角的两个角相等。

三、证明两直线平行。

1.垂直于同一直线的各直线平行。

2.同位角相等,内错角相等或同旁内角互补的两直线平行。

3.平行四边形的对边平行。

4.三角形的中位线平行于第三边。

5.梯形的中位线平行于两底。

6.平行于同一直线的两直线平行。

7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。

四、证明两直线互相垂直。

1.等腰三角形的顶角平分线或底边的中线垂直于底边。

2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。

3.在一个三角形中,若有两个角互余,则第三个角是直角。

4.邻补角的平分线互相垂直。

5.一条直线垂直于平行线中的一条,则必垂直于另一条。

6.两条直线相交成直角则两直线垂直。

7.利用到一线段两端的距离相等的点在线段的垂直平分线上。

8.利用勾股定理的逆定理。

9.利用菱形的对角线互相垂直。

10.在圆中平分弦(或弧)的直径垂直于弦。

11.利用半圆上的圆周角是直角。

五、证明线段的和、差、倍、分。

1.作两条线段的和,证明与第三条线段相等。

2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。

3.延长短线段为其二倍,再证明它与较长的线段相等。

4.取长线段的中点,再证其一半等于短线段。

5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。

六、证明角的和、差、倍、分。

1.作两个角的和,证明与第三角相等。

2.作两个角的差,证明余下部分等于第三角。

3.利用角平分线的定义。

4.三角形的一个外角等于和它不相邻的两个内角的和。

七、证明两线段不等。

1.同一三角形中,大角对大边。

2.垂线段最短。

3.三角形两边之和大于第三边,两边之差小于第三边。

4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。

5.同圆或等圆中,弧大弦大,弦心距小。

6.全量大于它的任何一部分。

八、证明两角不等。

1.同一三角形中,大边对大角。

2.三角形的外角大于和它不相邻的任一内角。

3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。

4.同圆或等圆中,弧大则圆周角、圆心角大。

5.全量大于它的任何一部分。

九、证明比例式或等积式。

1.利用相似三角形对应线段成比例。

2.利用内外角平分线定理。

3.平行线截线段成比例。

4.直角三角形中的比例中项定理即射影定理。

5.与圆有关的比例定理--相交弦定理、切割线定理及其推论。

6.利用比利式或等积式化得。

初中数学几何教案篇五

学会几何图形的画法。

1、学习椭圆、矩形、圆角矩形工具的使用方法。

2、能运用画图工具作简单的规则图形。

“椭圆”、“矩形”、“圆角矩形”等画图工具的使用方法。

教学引入。

(讲解上节课学生的作业,点评学生的作品)。

一、引入。

在上课前老师先请你们看一幅画(演示图画),请你们仔细观察一下,这个房子分别是由哪些图形组成的?(长方形、正方形、圆角长方形、椭圆)那我们应该怎样来画这座房子呢?今天我们就来学习。出示课题:画方形和圆形(板书)。

二、新课。

1.矩形工具(画房子的主体)。

首先我们应该画出房子的主体,是一个长方形,我们可以用工具箱中的矩形工具来画。(师演示)。

(1)单击工具箱中的“矩形”工具按钮。

(2)在画图区适当的位置按下左键,以确定房子主体的左上角位置,再向右下角拖动,满意后,松开左键,这样房子的主体就画好了。请一位同学上来演示用矩形工具画一扇门。(注意门的位置)问:房子的窗户是什么形状的?正方形我们怎么来画呢?请同学们自己在书上找到答案(读一读)。

在房子主体内确定好窗户的位置后,按下shift键,再拖动鼠标,满意后松开鼠标,窗户就画好了。

下面请同学们练习,教师巡视指导。

2.圆角矩形工具(画房子的房顶、烟囱)房顶是什么形状的?

我们可以用工具箱中的“圆角矩形”工具来画。它的画法与“矩形”工具是一样的,谁来试一下,把房顶和烟囱画出来。

学生演示(确定好房顶的位置后,拖动出一个合适的圆角长方形)。

3.椭圆工具(画烟)。

烟囱里冒出的烟是椭圆形的,我们可以用工具箱中的“椭圆”工具来画,先单击“椭圆”工具,然后从烟囱口向右上方,分别拖动画出三个椭圆。(师演示)。

学生练习(把剩余部分画好)。

练习。

用多边形工具画出书上p38的图形,保存在指定的文件夹。

初中数学几何教案篇六

3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

教学难点正确区分两种不同意义的量。

知识重点两种相反意义的量

教学过程(师生活动)设计理念

活中仅有这些“以前学过的数”够用了吗?下面的例子

学生活动:思考,交流

师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).

问题2:在生活中,仅有整数和分数够用了吗?

请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)

密性,但对于学生来说,更多

地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴

趣,所以创设如下的问题情境,以尽量贴近学生的实际.

这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。

以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。

分析问题

这些问题都必须要求学生理解.

教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流.

这阶段主要是让学生学会正数和负数的表示.

强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量.这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。

问题4:请同学们举出用正数和负数表示的例子.

能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性

初中数学几何教案篇七

经历从不同方向观察物体的活动过程,体会出从不同方向看同一物体,可能看到不同的结果;能识别从不同方向看几何体得到相应的平面图形。

通过观察能画出不同角度看到的平面图形(三视图)。

体会视图是描述几何体的重要工具,使学生明白看待事物时,要从多个方面进行。

学会从不同方向看实物的方法,画出三视图。

画出三视图,由三 视图判断几何体。

本节内容是研究立体图形的又一重要手 段,是一种独立的研究方法,与前后知识联系不大,学好本课的关键是尊重视觉效果,把立体图形映射成平面图形,其间要进行三维到二维这一实质性的变化。在由三视图还原立体图形时,更需要一个较长过程,所以本节用学生比较熟悉的几何体来降低难度。

情境引入 合作 探究

课件,多组简单实物、模型。

:1课时

环节 教 师 活 动 学生活动 设 计 意 图

境 教师播放多媒体课件,演示庐山景观,请学生背诵苏东坡《题西林壁》, 并说说诗中意境。

并出现:横看成岭侧成峰,

远近高低各不同。

不识庐山真面目,

只缘身在此山中。

观赏美景

思考“岭”与“峰”的区别。 跨越学科界限,营造一个崭新的教学学习氛围,并从中挖掘蕴含的数学道理。

1、教师出示事先准备好的实物组合体,请三名学生分别站在讲台的左侧、右侧和正前方观察,并让他们画出草图,其他学生分成三组,分别对应三个同学,也分别画出 所见图形的草图。

2、看课本13页“观察与思考”。

图:

你能说出情景的先后顺序吗?你是通过哪些特征得出这个结论的?

总结:通过以前经验,我们可知,从不同的方向看物体,可能看到不同图形。

3、从实际生活中举例。

观察,动手画图。

学生观察图片,把图片按时间先后排序。

利用身边的事物,有助于学生积极主动参与,激发学生潜能,感受新知。

让学生感知文本提高自学能力。

利于拓宽学生思维。

二 1、感知文本。学生阅读13页“观察与思考2”,

图:

2、上升到理性知识:

(1)从上面看到的图形叫俯视图;

(2)从左面看到的图形叫左视图;

(3)右正面看到的图形叫主视图;

3、练一练:分别画出14页三种立体图形的三视图,并回答课本上 三个问题。(强调上下左右的方位不要出错) 学生阅读,想象。

学生分组练习,合作交流。 把已有经验重新建构。

感性知识上升到理性知识 。

体会学习成果,使学生产生成功的喜 悦。

新课探究三 1、连线,把左面的三视图与右边的立体图形连接起来。

主视图 俯视图 左视图 立体图形

2、归纳:多媒体课件演示

先由其中的两个图为依据,进行组合,用第三个图进行检验。

学生自己先独立思考,得出答案后,小组之间合作交流,互相评价。

以小组为单位讨论思考问题的方法。

把由空间到平面的转化过程逆转回去,充分利用本课前阶段的感知,可以降低难度。

课堂反馈

1、考查学生的基础题。

主视图 俯视图 学生独立自检

学生总结出以俯视图为基础 ,在方格上标出数字。

简单知识,基本方法的综合

课堂总结

1、学习到什么知识?

2、学习到什么方法?

3、哪些知识是自己发现的?

4、哪些知识是讨论得出的?

学生反思

归纳 让学生有成功喜悦,重视与他人合作。

附:板书设计

1.4 从不同方向看几何体

教学反思:

初中数学几何教案篇八

1.通过对比,让幼儿感知圆形、三角形、长方形的基本特征,能够识别和区分三种几何图形。

2.在老师的指导下,能用数来描述图形。

3.让幼儿学会初步的记录方法。

4.发展幼儿的观察力、想象力,

5.过创设愉悦的游戏情节,运用多种感官来调动幼儿的思维、想象能力,发展幼儿的观察力和动手能力。

1.三种几何图形卡片若干,固体胶。

几何图形拼组成的图片。

3.魔术箱、魔法棒。

1.开始部分:教师带幼儿做手指游戏,集中幼儿的`注意力师:“小朋友们,今天,老师要带你们到图形王国去,那里啊,会变出好多好多有趣的东西,好了,我们先来做个小游戏,看哪个小朋友表现得最好。

”2.中间部分:用游戏的方式让幼儿认识三种几何图形游戏:摸一摸“魔术箱”。

中班幼儿已经认识了长方形、正方形、梯形、三角形、圆形、半圆形、椭圆形,对几何图形有着浓厚的兴趣。帮助幼儿进一步感知、并掌握有关几何图形的基本特征。充分调动幼儿的各种感官,满足幼儿探索发现、尝试创作的欲望,符合大班的年龄特点。

初中数学几何教案篇九

1、复习巩固对圆形、三角形、长方形、正方形的认识和分类。

2、让幼儿大胆想象,运用几何图形进行拼搭创造。

图形宝宝图片、背景图、固体胶、纸、环境布置

复习巩固对几何图形的认识

运用几何图形进行拼搭创造

引出课题游戏巩固活动延伸

(一)、引出课题

1、分别出示4种图形,提问:“你们知道它们是谁?”

2、它们长得怎么样?

(二)、游戏巩固

1、游戏:捉迷藏

a、师出示背景图,请幼儿找出其中的图形宝宝。

b、请幼儿分别找出各种图形,并说出有几个?

2、游戏:小小邮递员

a、图形宝宝请幼儿为小动物送饼干,并说明要求。

b、幼儿送饼干。

c、师作一定的评价。

d、幼儿吃饼干(幼儿自由选择饼干)

提问:你吃了什么形状的饼干?

3、游戏:拼图

a、图形国王装修皇宫,想请幼儿拼画。

b、幼儿发挥想象,自由拼图。

c、请幼儿介绍自己的作品。

(三)、活动延伸

将剩下的图形投放到区角活动中。

初中数学几何教案篇十

1、能运用各种不同的几何图形拼贴一幅完整的画,巩固对几何图形的认识。

2、能仔细观察、思考,独立完成拼贴活动。

3、能较专心地进行创作活动,体验创造带来的快乐。

1、经验准备:幼儿欣赏过若干幅由各种几何图形片拼贴的画。

2、物质准备:不同大小、颜色的.几何拼图(三角形、正方形、长方形、圆形、半圆形、梯形、椭圆形),作业纸,剪刀、笔、浆糊、抹布等物。

1、园园的魔术画――教师出示几幅有几何图形拼贴的画:这是园园送给我们班小朋友的。它是怎么做的呢?引导幼儿发现这些画是由多种图形拼贴出来的。

2、魔术画――师幼共同观察桌面上的材料,请幼儿想好需要什么材料后再来拿取。――幼儿拼贴,教师观察、提醒,在其遇到困难时给予适当的帮助和引导。提醒幼儿注意使用浆糊的卫生,爱惜材料,不浪费。

3、欣赏作品――鼓励幼儿给自己的作品起名字,并大方的向集体介绍,用了哪些几何图形拼贴了画。师幼给自己喜欢的作品拍拍手。

初中数学几何教案篇十一

3、通过对切割线定理及推论的证明,培养学生从几何图形归纳出几何性质的能力;

使学生理解切割线定理及其推论,它是以后学习中经常用到的重要定理、

学生不能准确叙述切割线定理及其推论,针对具体图形学生很容易得到数量关系,但把它用语言表达,学生感到困难、教学过程:

一、新课引入:

二、新课讲解:

最终教师指导学生把数量关系转成语言叙述,完成切割线定理及其推论、

2关系式:pt=pa·pb。

数量关系式:pa·pb=pc·pb、

练习一,p、128中。

练习二,p、128中。

求证:ae=bf、

本题可直接运用切割线定理、

求o的半径、

解:设o的半径为r,po和它的长延长线交o于c、d、

(+r)=6×14r=(取正数解)答:o的半径为、

三、课堂小结:

为培养学生阅读教材的习惯,让学生看教材p、127—p、128、总结出本课主要内容:

2、通过对例3的分析,我们应该掌握这类问题的思想方法,掌握规律、运用规律、

四、布置作业:

1、教材p、132中10;2、p、132中11、

初中数学几何教案篇十二

三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;

三角形的三条角平分线交于一点(内心);

三角形的三边的垂直平分线交于一点(外心);

三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;

初中数学几何教案篇十三

1、复习已学过的几何图形,让孩子了解几何图形的特征。

2、是孩子能够不受颜色、大小等条件的影响,分清几何图形。

1、正方形、长方形、三角形、圆形、半圆形、梯形卡片若干。

2、(人均一套几何图形)及时贴图形一套。

1、复习几何图形。

(1)图形的特征。

(2)让幼儿找一找教室里那些物品是什么形状的,并说出图形的名称。

2、找图形(分给幼儿人均一套)老师说出图形的名称,让幼儿拿出图形的名称。

3、游戏《图形娃娃找家》。

(1)教师交代游戏规则。

(2)师幼集体游戏。

4、教师小结:

今天我们复习了几何图形,小朋友上课都很认真,活动也很积极,特别是林兴政小朋友表现最好(给表现好的小朋友发小红花)

请幼儿回家后找一找自己家中的那些物品什么图形,回来后告诉老师和其他小朋友。

初中数学几何教案篇十四

1、通过问题解决,练习以米为单位的路程相加,认识米和千米之间的转化,复习组合问题。

2、在问题解决中养成有序思考问题的能力。

3、通过问题解决,感受数学与日常生活的密切联系,激发学生的学习兴趣。

米和千米之间的转化。

有序地设计出所有的`方案,发展学生的逻辑思维。

教学准备:地图练习纸、彩笔、课件。

(一)情境引入。

1、谈话导入。

2、播放视频。

(二)探究新知。

任务卡1:说出从雷峰塔出发到博物馆,有多少种不同走法?

1、出示任务卡。

1)找出数学信息。

2)学生绘图。

3)交流反馈。

2、探讨方案。

1)学生讨论。

2)交流反馈。

3)方案的比较。

4)讨论更简便的方法。

板书:3×2。

板书:2+2+2。

5)延伸:再添上一条d路线。

6)小结。

(三)巩固练习。

任务卡2:请你搭乘出租车,快速到达博物馆,取得宝箱钥匙。车费共11元。

1.起步价够不够。

1)出示出租车。

2)找出数学信息。

3)集体讨论。

4)师示范解答a1(板书)。

a1:810+700+660+500+790=3460(m)或810+700+660+500+790=3460(m)。

3460m=3km460m,3km=3000m。

3km460m3km,3460m〉3000m。

答:这种方案坐出租车起步价不够。

5)学生分组完成1条路线。

6)交流反馈。

7)小结。

(四)课堂总结。

你有什么收获。

(五)思维延伸。

出示任务卡3:

1、请你设计一条最佳路线。

2、计算出租车费,越便宜越好。

3、两人合作完成。

祝你好运!

1、同桌合作。

2、集体交流。

【本文地址:http://www.pourbars.com/zuowen/12761783.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map