九年级数学概率教案(优质15篇)

格式:DOC 上传日期:2023-11-17 14:49:18
九年级数学概率教案(优质15篇)
时间:2023-11-17 14:49:18     小编:翰墨

编写教案时,要注重培养学生的主动性、合作性和创造性,培养他们的综合素质。教案应该充分考虑学生的情感需求和兴趣特点。教案的集体备课和交流也是教师专业成长的重要途径,可以互相学习和借鉴经验。

九年级数学概率教案篇一

1.知道通过大量重复试验,可以用频率估计概率.

2.会根据问题的特点,用统计来估计事件发生的概率,培养分析问题,解决问题的能力.

3.让学生经历硬币实验和投图钉实验,对数据进行收集、整理、描述和分析,通过“猜想试验——收集数据——分析结果”的探索过程,体验频率的随机性与规律性,丰富对随机现象的体验,了解用频率估计概率的合理性和必要性,培养随机观念.

4.通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法.

5.在合作探究学习过程中,激发学生学习的好奇心与求知欲,体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.

教学重点。

对实验数据进行收集、整理、描述和分析.通过对事件发生的频率的分析来估计事件发生的概率.

教学难点。

2.对大量重复试验得到频率的稳定值的分析.

课时安排。

2课时.

第1课时。

教学内容。

1.知道通过大量重复试验,可以用频率估计概率.

2.让学生经历硬币实验和投图钉实验,对数据进行收集、整理、描述和分析,通过“猜想试验——收集数据——分析结果”的探索过程,体验频率的随机性与规律性,丰富对随机现象的体验,了解用频率估计概率的合理性和必要性,培养随机观念.

3.在合作探究学习过程中,激发学生学习的好奇心与求知欲,体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.

教学重点。

对实验数据进行收集、整理、描述和分析.

教学难点。

教学过程。

一、导入新课。

问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去,我很为难,真不知该把球给谁,请大家帮我想个办法来决定把球票给谁.

生:抓阄、抽签、猜拳、投硬币,……。

教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)。

追问,为什么要用抓阄、投硬币的方法呢?

学生讨论:这样做公平,能保证小强与小明得到球票的可能性一样大.

九年级数学概率教案篇二

1.了解必然发生的事件、不可能发生的事件、随机事件的特点和概率的意义,通过学习,渗透随机的概念.

2.在具体情境中了解概率的意义,能估算一些简单随机事件的概率.

3.学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力.

5.能根据随机事件的特点,辨别哪些事件是随机事件.引领学生感受随机事件就在身边,增强学生珍惜机会,把握机会的意识.

教学重点。

1.在具体情境中了解概率和概率的意义,知道随机事件的特点.

2.会用列举法求概率.

教学难点。

1.判断现实生活中哪些事件是随机事件.

2.应用概率解答实际问题.

课时安排。

3课时.

第1课时。

教学内容。

25.1.1随机事件.

1.了解必然发生的事件、不可能发生的事件、随机事件的特点.

2.学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表。

象中,提炼出本质特征并加以抽象概括的能力.

3.能根据随机事件的特点,辨别哪些事件是随机事件.

4.引领学生感受随机事件就在身边,增强学生珍惜机会,把握机会的意识.

教学重点。

教学难点。

判断现实生活中哪些事件是随机事件.

教学过程。

一、导入新课。

摸球游戏:三个不透明的袋子中分别装有10个白色的乒乓球、5个白色的乒乓球和5个黄色的乒乓球、10个黄色的乒乓球.(挑选3名同学来参加).

游戏规则:每人每次从自己选择的袋子中摸出一球,记录下颜色,放回.然后搅匀,重复前面的试验.每人摸球5次.按照摸出黄色球的次数排序.次数最多的为第一名.其次为第二名、第三名.

学生积极参加游戏,通过操作、观察、归纳,猜测出在第1个袋子中摸出黄色球是不可能的;在第2个袋子中能否摸出黄色球是不确定的;在第3个袋子中摸出黄色球是必然的.

通过生动、活泼的游戏,自然而然地引出必然发生的事件、随机事件和不可能发生的事件.这样不仅能够激发学生的学习兴趣,并且有利于学生理解.能够巧妙地实现从实践认识到理性认识的过渡.

二、新课教学。

问题1五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.为了抽签,我们在盒中放五个看上去完全一样的纸团,每个纸团里面分别写着表示出场顺序的数字1,2,3,4,5.把纸团充分搅拌后,小军先抽,他任意(随机)从盒中抽取一个纸团.请思考以下问题:

(1)抽到的数字有几种可能的结果?

(2)抽到的数字小于6吗?

(3)抽到的数字会是0吗?

(4)抽到的数字会是1吗?

通过简单的推理或试验,可以发现:

(2)抽到的数字一定小于6;。

(3)抽到的数字绝对不会是0;。

(4)抽到的数字可能是1,也可能不是1,事先无法确定.

(1)可能出现哪些点数?

(2)出现的点数大于0吗?

(3)出现的点数会是7吗?

(4)出现的点数会是4吗?

通过简单的推理或试验.可以发现:

(2)出现的点数肯定大于0;。

(3)出现的点数绝对不会是7;。

(4)出现的点数可能是4.也可能不是4,事先无法确定.

在一定条件下,有些事件必然会发生.例如,问题1中“抽到的数字小于6”,问题2中“出现的点数大于0”,这样的事件称为必然事件.

相反地,有些事件必然不会发生.例如,问题1中“抽到的数字是0”.问题2中“出现的点数是7”,这样的事件称为不可能事件.必然事件与不可能事件统称确定性事件.

在一定条件下,有些事件有可能发生,也有可能不发生,事先无法确定.例如,问题1中“抽到的数字是1”,问题2中“出现的点数是4”.这两个事件是否发生事先不能确定.在一定条件下,可能发生也可能不发生的事件,称为随机事件.

问题3袋子中装有4个黑球、2个白球.这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋子中摸出1个球.

(1)这个球是白球还是黑球?

(2)如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?

九年级数学概率教案篇三

1.描述统计。

通过调查、试验获得大量数据,用归组、制表、绘图等统计方法对其进行归纳、整理,以直观形象的形式反映其分布特征的方法,如:小学数学中的制表、条形统计图、折线统计图、扇形统计图等都是描述统计。另外计算集中量所反映的一组数据的集中趋势,如算术平均数、中位数、总数、加权算术平均数等,也属于描述统计的范围。其目的是将大量零散的、杂乱无序的数字资料进行整理、归纳、简缩、概括,使事物的全貌及其分布特征清晰、明确地显现出来。

2.概率的统计定义。

人们在抛掷一枚硬币时,究竟会出现什么样的结果事先是不能确定的,但是当我们在相同的条件下,大量重复地抛掷同一枚均匀硬币时,就会发现“出现正面”或“出现反面”的次数大约各占总抛掷次数的:左右。这里的“大量重复”是指多少次呢?历史上不少统计学家,例如皮尔逊等人作过成千上万次抛掷硬币的试验,其试验记录如下:

可以看出,随着试验次数的增加,出现正面的频率波动越来越小,频率在0.5这个定值附近摆动的性质是出现正面这一现象的内在必然性规律的表现,0.5恰恰就是刻画出现正面可能性大小的数值,0.5就是抛掷硬币时出现正面的概率。这就是概率统计定义的思想,这一思想也给出了在实际问题中估算概率的`近似值的方法,当试验次数足够大时,可将频率作为概率的近似值。

例如100粒种子平均来说大约有90粒种子发芽,则我们说种子的发芽率为90%;。

因为前30年出现晴天的频率为0.83,所以概率大约是0.83。

3.概率的古典定义。

九年级数学概率教案篇四

一、问题情境:

问:同学们能否通过实验估计它们恰好是一双的可能性?如果手边没有袜子应该怎么办?

答:不可以,用不同的替代物混在一起,大大地改变了实验条件,所以结果是不准确的。

注意:实验必须在相同的条件下进行,才能得到预期的结果;替代物的选择必须是合理、简单的。

问:假设用小球模拟问题的实验过程中,用6个黑球代替3双黑袜子,用2个白球代替1双白袜子:

(1)有一次摸出了2个白球,但之后一直忘了把它们放回去,这会影响实验结果吗?

答:有影响,如果不放回,就不是3双黑袜子和1双白袜子的实验,而是中途变成了3双黑袜子实验,这两种实验结果是不一样的。

问:(2)如果不小心把颜色弄错了,用了2个黑球和6个白球进行实验,结果会怎样?

答:小球的颜色不影响恰好是一双的可能性大小。

二、问题3:

下面的表中给出了一些模拟实验的方法,你觉得这些方法合理吗?若不合理请说明理由:

九年级数学概率教案篇五

教学目标。

1.用列举法(列表法)求简单随机事件的概率,进一步培养随机概念.

2.经历实验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率,渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力.

3.通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.

教学重点。

运用列表法求事件的概率.

教学难点。

如何使用列表法.

教学过程。

一、导入新课。

为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:a、b两个带指针的转盘分别被分成三个面积相等的扇形,转盘a上的数字分别是1,6,8,转盘b上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同).每次选择2名同学分别拨动a、b两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择哪个装置呢?并请说明理由.

以贴近学生生活的联欢晚会为背景,创设转盘游戏引入,能在最短时间内激发学生的兴趣,引起学生高度的注意力,进入情境,导入新课的教学.

二、新课教学。

1.学生分组讨论,探索交流.

九年级数学概率教案篇六

一、选择题(共10小题,每小题3分,满分30分)。

1.下列说法中正确的是()。

a.“任意画出一个等边三角形,它是轴对称图形”是随机事件。

b.“任意画出一个平行四边形,它是中心对称图形”是必然事件。

c.“概率为0.0001的事件”是不可能事件。

d.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次。

【考点】随机事件.

【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断.

【解答】解:a、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;。

b、“任意画出一个平行四边形,它是中心对称图形”是必然事件,选项正确;。

c、“概率为0.0001的事件”是随机事件,选项错误;。

d、任意掷一枚质地均匀的硬币10次,正面向上的可能是5次,选项错误.

故选b.

【点评】本题考查了随机事件、必然事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.

九年级数学概率教案篇七

1.了解必然发生的事件、不可能发生的事件、随机事件的特点.

2.能根据随机事件的特点,辨别哪些事件是随机事件.

3.有对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素.

重点:对生活中的随机事件作出准确判断,对随机事件发生的可能性大小作定性分析.

难点:对生活中的随机事件作出准确判断,理解大量重复试验的必要性.

一、自学指导.(10分钟)。

自学:阅读教材p127~129.

归纳:在一定条件下必然发生的事件,叫做__必然事件__;在一定条件下不可能发生的事件,叫做__不可能事件__;在一定条件下可能发生也可能不发生的事件,叫做__随机事件__.

二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)。

1.下列问题哪些是必然发生的?哪些是不可能发生的?

(1)太阳从西边落下;。

(2)某人的体温是100℃;。

(3)a2+b2=-1(其中a,b都是实数);。

(4)自然条件下,水往低处流;。

(5)三个人性别各不相同;。

(6)一元二次方程x2+2x+3=0无实数解.

解:(1)(4)(6)是必然发生的;(2)(3)(5)是不可能发生的.

2.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个.搅匀后,从中随机摸出1个小球,请你写出这个摸球活动中的一个随机事件:__摸出红球__.

3.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性____摸到j,q,k的可能性.(填“”“”或“=”)。

4.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是(d)。

a.抽出一张红桃b.抽出一张红桃k。

c.抽出一张梅花jd.抽出一张不是q的牌。

5.某学校的七年级(1)班,有男生23人,女生23人.其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,则:a.抽到一名住宿女生;b.抽到一名住宿男生;c.抽到一名男生.其中可能性由大到小排列正确的是(a)。

点拨精讲:一般的,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。

九年级数学概率教案篇八

解析:对众数的概念理解不清,会误认为这组数据中80出现了三次,所以这组数据的众数是80.根据众数的.意义可知,一组数据中出现次数最多的数据是这组数据的众数.而在数据中70也出现了三次,所以这组数据是众数有两个.

答案:这组数据的众数是70和80.

好题2.某班53名学生右眼视力(裸视)的检查结果如下表所示:

则该班学生右眼视力的中位数是_______.

解析:本题表面上看视力数据已经排序,可以求视力的中位数,有的同学会误认为:因为11个数据按照大小的顺序排列有:0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、1.0、1.2、1.5,则知排在第6个的数是0.6.但注意观察可以发现:题目中的视力数据实际是小组数据,小组的人数才是视力数据的真正个数.因此,不能直接求视力数据的中位数,而应先求出53名学生视力数据的中间数据,即第27名学生的视力就是本班学生右眼视力的中位数.

答案:(53+1)2=27,所以第27名学生的右眼视力为中位数,从表中人数栏数出第27名学生所对应的右眼视力为0.8,即该班学生右眼视力的中位数是0.8.

九年级数学概率教案篇九

1.当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,我们一般还要通过统计频率来估计概率.

在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率.

疑难分析:

1.当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.

2.利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件a出现的频率,稳定地在某个数值p附近摆动.这个稳定值p,叫做随机事件a的概率,并记为p(a)=p.

九年级数学概率教案篇十

引例:问题:从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下:(单位:cm)。

甲:9、10、10、13、7、13、10、8、11、8;。

乙:8、13、12、11、10、12、7、7、10、10;。

问:(1)哪种农作物的苗长的比较高(我们可以计算它们的平均数:=)。

(2)哪种农作物的苗长得比较整齐?(我们可以计算它们的极差,你发现了)。

归纳:方差:设有n个数据,各数据与它们的平均数的差的平方分别是。

我们用它们的平均数,表示这组数据的方差:即用来表示。

(一)例题讲解:

测试次数第1次第2次第3次第4次第5次。

段巍1314131213。

金志强1013161412。

给力提示:先求平均数,在利用公式求解方差。

(二)小试身手。

1、.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:

经过计算,两人射击环数的平均数是,但s=,s=,则ss,所以确定。

去参加比赛。

1、求下列数据的众数:

(1)3,2,5,3,1,2,3(2)5,2,1,5,3,5,2,2。

九年级数学概率教案篇十一

乒乓球的标准直径为40mm,质检部门从a、b两厂生产的乒乓球中各抽取了10只,对这些乒乓球的直径了进行检测。结果如下(单位:mm):

b厂:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.

你认为哪厂生产的乒乓球的直径与标准的误差更小呢?

(1)请你算一算它们的平均数和极差。

(2)是否由此就断定两厂生产的乒乓球直径同样标准?

今天我们一起来探索这个问题。

探索活动。

算一算。

把所有差相加,把所有差取绝对值相加,把这些差的平方相加。

想一想。

你认为哪种方法更能明显反映数据的波动情况?

九年级数学概率教案篇十二

本学期我担任九年级(1)(2)两个班的数学教学工作、针对九年级学生的特点及九年级的特殊性现计划如下:

一、认真钻研教材,精益求精。

九年级上学期是一个特殊的学习阶段,为了有充分应战中考的准备,上学期应基本结束全年的课程、面对这种特殊情况,作为教师,首先应在教学进度上做到心中有数;其次就是熟悉全册教材内容,认真钻研教材,抓住重点,突破难点,每一节课既要做到精讲精练,又要在此基础上让学生得到能力的提升。

二、了解学生学情,做到心中有数。

上学期期末测试学生数学平均分为70分,成绩一般、优秀率在25%左右、全年级满分人数不少,但20分以下的人数也不是一个小数目、从总体上看已经出现了两极分化的现象、所以升入九年级后,应更重视尖子生的培养,让他们吃饱,偏差生适当降低难度,给他们定低目标,以不至于使差生落伍、另外在能力的训练方面,学生的推理训练和计算能力需进一步提高,做到速度快、正确率高、推理严密。

三、抓住机会,帮学生树立信心。

本学期教材第一章为“二次根式”学生在七年级已有了一定的基础,学生学起来比较容易、可以抓住这个机会举行小型测验,给学生信心、并且在计算方面使其养成细心、认真的习惯、另外在有难度的章节中可通过竞赛的方式提高学生的竞争意识,培养学生的合作交流能力,达到方法互补。

四、有选择的拓宽知识面。

在掌握教材知识的基础上,鼓励学生购买与版本相符的资料、如《少年智力开发报》《点拨》《典中点》等、教师对学生手里有什么样的资料,资料中题什么该做,什么该删,应该了如指掌,有准备的应对学生突如其来的问题,不让学生绕远儿。

九年级数学概率教案篇十三

数学是为生活服务的。本单元解决问题,就是要培养学生运用数学知识解决问题的能力。主要内容包括用乘法计算解决问题和运用除法计算解决问题。是在学生已经掌握了运用乘法和除法一步解决问题的基础上,进一步学习和掌握需要两、三步计算解决问题。教材通过实际生活联系非常紧密、贴近度很高的生动例子,让学生先从直观的图画中了解信息,再运用了解的信息来解决问题,既培养了学生了解分析信息的能力,也提高了学生解决问题的能力。

九年级数学概率教案篇十四

2、能联系百分数的意义,对扇形统计图提供的信息进行简单的分析。

3、遇到不理解或不懂的地方,用下划线和?标记出来。便于交流时提出。

4、自己的建议、体会、方法可以在旁边作好批注。

教学重难点。

2、能联系百分数的意义,对扇形统计图提供的信息进行简单的分析。

教学工具。

课件。

教学过程。

一、快乐自学。

你喜欢运动吗?调查本班同学喜欢的运动项目。根据下面的统计图:

六(1)班最喜欢的运动项目统计图。

1、说一说:从这幅统计图中你能获取哪些信息?

2、我知道这是一幅()统计图,它的特点是()。

3、我最喜欢的运动项目是(),它占全班人数的百分比是()。要想清楚地知道百分比这样的信息,我们可以选用()统计图。

4、一起来认识扇形统计图吧!自学教材第107页,注意拿笔勾画哦!.

(1)计算出各运动项目占全班人数的百分比。

(2)从扇形统计图中,你又能获取哪些信息?

(3)你还能提出什么问题?

二、合作探究。

讨论交流:扇形统计图是怎样来表示各个数据的?它有什么特点?

1、我发现扇形统计图中的()代表单位“1”,表示(),各个扇形面积表示(),扇形的大小说明了()。

2、扇形统计图的特点是()。

3、生活中,你还从()见到过扇形统计图?

三、学习小结。

四、智勇大闯关,我是小擂主。

1、第一关:小练兵。

完成练习二十五的第1、2题。

2、第二关。

完成练习二十五的第4题。

五、学后反思。

1、我的收获:

2、自我评价:我对我的课堂表现(),因为(。

)。

六、作业。

1、完成教材p107的“做一做”.

2、练习二十五的第3题。

课后习题。

1、完成教材p107的“做一做”。

2、练习二十五的第3题。

九年级数学概率教案篇十五

第2xx4周锐角三角函数。

第5周投影与视图和本期内容测试。

第7xx8周复习八年级数学。

第11—12周专题复习和中考模拟测试。

第13周查漏补缺,中考考前培训。

二、在教学过程中抓住以下几个环节。

(1)认真备课。认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。

(2)上好课:在备好课的基础上,上好每一个40分钟,提高40分钟的效率,让每一位同学都听的懂,对部分基础较差者要循序渐进,以选用的例题的难易程度不同,使每个学生能“吃”饱、“吃”好。

(3)注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验。

(4)批好每一次作业:作业反映了一节课的效果如何,学生对知识的掌握程度如何,认真批改作业,使教师能迅速掌握情况,对症下药。

(5)按时检验学习成果,做到单元测验的有效、及时,测验卷子的批改不过夜。考后对典型错误利用学生想马上知道答案的心理立即点评。

(6)及时指导、纠错:争取面批、面授,今天的任务不推托到明日,争取一切时间,紧紧抓住初三阶段的每分每秒。课后反馈。落实每一堂课后辅助,查漏补缺。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。

(7)积极与其它老师沟通,加强教研教改,提高教学水平。

(8)经常听取学生良好的合理化建议。

(9)以“两头”带“中间”战略思想不变。

(10)深化两极生的训导。

三、不断钻研业务,提高业务能力及水平。

积极参加业务学习,看书、看报,参加学校组织的培训,使之更好的为基础教育的改革努力,掌握新的技能、技巧,不断努力,取长补短,扬长避短,努力使教学更开拓,方法更灵活,手段更先进。

四、分层辅导,因材施教对本年级的学生实施分层辅导,利用优胜劣汰的方法,激励学生的学习激情,保证升学率及优良率,提高及格率。对部分差生实行义务补课,以提高成绩。

五、严格按照教学进度,有序的进行教学工作。用心去做,从细节去做,尽自己追大的努力,发挥自己的能力去做好初三毕业班的教学工作。

六、强化复习指导。分二阶段复习:

(一)第一阶段全面复习基础知识,加强基本技能训练让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统,形成知识网络。这个阶段的复习目的是让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统,形成知识网络。

1、重视课本,系统复习。现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造,后面的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是教材中题目的引伸、变形或组合,所以第一阶段复习应以课本为主。

2、按知识板块组织复习。把知识进行归类,将全初中数学知识分为十一讲:第一讲数与式;第二讲方程与不等式;第三讲函数;第四讲统计与概率;第五讲基本图形;第六讲图形与变换;第七讲角、相交线和平行线;第八讲三角形;第九讲四边形;第十讲三角函数学;第十一讲圆。复习中由教师提出每个讲节的复习提要,指导学生按“提要”复习,同时要注意引导学生根据个人具体情况把遗忘了知识重温一遍,边复习边作知识归类,加深记忆,注意引导学生弄清概念的内涵和外延,掌握法则、公式、定理的推导或证明,例题的选择要有针对性、典型性、层次性,并注意分析例题解答的思路和方法。

3、重视对基础知识的理解和基本方法的指导。基础知识即初中数学课程中所涉及的概念、公式、公理、定理等。要求学生掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,并能综合运用。例如一元二次方程的根与二次函数图形与x轴交点之间的关系,是中考常常涉及的内容,在复习时,应从整体上理解这部分内容,从结构上把握教材,达到熟练地将这两部分知识相互转化。又如一元二次方程与几何知识的联系的题目有非常明显的特点,应掌握其基本解法。中考数学命题除了着重考查基础知识外,还十分重视对数学方法的考查,如配方法,换元法,判别式法等操作性较强的数学方法。在复习时应对每一种方法的内涵,它所适应的题型,包括解题步骤都应熟练掌握。

4、重视对数学思想的理解及运用。如函数的思想,方程思想,数形结合的思想等。

(二)第二阶段综合运用知识,加强能力培养,构建初中数学知识结构和网络,从整体上把握数学内容,以构建初中数学知识结构和网络为主,从整体上把握数学内容,提高能力。

培养综合运用数学知识解题的能力,是学习数学的重要目的之一。这个阶段的复习目的是使学生能把各个讲节中的知识联系起来,并能综合运用,做到举一反三、触类旁通。这个阶段的例题和练习题要有一定的难度,但又不是越难越好,要让学生可接受,这样才能既激发学生解难求进的学习欲望,又使学生从解决较难问题中看到自己的力量,增强前进的信心,产生更强的求知欲。第二阶段就是第一阶段复习的延伸和提高,应侧重培养学生的数学能力。这一阶段尤其要精心设计每一节复习课,注意数学思想的形成和数学方法的掌握。初中总复习的内容多,复习必须突出重点,抓住关键,解决疑难,这就需要充分发挥教师的主导作用。而复习内容是学生已经学习过的,各个学生对教材内容掌握的程度又各有差异,这就需要教师千方百计地激发学生复习的主动性、积极性,引导学生有针对性的复习,根据个人的具体情况,查漏补缺,做知识归类、解题方法归类,在形成知识结构的基础上加深记忆。除了复习形式要多样,题型要新颖,能引起学生复习的兴趣外,还要精心设计复习课的教学方法,提高复习效益。

【本文地址:http://www.pourbars.com/zuowen/12793517.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map