教资开云KY官方登录入口 数学教案(优秀16篇)

格式:DOC 上传日期:2023-11-19 10:27:05
教资开云KY官方登录入口 数学教案(优秀16篇)
时间:2023-11-19 10:27:05 小编:薇儿

撰写教案时,教师应该注意逻辑清晰,内容全面,语言简明扼要。如何编写一份教学案例是每位教师需要思考的问题。这里有一些优秀的教案范本,希望能对大家的教案编写有所帮助。

教资开云KY官方登录入口 数学教案篇一

:计算机

:启发引导法,讨论法

下面给出教学实施过程设计的简要思路:

(一)引入的设计

前边学习了如何根据所给条件求出直线方程的方法,看下面问题:

问:说出过点 (2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?

答:直线方程是 ,属于二元一次方程,因为未知数有两个,它们的最高次数为一次.

肯定学生回答,并纠正学生中不规范的表述.再看一个问题:

问:求出过点 , 的直线的方程,并观察方程属于哪一类,为什么?

启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.

学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:

【问题1】“任意直线的方程都是二元一次方程吗?”

(二)本节主体内容教学的设计

学生或独立研究,或合作研究,教师巡视指导.

经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:

思路一:…

思路二:…

……

教师组织评价,确定最优方案(其它待课下研究)如下:

按斜率是否存在,任意直线 的位置有两种可能,即斜率 存在或不存在.

当 存在时,直线 的截距 也一定存在,直线 的方程可表示为 ,它是二元一次方程.

当 不存在时,直线 的方程可表示为 形式的方程,它是二元一次方程吗?

学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:

综合两种情况,我们得出如下结论:

同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?

学生们不难得出:二者可以概括为统一的形式.

这样上边的结论可以表述如下:

启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?

【问题2】任何形如 (其中 、 不同时为0)的二元一次方程都表示一条直线吗?

师生共同讨论,评价不同思路,达成共识:

(1)当 时,方程可化为

这是表示斜率为 、在 轴上的截距为 的直线.

(2)当 时,由于 、 不同时为0,必有 ,方程可化为

这表示一条与 轴垂直的直线.

因此,得到结论:

为方便,我们把 (其中 、 不同时为0)称作直线方程的一般式是合理的.

【动画演示】

演示“直线各参数”文件,体会任何二元一次方程都表示一条直线.

(三)练习巩固、总结提高、板书和作业等环节的设计

教资开云KY官方登录入口 数学教案篇二

了解双曲线的定义,几何图形和标准方程,知道它的简单性质。

【自学质疑】

渐近线方程是 ,离心率 ,若点 是双曲线上的点,则 , 。

2.又曲线 的左支上一点到左焦点的距离是7,则这点到双曲线的右焦点的距离是

3.经过两点 的双曲线的标准方程是 。

4.双曲线的渐近线方程是 ,则该双曲线的离心率等于 。

5.与双曲线 有公共的渐近线,且经过点 的双曲线的方程为

【例题精讲】

1.双曲线的离心率等于 ,且与椭圆 有公共焦点,求该双曲线的方程。

2.已知椭圆具有性质:若 是椭圆 上关于原点对称的两个点,点 是椭圆上任意一点,当直线 的斜率都存在,并记为 时,那么 之积是与点 位置无关的定值,试对双曲线 写出具有类似特性的性质,并加以证明。

3.设双曲线 的半焦距为 ,直线 过 两点,已知原点到直线 的距离为 ,求双曲线的离心率。

【矫正巩固】

1.双曲线 上一点 到一个焦点的距离为 ,则它到另一个焦点的距离为 。

2.与双曲线 有共同的渐近线,且经过点 的双曲线的一个焦点到一条渐近线的距离是 。

3.若双曲线 上一点 到它的右焦点的距离是 ,则点 到 轴的距离是

4.过双曲线 的左焦点 的直线交双曲线于 两点,若 。则这样的直线一共有 条。

【迁移应用】

2. 已知双曲线 的焦点为 ,点 在双曲线上,且 ,则点 到 轴的距离为 。

3. 双曲线 的焦距为

4. 已知双曲线 的一个顶点到它的一条渐近线的距离为 ,则

5. 设 是等腰三角形, ,则以 为焦点且过点 的双曲线的离心率为 .

教资开云KY官方登录入口 数学教案篇三

1.知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。

2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。

3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。

难点:识别三视图所表示的空间几何体。

观察、动手实践、讨论、类比。

(一)创设情景,揭开课题

展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。

(二)讲授新课

1、中心投影与平行投影:

中心投影:光由一点向外散射形成的投影;

平行投影:在一束平行光线照射下形成的投影。

正投影:在平行投影中,投影线正对着投影面。

2、三视图:

正视图:光线从几何体的前面向后面正投影,得到的投影图;

侧视图:光线从几何体的左面向右面正投影,得到的投影图;

俯视图:光线从几何体的上面向下面正投影,得到的投影图。

三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。

三视图的画法规则:长对正,高平齐,宽相等。

长对正:正视图与俯视图的长相等,且相互对正;

高平齐:正视图与侧视图的高度相等,且相互对齐;

宽相等:俯视图与侧视图的宽度相等。

3、画长方体的三视图:

正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。

长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。

4、画圆柱、圆锥的三视图:

5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。

(三)巩固练习

课本p15练习1、2;p20习题1.2[a组]2。

(四)归纳整理

请学生回顾发表如何作好空间几何体的三视图

(五)布置作业

课本p20习题1.2[a组]1。

教资开云KY官方登录入口 数学教案篇四

了解双曲线的定义,几何图形和标准方程,知道它的简单性质。

渐近线方程是,离心率,若点是双曲线上的点,则,。

2、又曲线的左支上一点到左焦点的距离是7,则这点到双曲线的右焦点的距离是

3、经过两点的双曲线的标准方程是。

4、双曲线的渐近线方程是,则该双曲线的离心率等于。

5、与双曲线有公共的渐近线,且经过点的双曲线的方程为

1、双曲线的离心率等于,且与椭圆有公共焦点,求该双曲线的方程。

2、已知椭圆具有性质:若是椭圆上关于原点对称的两个点,点是椭圆上任意一点,当直线的斜率都存在,并记为时,那么之积是与点位置无关的定值,试对双曲线写出具有类似特性的性质,并加以证明。

3、设双曲线的半焦距为,直线过两点,已知原点到直线的距离为,求双曲线的离心率。

1、双曲线上一点到一个焦点的距离为,则它到另一个焦点的距离为。

2、与双曲线有共同的渐近线,且经过点的双曲线的一个焦点到一条渐近线的距离是。

3、若双曲线上一点到它的右焦点的距离是,则点到轴的距离是

4、过双曲线的左焦点的直线交双曲线于两点,若。则这样的'直线一共有条。

1、已知双曲线的焦点到渐近线的距离是其顶点到渐近线距离的2倍,则该双曲线的离心率

2、已知双曲线的焦点为,点在双曲线上,且,则点到轴的距离为。

3、双曲线的焦距为

4、已知双曲线的一个顶点到它的一条渐近线的距离为,则

5、设是等腰三角形,,则以为焦点且过点的双曲线的离心率为。

教资开云KY官方登录入口 数学教案篇五

2. 你尊敬老师、团结同学、热爱劳动、关心集体,所以大家都喜欢你。能严格遵守学校的各项规章制度。学习不够刻苦,有畏难情绪。学习方法有待改进,掌握知识不够牢固,思维能力要进一步培养和提高。学习成绩比上学期有一定的进步。平时能积极参加体育锻炼和有益的文娱活动。今后如果能注意分配好学习时间,各科全面发展,均衡提高,相信一定会成为一名更加出色的学生。

3. 你性格活泼开朗,总是带着甜甜的笑容,你能与同学友爱相处,待人有礼,能虚心接受老师的教导。大多数的时候你都能遵守纪律,偶尔会犯一些小错误。有时上课不够留心,还有些小动作,你能想办法控制自己吗?一开学老师就发现你的作业干净又整齐,你的字清秀又漂亮。但学习成绩不容乐观,需努力提高学习成绩。希望能从根本上认识到自己的不足,在课堂上能认真听讲,开动脑筋,遇到问题敢于请教。

4. 你热情大方,为人豪爽,身上透露出女生少有的霸气,作为班干部,你会提醒同学们及时安静,对学习态度端正,及时完成作业,但是少了点耐心,试着把心沉下来,上课集中注意力,跟着老师的思路走,一步一个脚印,一定能走出你自己绚丽的人生!

5. 学习态度端正,效率高,合理分配时间,学习生活两不误,善良热情,热爱生活,乐于助人,与周围同学相处关系融洽。能严格遵守学校的各项规章制度。上课能专心听讲,认真做好笔记,课后能按时完成作业。记忆力好,自学能力较强。希望你能更主动地学习,多思,多问,多练,大胆向老师和同学请教,注意采用科学的学习方法,提高学习效率,一定能取得满意的成绩!

6. 作为本班的班长,你对待班级工作能够认真负责,积极配合老师和班委工作,集体荣誉感很强,人际关系很好,待人真诚,热心帮助人,老师十分欣赏你的善良和聪明,希望在以后能够积极发挥自己的所长,带领全班不仅在班级管理上有进步,而且能在学习上也能成为全班的领头雁,在下学期能取得更大的进步!

7. 身为班委的你,对工作认真负责,以身作则,性格和善,与同学关系融洽,积极参加各项活动,不太张扬的你显得稳重和踏实,在学习上,你认真听课,及时完成各科作业,但是我总觉得你的学习还不够主动,没有形成自己的一套方法,若从被动的学习中解脱出来,应该稳定在班级前五名啊!加油!

8. 你是个懂礼貌明事理的孩子,你能严格遵守班级纪律,热爱集体,对待学习态度端正,上课能够专心听讲,课下能够认真完成作业。你的学习方法有待改进,若能做到学习时心无旁骛就好了,掌握知识也不够牢固,思维能力要进一步培养和提高。只要有恒心,有毅力,老师相信你会在各方面取得长足进步!

9. 你为人热情大方,能和同学友好相处。你为人正直诚恳,尊敬老师,关心班集体,待人有礼,能认真听从老师的教导,自觉遵守学校的各项规章制度,抵制各种不良思想。有集体荣誉感,乐于为集体做事。学习刻苦,成绩有所提高。上课能专心听讲,思维活跃,积极回答问题,积极思考,认真做好笔记。今后如果能注意分配好学习时间,各科全面发展,均衡提高,相信一定会成为一名更加出色的学生。

10. 记得和你说过,你是个太聪明的孩子,你反应敏捷,活泼灵动。但是做学问是需要静下心来老老实实去钻研的,容不得卖弄小聪明和半点顽皮话。要知道,学如逆水行舟,不进则退;心似平原野马,易放难收!望你下学期重新抖擞精神早日进入状态,不辜负关爱你的人对你的殷殷期盼。

教资开云KY官方登录入口 数学教案篇六

集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

教学重点.难点

重点:集合的含义与表示方法.

难点:表示法的恰当选择.

教学目标

l.知识与技能

(1)通过实例,了解集合的含义,体会元素与集合的属于关系;

(2)知道常用数集及其专用记号; (3)了解集合中元素的确定性.互异性.无序性;

(4)会用集合语言表示有关数学对象;

2.过程与方法

(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.

(2)让学生归纳整理本节所学知识.

3.情感.态度与价值观

使学生感受到学习集合的必要性,增强学习的积极性.

1.教学方法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2.教学手段:在教学中使用投影仪来辅助教学.

(一)创设情景,揭示课题

1.教师首先提出问题:(1)介绍自己的家庭、原来就读的学校、现在的班级。

(2)问题:像“家庭”、“学校”、“班级”等,有什么共同特征?

引导学生互相交流.与此同时,教师对学生的活动给予评价.

2.活动:(1)列举生活中的集合的例子;(2)分析、概括各实例的共同特征

由此引出这节要学的内容。

设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫

(二)研探新知,建构概念

1.教师利用多媒体设备向学生投影出下面7个实例:

(1)1—20以内的所有质数;(2)我国古代的四大发明;

(3)所有的安理会常任理事国; (4)所有的正方形;

(5)海南省在20xx年9月之前建成的所有立交桥;

(6)到一个角的两边距离相等的所有的点;

(7)国兴中学20xx年9月入学的高一学生的全体.

2.教师组织学生分组讨论:这7个实例的共同特征是什么?

3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.

4.教师指出:集合常用大写字母a,b,c,d,?表示,元素常用小写字母a,b,c,d?表示.

设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神

(三)质疑答辩,发展思维

1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.

2.教师组织引导学生思考以下问题:

判断以下元素的全体是否组成集合,并说明理由:

(1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的建解.

3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.

4.教师提出问题,让学生思考

高一(4)班的一位同学,那么a,b与集合a分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.

如果a是集合a的元素,就说a属于集合a,记作a?a.

如果a不是集合a的元素,就说a不属于集合a,记作a?a.

(2)如果用a表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合a的关系分别是什么?请用数学符号分别表示.

(3)让学生完成教材第6页练习第1题.

5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1a组第1题.

6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:

(1)要表示一个集合共有几种方式?

(2)试比较自然语言.列举法和描述法在表示集合时,各自的特点?适用的对象是什么?

(3)如何根据问题选择适当的集合表示法?

使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。

(四)巩固深化,反馈矫正

教师投影学习:

(3)试选择适当的方法表示下列集合:教材第6页练习第2题.

设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象

(五)归纳小结,布置作业

小结:在师生互动中,让学生了解或体会下例问题:

1.本节课我们学习了哪些知识内容? 2.你认为学习集合有什么意义?

3.选择集合的表示法时应注意些什么?

设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。

作业:1.课后书面作业:第13页习题1.1a组第4题.

2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种

呢?如何表示?请同学们通过预习教材.

教资开云KY官方登录入口 数学教案篇七

2、能识别和理解简单的框图的功能。

3。、能运用三种基本逻辑结构设计流程图以解决简单的问题。

1。、通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知。

2。、在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构。

一、问题情境。

1、情境:

某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为x。

其中(单位:)为行李的重量.。

试给出计算费用(单位:元)的一个算法,并画出流程图。

二、学生活动。

学生讨论,教师引导学生进行表达。

解算法为:

输入行李的重量;

如果,那么,

否则;

输出行李的重量和运费.。

上述算法可以用流程图表示为:

教师边讲解边画出第10页图1—2—6.。

在上述计费过程中,第二步进行了判断.。

1、选择结构的概念:

先根据条件作出判断,再决定执行哪一种操作的结构称为选择结构。

(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和两个退出点。

3、思考:教材第7页图所示的算法中,哪一步进行了判断?

教资开云KY官方登录入口 数学教案篇八

(2)理解直线与二元一次方程的关系及其证明。

:计算机。

:启发引导法,讨论法。

下面给出教学实施过程设计的简要思路:

(一)引入的设计。

前边学习了如何根据所给条件求出直线方程的方法,看下面问题:

问:说出过点(2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?

答:直线方程是,属于二元一次方程,因为未知数有两个,它们的最高次数为一次。

肯定学生回答,并纠正学生中不规范的表述.再看一个问题:

问:求出过点,的直线的方程,并观察方程属于哪一类,为什么?

答:直线方程是(或其它形式),也属于二元一次方程,因为未知数有两个,它们的最高次数为一次。

肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次”。

启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论。

学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:

【问题1】“任意直线的方程都是二元一次方程吗?”

(二)本节主体内容教学的设计。

这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路。

学生或独立研究,或合作研究,教师巡视指导.。

经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:

思路一:…。

思路二:…。

教师组织评价,确定最优方案(其它待课下研究)如下:

按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在。

当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程。

当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?

学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:

平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。

综合两种情况,我们得出如下结论:

在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于、的二元一次方程。

至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成或的形式,准确地说应该是“要么形如这样,要么形如这样的方程”。

同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?

学生们不难得出:二者可以概括为统一的形式。

这样上边的结论可以表述如下:

在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如(其中、不同时为0)的二元一次方程。

启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?

【问题2】任何形如(其中、不同时为0)的二元一次方程都表示一条直线吗?

师生共同讨论,评价不同思路,达成共识:

(1)当时,方程可化为。

这是表示斜率为、在轴上的截距为的直线。

(2)当时,由于、不同时为0,必有,方程可化为。

这表示一条与轴垂直的直线。

因此,得到结论:

在平面直角坐标系中,任何形如(其中不同时为0)的二元一次方程都表示一条直线。

为方便,我们把(其中不同时为0)称作直线方程的一般式是合理。

【动画演示】。

演示“直线各参数”文件,体会任何二元一次方程都表示一条直线。

(三)练习巩固、总结提高、板书和作业等环节的设计。

教资开云KY官方登录入口 数学教案篇九

知识与技能。

在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的.圆心半径,掌握方程x+y+dx+ey+f=0表示圆的条件。

过程与方法。

通过对方程x+y+dx+ey+f=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。

情感态度与价值观。

渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。

重点。

掌握圆的一般方程,以及用待定系数法求圆的一般方程。

难点。

二元二次方程与圆的一般方程及标准圆方程的关系。

(一)复习旧知,引出课题。

1、复习圆的标准方程,圆心、半径。

2、提问1:已知圆心为(1,—2)、半径为2的圆的方程是什么?

教资开云KY官方登录入口 数学教案篇十

理解数列的概念,掌握数列的运用。

理解数列的概念,掌握数列的运用。

【知识点精讲】。

1、数列:按照一定次序排列的一列数(与顺序有关)。

2、通项公式:数列的.第n项an与n之间的函数关系用一个公式来表示an=f(n)。

(通项公式不)。

3、数列的表示:。

(1)列举法:如1,3,5,7,9……;。

(2)图解法:由(n,an)点构成;。

(3)解析法:用通项公式表示,如an=2n+1。

5、任意数列{an}的前n项和的性质。

教资开云KY官方登录入口 数学教案篇十一

(1)掌握斜二测画法画水平设置的平面图形的直观图。

(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。

2、过程与方法。

学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。

3、情感态度与价值观。

(1)提高空间想象力与直观感受。

(2)体会对比在学习中的作用。

(3)感受几何作图在生产活动中的应用。

重点、难点:用斜二测画法画空间几何值的直观图。

1、学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。

2、教学用具:三角板、圆规。

(一)创设情景,揭示课题。

1、我们都学过画画,这节课我们画一物体:圆柱。

把实物圆柱放在讲台上让学生画。

2、学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。

(二)研探新知。

1、例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。

画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。

练习反馈。

根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。

2、例2,用斜二测画法画水平放置的圆的直观图。

教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的`直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。

教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。

3、探求空间几何体的直观图的画法。

(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体abcd-a’b’c’d’的直观图。

教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。

(2)投影出示几何体的三视图、课本p15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。

4、平行投影与中心投影。

投影出示课本p17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。

5、巩固练习,课本p16练习1(1),2,3,4。

三、归纳整理。

学生回顾斜二测画法的关键与步骤。

四、作业。

1、书画作业,课本p17练习第5题。

教资开云KY官方登录入口 数学教案篇十二

1.理解流程图的选择结构这种基本逻辑结构.。

2.能识别和理解简单的框图的功能.。

3.能运用三种基本逻辑结构设计流程图以解决简单的问题.。

一、问题情境。

1.情境:

某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为。

其中(单位:)为行李的重量.。

试给出计算费用(单位:元)的.一个算法,并画出流程图.。

二、学生活动。

学生讨论,教师引导学生进行表达.。

解算法为:

输入行李的重量;

如果,那么,

否则;

输出行李的重量和运费.。

上述算法可以用流程图表示为:

教师边讲解边画出第10页图1-2-6.。

在上述计费过程中,第二步进行了判断.。

1.选择结构的概念:

先根据条件作出判断,再决定执行哪一种。

操作的结构称为选择结构.。

2.说明:(1)有些问题需要按给定的条件进行分析、比较和判断,并按判。

断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;

(3)在上图的选择结构中,只能执行和之一,不可能既执行,又执。

行,但或两个框中可以有一个是空的,即不执行任何操作;

(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和。

两个退出点.。

3.思考:教材第7页图所示的算法中,哪一步进行了判断?

教资开云KY官方登录入口 数学教案篇十三

三角函数的诱导公式是普通开云KY官方登录入口 课程标准实验教科书(人教b版)数学必修四,第一章第二节内容,其主要内容是公式(一)至公式(四)。本节课是第二课时,教学内容是公式(三)。教材要求通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法。

通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。因此本节内容在三角函数中占有非常重要的地位.

以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式。

借助单位圆探究诱导公式。

能正确运用诱导公式将任意角的三角函数化为锐角三角函数。

诱导公式(三)的推导及应用。

诱导公式的应用。

多媒体。

1.诱导公式(一)(二)。

2.角(终边在一条直线上)。

3.思考:下列一组角有什么特征?()能否用式子来表示?

已知由。

可知。

而(课件演示,学生发现)。

所以。

于是可得:(三)。

设计意图:结合几何画板的演示利用同一点的坐标变换,导出公式。

由公式(一)(三)可以看出,角角相等。即:

公式(一)(二)(三)都叫诱导公式。利用诱导公式可以求三角函数式的值或化简三角函数式。

设计意图:结合学过的公式(一)(二),发现特点,总结公式。

1.练习。

(1)。

设计意图:利用公式解决问题,发现新问题,小组研究讨论,得到新公式。

(学生板演,老师点评,用彩色粉笔强调重点,引导学生总结公式。)。

例3:求下列各三角函数值:

(1)。

(2)。

(3)。

(4)。

设计意图:利用公式解决问题。

练习:

(1)。

(2)(学生板演,师生点评)。

设计意图:观察公式特点,选择公式解决问题。

四.课堂小结:将任意角三角函数转化为锐角三角函数,体现转化化归,数形结合思想的应用,培养了学生分析问题、解决问题的能力,熟练应用解决问题。

很荣幸大家来听我的课,通过这课,我学习到如下的东西:

1.要认真的研读新课标,对教学的目标,重难点把握要到位。

2.注意板书设计,注重细节的东西,语速需要改正。

3.进一步的学习网页制作,让你的网页更加的完善,学生更容易操作。

5.上课的生动化,形象化需要加强。

1.评议者:网络辅助教学,起到了很好的效果;教态大方,作为新教师,开设校际课,勇气可嘉!建议:感觉到老师有点紧张,其实可以放开点的`,相信效果会更好的!重点不够清晰,有引导数学时,最好值有个侧重点;网络设计上,网页上公开的推导公式为上,留有更大的空间让学生来思考。

2.评议者:网络教学效果良好,给学生自主思考,学习的空间发挥,教学设计得好;建议:课堂讲课声音,语调可以更有节奏感一些,抑扬顿挫应注意课堂例题练习可以多两题。

3.评议者:学科网络平台的使用;建议:应重视引导学生将一些唾手可得的有用结论总结出来,并形成自我的经验。

4.评议者:引导学生通过网络进行探究。

建议:课件制作在线测评部分,建议不能重复选择,应全部做完后,显示结果,再重复测试;多提问学生。

(1)给学生思考的时间较长,语调相对平缓,总结时,给学生一些激励的语言更好。

(2)这样子的教学可以提高上课效率,让学生更多的时间思考。

(4)给学生答案,这个网页要进一步的修正,答案能否不要一点就出来。

(5)1.板书设计要进一步的加强,2.语速相对是比较快的3.练习量比较少。

(6)让学生多探究,课堂会更热闹。

(7)注意引入的过程要带有目的,带着问题来教学,学生带着问题来学习。

(8)教学模式相对简单重复。

(9)思路较为清晰,规范化的推理。

教资开云KY官方登录入口 数学教案篇十四

(2)进一步理解曲线的方程和方程的曲线。

(3)初步掌握求曲线方程的方法。

(4)通过本节内容的教学,培养学生分析问题和转化的能力。

求曲线的方程。

计算机。

启发引导法,讨论法。

【引入】。

1.提问:什么是曲线的方程和方程的曲线。

学生思考并回答,教师强调。

2.坐标法和解析几何的意义、基本问题。

对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何,解析几何的两大基本问题就是:

(1)根据已知条件,求出表示平面曲线的方程。

(2)通过方程,研究平面曲线的性质。

【问题】。

如何根据已知条件,求出曲线的方程。

【概括总结】通过学生讨论,师生共同总结:

分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:

首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:

(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;

(2)写出适合条件的点的集合;

(3)用坐标表示条件,列出方程;

(4)化方程为最简形式;

(5)证明以化简后的方程的解为坐标的点都是曲线上的点.

上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正。

下面再看一个问题:

【小结】师生共同总结:

(1)解析几何研究研究问题的方法是什么?

(2)如何求曲线的方程?

【作业】课本第72页练习1,2,3;

教资开云KY官方登录入口 数学教案篇十五

集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

教学重点.难点。

重点:集合的含义与表示方法.

难点:表示法的恰当选择.

教学目标。

1.知识与技能。

(1)通过实例,了解集合的含义,体会元素与集合的属于关系;

(2)知道常用数集及其专用记号;

(3)了解集合中元素的确定性.互异性.无序性;

(4)会用集合语言表示有关数学对象;

2.过程与方法。

(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.

(2)让学生归纳整理本节所学知识.

3.情感.态度与价值观。

使学生感受到学习集合的必要性,增强学习的积极性.

1.教学方法:学生通过阅读教材,自主学习、思考、交流、讨论和概括,从而更好地完成本节课的教学目标。

2.教学手段:在教学中使用投影仪来辅助教学。

(一)创设情景,揭示课题。

1.教师首先提出问题:

(1)介绍自己的家庭、原来就读的学校、现在的班级。

(2)问题:像“家庭”、“学校”、“班级”等,有什么共同特征?

引导学生互相交流.与此同时,教师对学生的活动给予评价。

2.活动:

(1)列举生活中的集合的例子;

(2)分析、概括各实例的共同特征。

由此引出这节要学的内容。

设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫。

(二)研探新知,建构概念。

1.教师利用多媒体设备向学生投影出下面7个实例:

(1)1—20以内的所有质数;

(2)我国古代的四大发明;

(3)所有的安理会常任理事国;

(4)所有的正方形;

(5)海南省在2004年9月之前建成的所有立交桥;

(6)到一个角的两边距离相等的所有的点;

(7)国兴中学2004年9月入学的高一学生的全体.

2.教师组织学生分组讨论:这7个实例的共同特征是什么?

3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义。一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.

4.教师指出:集合常用大写字母a,b,c,d表示,元素常用小写字母a,b,c,d表示.

设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神。

(三)质疑答辩,发展思维。

1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性、互异性和无序性。只要构成两个集合的元素是一样的,我们就称这两个集合相等。

2.教师组织引导学生思考以下问题:

判断以下元素的全体是否组成集合,并说明理由:

(1)大于3小于11的偶数;

(2)我国的小河流.让学生充分发表自己的建解。

3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价。

4.教师提出问题,让学生思考。

b是(1)如果用a表示高—(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,高一(4)班的一位同学,那么a,b与集合a分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于。

如果a是集合a的元素,就说a属于集合a。

如果a不是集合a的元素,就说a不属于集合a。

(2)如果用a表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合a的关系分别是什么?请用数学符号分别表示.

(3)让学生完成教材第6页练习第1题.

5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1a组第1题.

6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:

(1)要表示一个集合共有几种方式?

(2)试比较自然语言.列举法和描述法在表示集合时,各自的特点?适用的对象是什么?

(3)如何根据问题选择适当的集合表示法?

使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。

(四)巩固深化,反馈矫正。

教师投影学习。

(1)用自然语言描述集合{1,3,5,7,9};

(2)用例举法表示集合a。

(3)试选择适当的方法表示下列集合:教材第6页练习第2题.

设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象。

(五)归纳小结,布置作业。

1.小结:在师生互动中,让学生了解或体会下例问题:

本节课我们学习了哪些知识内容?

2.你认为学习集合有什么意义?

3.选择集合的表示法时应注意些什么?

设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。

作业:

1.课后书面作业:第13页习题1.1a组第4题。

教资开云KY官方登录入口 数学教案篇十六

掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

向量的性质及相关知识的综合应用。

(一)主要知识:

1、掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的`有关性质解决诸如平面几何、解析几何等的问题。

(二)例题分析:略。

1、进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题,

2、渗透数学建模的思想,切实培养分析和解决问题的能力。

【本文地址:http://www.pourbars.com/zuowen/13285089.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map