八年级数学的教案(通用14篇)

格式:DOC 上传日期:2023-11-20 13:02:16
八年级数学的教案(通用14篇)
时间:2023-11-20 13:02:16     小编:GZ才子

教案可以帮助教师提前预测学生可能遇到的问题,制定解决方案。制定一个好的教案对于教学的有序进行非常关键,因此我们需要思考如何编写一份高质量的教案。以下是小编为大家收集的教案范例,供大家参考。这些教案经过精心设计,包含了教学目标、教学内容、教学步骤、教学方法等详细内容。希望能够帮助大家更好地制定自己的教案,提高教学效果。大家一起来看看吧!

八年级数学的教案篇一

教学重点和难点。

一元一次方程解简单的应用题的方法和步骤、

课堂教学过程设计。

为了回答上述这几个问题,我们来看下面这个例题、

例1某数的3倍减2等于某数与4的和,求某数、

(首先,用算术方法解,由学生回答,教师板书)。

解法1:(4+2)÷(3-1)=3、

答:某数为3、

(其次,用代数方法来解,教师引导,学生口述完成)。

解法2:设某数为x,则有3x-2=x+4、

解之,得x=3、

答:某数为3、

师生共同分析:

1、本题中给出的已知量和未知量各是什么?

2、已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)。

上述分析过程可列表如下:

解:设原来有x千克面粉,那么运出了15%x千克,由题意,得。

x-15%x=42500,

所以x=50000、

答:原来有50000千克面粉、

(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)。

教师应指出:

(2)例2的解方程过程较为简捷,同学应注意模仿、

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

(2)根据题意找出能够表示应用题全部含义的一个相等关系、(这是关键一步);

(4)求出所列方程的解;

(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨、解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误、并严格规范书写格式)。

解:设第一小组有x个学生,依题意,得。

3x+9=5x-(5-4),

解这个方程:2x=10,

所以x=5、

其苹果数为3×5+9=24、

答:第一小组有5名同学,共摘苹果24个、

学生板演后,引导学生探讨此题是否可有其他解法,并列出方程、

(设第一小组共摘了x个苹果,则依题意,得)。

3、某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数、

首先,让学生回答如下问题:

1、本节课学习了哪些内容?

2、列一元一次方程解应用题的方法和步骤是什么?

3、在运用上述方法和步骤时应注意什么?

依据学生的回答情况,教师总结如下:

(2)以上步骤同学应在理解的基础上记忆、

1、买3千克苹果,付出10元,找回3角4分、问每千克苹果多少钱?

2、用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

八年级数学的教案篇二

1.经历分式方程的概念,能将实际问题中的等量关系用分式方程 表示,体会分式方程的模型作用.

2.经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。

3.在活动中培养学生乐于探究、合作学习的习惯,培养学 生努力寻找 解决问题的进取心,体会数学的应用价值.

将实际问题中的等量 关系用分式方程表示

找实际问题中的等量关系

有两块面积相同的小麦试验田,第一块使用原品种,第二 块使用新品种,分别收获小麦9000 kg和15000 kg。已知第一块试验田每公顷的产量比第二块少3000 kg,分别求这两块试验田每 公顷 的产量。你能找出这一问题中的所有等量关系吗?(分组交流)

如果设第一块试验田 每公顷的产量为 kg,那么第二块试验田每公顷的产量是________kg。

根据题意,可得方程___________________

从甲地到乙地有两条公路:一条是全长600 km的普通 公路,另一条是全长480 km的高速公路。某客 车在 高速公路上行驶的平均速度比在普通公路上快45 km/h,由高速 公路从甲地到乙地所需的时间 是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从 甲地到乙地所需的时间。

这 一问题中有哪些等量关系?

如果设客车由高速公路从甲地到乙地 所需的时间为 h,那么它由普通公路从甲地到乙地所需的时间为_________h。

根据题意,可得方程_ _____________________。

学生分组探讨、交流,列出方程.

上面所得到的方程有什么共同特点?

分母中含有未知数的方程叫做分式方程

分式方程与整式方程有什么区别?

(3)根据分式方程 编一道应用题,然后同组交流,看谁编得好

本节课你学到了哪些知识?有什么感想?

八年级数学的教案篇三

《基础教育课程改革纲要(试行)》指出:“大力推进多媒体信息技术在教学过程中的普遍应用,促进信息技术与学科课程的整合,逐步实现教学内容的呈现方式、学生的学习方式、教师的教学方式和师生互动方式的变革,充分发挥信息技术的优势,为学生的学习和发展提供丰富多彩的教育环境和有力的学习工具。”教师运用现代多媒体信息技术对教学活动进行创造性设计,发挥计算机辅助教学的特有功能,把信息技术和数学教学的学科特点结合起来,可以使教学的表现形式更加形象化、多样化、视觉化,有利于充分揭示数学概念的形成与发展,数学思维的过程和实质,展示数学思维的形成过程,使数学课堂教学收到事半功倍的效果。

本节课内容是学生在小学阶段初步了解特殊四边形以及学过《三角形》这章的基础上进行的,在知识结构上打破了教材的编写顺序,从整体的角度探究特殊四边形性质。运用多媒体教学体现出直观、课容量大、容易接受的特点,为进一步的理论证明及应用起着提供数据和宏观指导作用,使学生学习本章具体内容时知道身在何处,使知识体系更加系统。本节课内容是四边形这章的理论基础,在该章占有非常重要的地位。

本班经历了一年多课改实践,学生对运用现代多媒体信息技术的教学方式有浓厚的兴趣,能运用《几何画板》这一工具进行简单的操作,形成自主探索和合作交流的学风,从而乐于在教师的指导下主动与同学探索、发现、归纳、经历数学知识于实践的过程。

本节课充分利用现有的先进教学设备(两名学生一台电脑),利用笔者自制,借助《几何画板》把学生带入数学模拟实验室,以研究电动门的机械原理为切入点,从学生已有的生活经验出发,让学生亲身经历数学知识的形成并进行解释与应用过程。组员相互配合分别测量、搜集、分析、整理特殊四边形的边长、角度、对角线长度等数据,并总结其性质,通过人机对话方式把静态、抽象的几何图形变为动态、直观地演示出来。在此过程中教师当好课堂教学的组织者、决策者、创造者和参与者,教给学生自觉主动地探究新知识的方法,激发学生的思维,培养学生的科学精神和创新思维习惯,使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到发展。

1、初步理解特殊四边形性质;

2、培养学生自主收集、描述和分析数据的能力;

1、了解特殊四边形性质的形成过程;

2、初步了解探究新知识的一些方法;

1、了解特殊四边形在日常生活中的应用;

2、学生在观察、归纳、类比及实验教学活动中,体会成功后的喜悦;

3、初步具有感性认识上升到理性认识的辩证唯物主义思想。

教学环境:

多媒体计算机网络教室。

教学课型:

试验探究式。

教学重点:

特殊四边形性质。

教学难点:

特殊四边形性质的发现。

一、设置情景,提出问题。

提出问题:

1、电动门的网格和结点能组成哪些四边形?

2、在开(关)门过程中这些四边形是如何变化的?

3、你还发现了什么?

解决问题:

学生猜想:包括平行四边形、矩形、菱形、等腰梯形、直角梯形……;

当我们学习完本节知识后,其他问题就容易解决了。

(意图:用《几何画板》的动态演示生活事例,充分展示了数学的美妙,可以使学生容易进入情境和保持积极学习状态,激起学生探究解决问题的求知欲望。)。

二、整体了解,形成系统。

本节课从整体角度研究特殊四边形性质,为今后的个体研究打下良好的基础。我们先研究四边形中的特殊与一般的关系。

提出问题:

1、本章主要研究哪些特殊四边形?

2、从哪几方面研究这些特殊四边形?

解决问题:

学生操作电脑(用几何画板),了解本章研究的主要图形;教师个别指导。

1、包括:平行四边形、矩形、菱形、梯形、等腰梯形、直角梯形。

3、等腰梯形和直角梯形后面应该是矩形,但不符合梯形定义,所以没有图形。

(意图:学生自主观察、分组讨论了解本章知识结构,从而形成系统;通过假设、猜想、推理、论证、否定假设获得新知识)。

三、个体研究、总结性质。

1、平行四边形性质。

提出问题:

在平行四边形的形状、位置、大小变化过程中,请观察数据并找出边长、角度、对角线长度相对不变的性质。

解决问题:

教师引导学生拖动b点(学生操作电脑),改变平行四边形的形状、位置、大小,并观察数据的变化,从中找出相对不变的要素。

在图形变化过程中,

(1)对边相等;

(2)对角相等;

(3)通过ao=co、bo=do,可得对角线互相平分;

(4)通过邻角互补,可得对边平行;

(5)内外角和都等于360度;

(6)邻角互补;

……。

指导学生填表:

平行四边形性质矩形性质正方形性质。

菱形性质。

梯形性质等腰梯形性质。

直角梯形性质。

(既属于平行四边形性质又属于矩形性质可以画箭头)。

按照平行四边形性质的探索思路,分别研究:

2、矩形性质;

3、菱形性质;

4、正方形性质;

5、梯形性质;

6、等腰梯形性质;

7、直角梯形的性质。

(意图:学生运用电脑自主收集、描述、分析数据,把抽象的性质变为直观化、形象化,培养独立探究,自主自信,使学生体验到科学探索的乐趣。)。

教师总结:

(意图:掌握画箭头的方法,使学生了解事物个体既有该事物一般性质,又有自己的特点。既清楚地表达,又节省时间。)。

四、联系生活,解决问题。

解决问题:

学生操作电脑,观察图形、分组讨论,教师个别指导。

学生在分别演示开(关)门过程中,观察数据并总结:边长、角度、对角线长度的变化引起四边形的形状、大小、位置的变化。

四边形具有不稳定性,而三角形没有这个特点……。

(意图:使学生体会到数学于生活、又服务于生活,更重要的是培养学生应用知识解决实际问题的能力,体会成功后的喜悦。)。

五、小结。

1.研究问题从整体到局部的方法;

2.主要从边长、角度、对角线长度三方面研究特殊四边形性质。

六、作业。

1.平行四边形内角中,既有两个相邻的角相等,又有一组邻边相等,试判断它是什么图形。

2.观察实际生活中的电动门,在开(关)门过程中特殊四边形的变化。

针对教学内容、学生特点及设计方案,预计下列学习效果:

利用多媒体信息技术图文并茂、形象直观的特点,通过学生自主测量、分析、整理数据并总结其性质,培养学生收集、描述和分析数据的能力,并达到初步理解特殊四边形性质的目标。

在问题引入、了解整体、测量个体、总结性质的过程中,符合事物的认识规律及探究新知识的一般方法,初步形成感性认识上升到理性认识的辩证唯物主义思想。

由于个体差异,针对教学目标难以达到的个别学生,根据教学的进展,通过师生之间、学生之间的对话交流及时指导,使教学目标得以实现。

八年级数学的教案篇四

《正方形》这节课是九年义务教育人教版数学教材八年级下册第十九章第二节的内容。纵观整个初中教材,《正方形》是在学生掌握了平行线、三角形、平行四边形、矩形、菱形等有关知识及简单图形的平移和旋转等平面几何知识,并且具备有初步的观察、操作等活动经验的基础上出现的。既是前面所学知识的延续,又是对平行四边形、菱形、矩形进行综合的不可缺少的重要环节。

本节课的重点是正方形的概念和性质,难点是理解正方形与平行四边形、矩形、菱形之间的内在联系。根据大纲要求,本节课制定了知识、能力、情感三方面的目标。

(一)知识目标:

1、要求学生掌握正方形的概念及性质;

2、能正确运用正方形的性质进行简单的计算、推理、论证;

(二)能力目标:

1、通过本节课培养学生观察、动手、探究、分析、归纳、总结等能力;

2、发展学生合情推理意识,主动探究的习惯,逐步掌握说理的基本方法;

(三)情感目标:

1、让学生树立科学、严谨、理论联系实际的良好学风;

2、培养学生互相帮助、团结协作、相互讨论的团队精神;

3、通过正方形图形的完美性,培养学生品格的完美性。

该段学生具有一定的独立思考和探究的能力,但语言表达能力方面稍有欠缺,所以在本节课的教学过程中,特意设计了让学生自己组织语言培养说理能力,让学生们能逐步提高。

针对本节课的特点,采用"实践--观察--总结归纳--运用"为主线的教学方法。

通过学生动手,采取几种不同的方法构造出正方形,然后引导学生探究正方形的概念。通过观察、讨论、归纳、总结出正方形性质定理,最后以课堂练习加以巩固定理,并通过一道拔高题对定义、性质理解、巩固加以升华。

本节课重点是从培养学生探索精神和分析归纳总结能力为出发点,着重指导学生动手、观察、思考、分析、总结得出结论。在小组讨论中通过互相学习,让学生体验合作学习的乐趣。

第一环节:相关知识回顾。

以提问的形式复习平行四边形、矩形、菱形的定义及性质之后,引导学生发现矩形、菱形的实质是由平行四边形角度、边长的变化得到的。并启发学生考虑,若这两种变化同时发生在平行四边形上,则会得到什么样的图形?让学生们通过手上的学具演示以上两种变化,从而得出结论。

第二环节:新课讲解通过学生们的发现引出课题“正方形”

1、正方形的定义:引导学生说出自己变化出正方形的过程,并再次利用课件形象演示出由平行四边形的边、角的变化演变出正方形的过程。请同学们举手发言,归纳总结出正方形定义:一组邻边相等,且一个角是直角的平行四边形是正方形。再由此定义启发学生们发现正方形的三个必要条件,并且由这三个条件通过重新组合即一组邻边相等与平行四边形组成菱形再加上一个角是直角可得到正方形的另两个定义:一个角是直角的菱形是正方形;一组邻边相等的矩形是正方形。此内容借助课件演示其变化过程,进一步启发学生发现,正方形既是特殊的菱形,又是特殊的矩形,从而总结出正方形的性质。

2、正方形的性质定理1:正方形的四个角都是直角,四条边都相等;

定理2:正方形的两条对角线相等,并且互相垂直、平分,每条对角线平分一组对角。

以上是对正方形定义和性质的学习,之后是进行例题讲解。

4、课堂练习:第一部分采用三道有关正方形的周长、面积、对角线、边长计算的填空题,目的是对正方形性质的进一步理解,并考察学生掌握的情况。

第二部分是选择题,通过体现生活中实际问题,来提升学生所学的知识,并加以综合练习,提高他们的综合素质,使他们充分认识到数学实质是来源于生活并要服务于生活。

5、课堂小结:此环节我是通过图框的形式小结正方形和前阶段所学特殊四边形之间的内在联系,通过对所学几种四边形内在联系体现正方形完美的本质,渲染学生们应追求象正方形一样方正的品质,从而要努力学习以丰富的知识充实自己,达到理想中的完美。

6、作业设计:作业是教材159页,第12、14两小道证明题,通过此作业让同学们进一步巩固有关正方形的知识。

八年级数学的教案篇五

1、经历分式方程的概念,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用。

2、经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。

3、在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值。

将实际问题中的等量关系用分式方程表示。

找实际问题中的等量关系。

有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000kg和15000kg。已知第一块试验田每公顷的产量比第二块少3000kg,分别求这两块试验田每公顷的产量。你能找出这一问题中的所有等量关系吗?(分组交流)。

如果设第一块试验田每公顷的产量为kg,那么第二块试验田每公顷的产量是________kg。

根据题意,可得方程___________________。

从甲地到乙地有两条公路:一条是全长600km的普通公路,另一条是全长480km的高速公路。某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从甲地到乙地所需的时间。

这一问题中有哪些等量关系?

如果设客车由高速公路从甲地到乙地所需的时间为h,那么它由普通公路从甲地到乙地所需的时间为_________h。

根据题意,可得方程______________________。

学生分组探讨、交流,列出方程。

上面所得到的方程有什么共同特点?

分母中含有未知数的方程叫做分式方程。

分式方程与整式方程有什么区别?

(3)根据分式方程编一道应用题,然后同组交流,看谁编得好。

本节课你学到了哪些知识?有什么感想?

八年级数学的教案篇六

3、掌握二次根式的性质和,并能灵活应用;

4、通过二次根式的计算培养学生的逻辑思维能力;

5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。

重点:(1)二次根的意义;(2)二次根式中字母的取值范围。

难点:确定二次根式中字母的取值范围。

启发式、讲练结合。

(一)复习提问。

1、什么叫平方根、算术平方根?

2、说出下列各式的意义,并计算:

通过练习使学生进一步理解平方根、算术平方根的概念。

观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中,

表示的是算术平方根。

(二)引入新课。

我们已遇到的这样的式子是我们这节课研究的内容,引出:

新课:二次根式。

定义:式子叫做二次根式。

对于请同学们讨论论应注意的问题,引导学生总结:

(1)式子只有在条件a0时才叫二次根式,是二次根式吗?呢?

若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。

(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次。

根式指的是某种式子的外在形态。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。

例1当a为实数时,下列各式中哪些是二次根式?

例2x是怎样的实数时,式子在实数范围有意义?

解:略。

说明:这个问题实质上是在x是什么数时,x-3是非负数,式子有意义。

例3当字母取何值时,下列各式为二次根式:

(1)(2)(3)(4)。

分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。

解:(1)∵a、b为任意实数时,都有a2+b20,当a、b为任意实数时,是二次根式。

(2)-3x0,x0,即x0时,是二次根式。

(3),且x0,x0,当x0时,是二次根式。

(4),即,故x-20且x-20,x2.当x2时,是二次根式。

例4下列各式是二次根式,求式子中的字母所满足的条件:

(1);(2);(3);(4)。

分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。即:只有在条件a0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。

解:(1)由2a+30,得。

(2)由,得3a-10,解得。

(3)由于x取任何实数时都有|x|0,因此,|x|+0.10,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。

(4)由-b20得b20,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.

(三)小结(引导学生做出本节课学习内容小结)。

1、式子叫做二次根式,实际上是一个非负的实数a的算术平方根的表达式。

2、式子中,被开方数(式)必须大于等于零。

(四)练习和作业。

1、判断下列各式是否是二次根式。

分析:(2)中,,是二次根式;(5)是二次根式。因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x0时,又如当x-1时=,因此(1)(3)(4)不是二次根式,(6)无意义。

2.a是怎样的实数时,下列各式在实数范围内有意义?

教材p.172习题11.1;a组1;b组1.

八年级数学的教案篇七

2、了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。

会计算某些数据的极差、标准差和方差。

理解数据离散程度与三个差之间的关系。

计算器,投影片等。

一、创设情境。

1、投影课本p138引例。

(通过对问题串的解决,使学生直观地估计从甲、乙两厂抽取的20只鸡腿的平均质量,同时让学生初步体会平均水平相近时,两者的离散程度未必相同,从而顺理成章地引入刻画数据离散程度的一个量度极差)。

2、极差:是指一组数据中最大数据与最小数据的差,极差是用来刻画数据离散程度的一个统计量。

二、活动与探究。

如果丙厂也参加了竞争,从该厂抽样调查了20只鸡腿。

问题:

1、丙厂这20只鸡腿质量的平均数和极差是多少?

2、如何刻画丙厂这20只鸡腿质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与对应平均数的差距。

3、在甲、丙两厂中,你认为哪个厂鸡腿质量更符合要求?为什么?

(在上面的情境中,学生很容易比较甲、乙两厂被抽取鸡腿质量的极差,即可得出结论。这里增加一个丙厂,其平均质量和极差与甲厂相同,此时导致学生思想认识上的矛盾,为引出另两个刻画数据离散程度的量度标准差和方差作铺垫。

三、讲解概念:

四、做一做。

五、巩固练习:课本第172页随堂练习。

六、课堂小结:

1、怎样刻画一组数据的离散程度?

2、怎样求方差和标准差?

七、布置作业:习题5.5第1、2题。

八年级数学的教案篇八

学会可化为一元一次方程或一元二次方程的分式方程的解法,会用去分母求方程的解、掌握解分式方程的一般步骤。

去分母法解可化为一元一次方程或一元二次方程的分式方程、验根的方法、

解分式方程的一般步骤。

1、什么叫分式方程?

2、解分式方程的基本思想:

分式方程整式方程。

3、解方程(学生板演)。

1、由上述学生的板演归纳出解分式方程的一般步骤。

(1)去分母:在方程的两边都乘以最简公分母,化为整式方程;

(2)解这个整式方程;

2、范例讲解。

(学生尝试练习后,教师讲评)。

例1:解方程例2:解方程例3:解方程讲评时强调:

1、怎样确定最简公分母?(先将各分母因式分解)。

2、解分式方程的步骤、

巩固练习:p1471t,2t、

课堂小结:解分式方程的一般步骤。

布置作业:见作业本。

八年级数学的教案篇九

一、教学目的:

1、掌握菱形概念,知道菱形与平行四边形的关系;

3、通过运用菱形知识解决具体问题,提高分析能力和观察能力;

4、根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想;

二、重点、难点。

1、教学重点:菱形的性质1、2;

2、教学难点:菱形的性质及菱形知识的综合应用;

三、例题的意图分析。

四、课堂引入。

1、(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?

《18、2、2菱形》课时练习含答案;

5、在同一平面内,用两个边长为a的等边三角形纸片(纸片不能裁剪)可以拼成的四边形是()。

a、矩形b、菱形c、正方形d、梯形。

答案:b。

知识点:等边三角形的性质;菱形的判定。

解析:

分析:此题主要考查了等边三角形的性质,菱形的定义、

6、用两个边长为a的等边三角形纸片拼成的四边形是()。

a、等腰梯形b、正方形c、矩形d、菱形。

答案:d。

知识点:等边三角形的性质;菱形的判定。

解析:

分析:本题利用了菱形的概念:四边相等的四边形是菱形、

《菱形的性质与判定》练习题。

一选择题:

1、下列四边形中不一定为菱形的是()。

a、对角线相等的平行四边形b、每条对角线平分一组对角的四边形。

c、对角线互相垂直的平行四边形d、用两个全等的等边三角形拼成的四边形。

2、下列说法中正确的是()。

a、四边相等的四边形是菱形。

b、一组对边相等,另一组对边平行的四边形是菱形。

c、对角线互相垂直的四边形是菱形。

d、对角线互相平分的四边形是菱形。

3、若顺次连接四边形abcd各边的中点所得四边形是菱形,则四边形abcd一定是()。

a、菱形b、对角线互相垂直的四边形c、矩形d、对角线相等的四边形。

八年级数学的教案篇十

正比例函数的概念。

2、内容解析。

一次函数是最基本的初等函数,是初中函数学习的重要内容,正比例函数是特殊的一次函数,也是初中学生接触到的第一种函数,要通过对正比例函数内容的学习,为后续类比学习一般一次函数打好基础,了解研究函数的基本套路和方法,积累研究一般一次函数乃至其他各种函数的基本经验。

对正比例函数概念的学习,既要借助具体的函数进一步加深对函数概念的理解,即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应,这是理解正比例函数的核心;也要加强对正比例函数基本特征的认识,即根据实际问题构建的函数模型中,函数和自变量每一对对应值的比值是一定的,等于比例系数,反映在函数解析式上,这些函数都是常数与自变量的积的形式,这是正比例函数的基本特征。

本节课主要是通过对生活中大量实际问题的分析,写出变量间的函数关系式,观察比较概括出这些函数关系式具有的共同特征,根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念,再用正比例函数的概念对具体函数进行辨析,对实际事例进行分析,根据已知条件写出正比例函数的解析式。

基于以上分析,确定本节课的教学重点:正比例函数的概念。

1、目标。

(1)经历正比例函数概念的形成过程,理解正比例函数的概念;

(2)能根据已知条件确定正比例函数的解析式,体会函数建模思想。

2、目标解析。

达成目标(1)的标志是:通过对实际问题的分析,知道自变量和对应函数成正比例的特征,能概括抽象出正比例函数的概念。

达成目标(2)的标志是:能根据实际问题中的已知条件确定变量间的正比例函数关系式,将实际问题抽象为函数模型,体会函数建模思想。

正比例函数是是初中学生接触到的第一种初等函数,由于函数概念比较抽象,学生对函数基本概念理解未必深刻,在对实际问题进行分析过程中,需进一步强化对函数概念的理解:即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的`每一个确定的值,另一个变量都有唯一确定的值与之对应;对正比例函数概念的理解关键是对正比例函数基本特征的认识,要通过大量实例分析,写出变量间的函数关系式,观察比较发现这些函数具有的共同特征,即函数与自变量的每一对对应值的比值一定,都等于自变量前的常数,这些函数都是常数与自变量的积的形式,再根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念。对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程学生有一定难度。

因此本节课的教学难点是:对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程。

八年级数学的教案篇十一

本节内容的重点是线段垂直平分线定理及其逆定理.定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.

本节内容的难点是定理及逆定理的关系.垂直平分线定理和其逆定理,题设与结论正好相反.学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.

本节课教学模式主要采用“学生主体性学习”的教学模式.提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳.教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人.具体说明如下:

学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点p,它到线段两端的距离有何关系?学生会很容易得出“相等”.然后学生完成证明,找一名学生的证明过程,进行投影总结.最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理.这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.

线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.

八年级数学的教案篇十二

调查中,所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。

例如,某班10名女生的考试成绩是总体,每一名女生的考试成绩是个体。

从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。

例如,要调查全县农村中学生学生平均每周每人的零花钱数,由于人数较多(一般涉及几万人),我们从中抽取500名学生进行调查,就是抽样调查,这500名学生平均每周每人的零花钱数,就是总体的一个样本。

将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数称为这组数据的中位数。

一组数据中出现次数最多的数据就是这组数据的众数。

例如:求一组数据3,2,3,5,3,1的众数。

解:这组数据中3出现3次,2,5,1均出现1次。所以3是这组数据的众数。

又如:求一组数据2,3,5,2,3,6的众数。

解:这组数据中2出现2次,3出现2次,5,6各出现1次。

所以这组数据的众数是2和3。

【规律方法小结】。

(1)平均数、中位数、众数都是描述一组数据集中趋势的量。

(2)平均数反映一组数据的平均水平,与这组数据中的每个数据都有关,是最为重要的量。

(3)中位数不受个别偏大或偏小数据的影响,当一组数据中的个别数据变动较大时,一般用它来描述集中趋势。

(4)众数只与数据出现的频数有关,不受个别数据影响,有时是我们最为关心的统计数据。

探究交流。

1、一组数据的中位数一定是这组数据中的一个,这句话对吗?为什么?

解析:不对,一组数据的中位数不一定是这组数据中的一个,当这组数据有偶数个时,中位数由中间两个数的平均数决定,若中间两数相等,则这组数据的中位数在这组数据之中,反之,中位数不在这组数据之中。

总结:

(1)中位数在一组数据中是唯一的,可能是这组数据中的一个,也可能不是这组数据中的数据。

(2)求中位数时,先将数据按由小到大的顺序排列(或按由大到小的顺序排列)。若这组数据是奇数个,则最中间的数据是中位数;若这组数据是偶数个,则最中间的两个数据的平均数是中位数。

(3)中位数的单位与数据的单位相同。

(4)中位数与数据排序有关。当一组数据中的个别数据变动较大时,可用中位数来描述这组数据的集中趋势。

课堂检测。

基本概念题。

1、填空题。

(1)数据15,23,17,18,22的平均数是;

(4)为了考察某公园一年中每天进园的人数,在其中的30天里,对进园的人数进行了统计,这个问题中的总体是________,样本是________,个体是________。

基础知识应用题。

2、某公交线路总站设在一居民小区附近,为了了解高峰时段从总站乘车出行的人数,随机抽查了10个班次的乘车人数,结果如下:20,23,26,25,29,28,30,25,21,23。

(1)计算这10个班次乘车人数的平均数;

(2)如果在高峰时段从总站共发车60个班次,根据前面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少。

八年级数学的教案篇十三

三角形中相关元素的概念、按边分类及三角形的三边关系。

2.内容解析。

本节课的教学重点:三角形中的相关概念和三角形三边关系。

本节课的教学难点:三角形的三边关系。

二、目标和目标解析。

1.教学目标。

(1)了解三角形中的相关概念,学会用符号语言表示三角形中的对应元素。

(2)理解并且灵活应用三角形三边关系。

2.教学目标解析。

(1)结合具体图形,识三角形的概念及其基本元素。

(2)会用符号、字母表示三角形中的相关元素,并会按边对三角形进行分类。

(3)理解三角形两边之和大于第三边这一性质,并会运用这一性质来解决问题。

三、教学问题诊断分析。

四、教学过程设计。

1.创设情境,提出问题。

问题回忆生活中的三角形实例,结合你以前对三角形的了解,请你给三角形下一个定义。

2.抽象概括,形成概念。

动态演示“首尾顺次相接”这个的动画,归纳出三角形的定义。

师生活动:

三角形的定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

八年级数学的教案篇十四

1、掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用。

2、使学生理解判定定理与性质定理的区别与联系。

3、会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理。

1、通过“探索式试明法”开拓学生思路,发展学生思维能力。

2、通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力。

通过一题多解激发学生的学习兴趣。

通过学习,体会几何证明的方法美。

构造逆命题,分析探索证明,启发讲解。

1、教学重点:平行四边形的判定定理1、2、3的应用。

2、教学难点:综合应用判定定理和性质定理。

(强调在求证平行四边形时用判定定理在已知平行四边形时用性质定理)。

【本文地址:http://www.pourbars.com/zuowen/13665023.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map