整式的乘法教案设计(热门15篇)

格式:DOC 上传日期:2023-11-20 22:22:06
整式的乘法教案设计(热门15篇)
时间:2023-11-20 22:22:06     小编:文锋

教案的编写应当注重反思和不断改进,以提高教学质量和效果。教案的编写应该符合学生的学习特点和心理需求。通过阅读以下教案范例,可以了解到不同教学方法和教学手段的运用,帮助我们提升教学水平。

整式的乘法教案设计篇一

2、内容解析。

同底数幂的乘法是幂的一种运算,在整式乘法中具有基础地位。在整式的乘法中,多项式的乘法要转化为单项式的乘法,单项式的乘法要转化为幂的运算,而幂的运算以同底数幂的乘法为基础。

同底数幂的乘法将同底数幂的乘法运算转化为指数的加法运算,其中底数a可以是具体的数、单项式、多项式、分式乃至任何代数式。同底数幂的乘法是类比数的乘方来学习的,首先在具体例子的基础上抽象出同底数幂的乘法的性质,进而通过推理加以推导,这一过程蕴含数式通性、从具体到抽象的思想方法。

基于以上分析,确定本节课的教学重点:同底数幂的乘法的运算性质。

1、目标。

(1)理解同底数幂的乘法,会用这一性质进行同底数幂的乘法运算。

(2)体会数式通性和从具体到抽象的思想方法在研究数学问题中的作用。

2、目标解析。

达成目标(2)的标志学生发现和推导同底数幂的乘法的运算性质,会用符号语言,文字语言表述这一性质,能认识到具体例子在发现结论的过程中所起的作用,能体会到数式通性在推到结论的过程中的重要作用。

在前面的学习中,学生已经学习了用字母表示数以及整式的加减运算,但是用字母表示幂以及幂的运算还是初次接触。幂的运算抽象程度较高,不易理解,特别对于am+n的指数的理解,因为它不仅抽象程度较高,而且运算结果反映在指数上,学生第一次接触,也很难理解。教学时,应引导学生回顾乘方的意义,从数式通性的角度理解字母表示的幂的意义,进而明确同底数幂乘法的运算性质。

本节课的教学难点是:同底数幂的运算性质的理解与推导。

回顾与思考:什么叫乘方?an表示的意义是什么?其中a、n、an分别叫什么?

师生活动:教师提出复习问题,学生主动思考并回答问题,并尝试用学过的知识解决问题。

设计意图:从实际问题导入,让学生动手试一试,主动探索,在自己。

的实践中感受学习同底数幂的乘法的必要性,并通过有步骤、有依据的计算,为探索同底数幂的乘法的运算性质做好知识和方法的铺垫,同时因为关于底数、指数、幂等概念是在有理数的乘法中学习的,学生可能生疏或遗忘,在新课讲解之前利用这个实际问题进行复习。

问题2根据乘方的意义填空:

25×22=()×()=_____________=2()a3×a2=()×()=______________=a()5m×5n=()×()=______________=5()。

(1)探一探观察几个式子左右两边底数、指数有什么变化?

(2)说一说根据上面式子的计算结果,你能发现有什么规律吗?小。

组交流一下想法。

(3)猜一猜am×an=?(m、n是正整数)。

师生活动:学生独立思考,然后小组交流思考结果。

设计意图:从引例到“推一推”、“说一说”、“猜一猜”是一个从特殊到一般,从具体到抽象,把幂的底数与指数分两步又有层次地进行概括抽象的过程。在这一过程中,要留给学生探索与交流的空间,让学生在自己的实践中获得运算法则。

问题3你能将你的猜想推导出来吗?

am·an=(a·a·﹒﹒﹒·a)·(a·a·﹒﹒﹒·a)——乘方的意义。

=a·a·﹒﹒﹒·a——乘法结合律。

=am+n——乘方的意义。

师生活动:教师提出问题,学生独立思考并写出推导过程,教师用多媒体展示推导过程。

设计意图:通过推导得出同底数幂的乘法的运算性质,让学生认识并体验数式通性,体会由具体到抽象的数学思想方法。

追问1:通过上面的探索与推导,你能用文字语言概括同底数幂乘。

法的运算性质吗?

师生活动:教师提出问题学生尝试用文字语言概括同底数幂乘法的运。

算性质:同底数幂相乘,底数不变,指数相加。

练习1:计算题(结果写成幂的形式)。

1)103×104=。

2)(—7)3·(—7)8=。

3)a·a3=。

4)(a—b)2·(a—b)=。

5)a·a3·a5=。

师生活动:学生独立完成,小组合作交流答案。最后教师总结:在同底数幂的乘法运算中,底数可以是数、字母或式子。

设计意图:让学生通过练习,领会同底数幂乘法的运算性质。并体会底数的变化,可以是数、字母或式子。

师生活动:教师提出问题,学生思考回答问题,并将这一性质推广到多个同底数幂相乘的情况。

设计意图:通过利用文字语言概括性质以及对性质进行推广的过程,促进学生对公式结构特征的深层理解。

练习2判断题(若错误,请在题后写出正确答案)。

1)a5·a5=2a5()。

2)b5+b5=b10()。

3)x5·x5=x25()。

4)y5·y5=2y10()。

5)m·m3=m3()。

6)n+n3=n4()。

师生活动:学生思考判断,领略“法官断案”的快乐。

设计意图:让学生熟练地运用同底数幂乘法的运算性质,领略同底数幂乘法的魅力。

教师与学生一起回顾本节课所讲内容以及注意事项。

设计意图:

必做:课本p105页第9题。

选做:课本p106页第13题。

整式的乘法教案设计篇二

这部分内容是在学习了有理数的四则混合运算、幂的运算性质、合并同类项、去括号、整式的加减等内容的基础上进行的,它是前面知识的延伸.这一部分具有承前启后的作用,启后是它是学习整式的除法、分式的运算、函数、二次方程的解法学习的基础,整式的乘法这一部分内容主要分成三部分内容。

第一部分是单项式乘单项式,这一部分内容主要是要注意运算的法则依据是乘法的交换律,分成三步计算:一是各个单项式的系数相乘,二是同底数幂相乘,三是单独的字母照抄。这部分的计算中往往会混合了积的乘方,要注意运算的顺序,积的乘方应注意复习巩固。

第二部分是单项式乘多项式,这一部分内容的依据是乘法分配律,要注意有乘方运算时的运算顺序以及符号的确定。

第三部分内容是多项式乘多项式,注意带符号运算以及不要漏乘。在混合运算中注意括号运算,不要漏括号。

在整个这一部分的内容教学中,难点与易错点主要是:

1、符号不能正确的判断,其中主要是没有注意带符号运算或者没有注意整体思想,漏掉括号或者去括号错误。

2、同时注意整体思想的渗透,作为整体的相反数的的变形,根据指数的奇偶性来判断符号。

3、注意实际问题主要是图形的面积问题的正确解决。

注重难点与学习方法。

1、关注对教学难点的教学。

新课程标准下,数学教育的根本任务是发展学生的思维,教材中的难点往往是数学思维迅速丰富、过程大步跳跃的地方,所以在本节课难点教学中既注意了化难为易的效果,又注意了化难为易的过程,在探究法则的过程中设置循序渐进的问题,不断启迪学生思考,发展学生的思维能力,在应用法则的过程中,又引导学生进行解题后的反思,这些将促使学生知识水平和能力水平同时提高。

2、关注对学生学习方法的指导。

建构主义学习理论认为,学生的学习是对知识主动建构的过程,同时学生要主动构建对外部信息的解释交流,所以在教学中注重营造学生自主参与、师生互动合作、探究创新为主线的教学模式,从学生已有的知识结构入手,逐渐发现和提出新问题,在解决问题的过程中学会思考,在探究中掌握知识。

3、教育的根本目的在于促进每一个学生的发展,这也是数学教育的根本目的,因此教师在教学设计时,结合学生实际,有效整合教材,精选例习题,分层施教。本单元教学是以习题训练为主的,教学时注意选择了有层次的例题和练习,采用“兵教兵”的方法,组织学生开展合作学习。在探究问题的设计上也是由浅入深,目的就在于通过引导学生对问题的解决,能熟练掌握基础知识,灵活运用基本方法,提高分析问题和解决问题的能力。

4、让学生在“做”中学。

依据教学内容及教学要求,本节课通过拼图游戏,让学生动手操作,在活动中既复习了单项式与多项式相乘,又引出多项式相乘的运算。由于所拼图形的面积会有不同的表示方式,通过对比这些表示方式可以使学生用几何方法对多项式乘法法则有一个直观认识,再由几何解释的基础上从代数运算的角度将多项式与多项式相乘转化为单项式与多项式相乘,整个过程中学生在教师指导下经历操作、探究、解决问题的过程,引导学生在问题探究中不断质疑和释疑,体现了以探究为出发,以活动为中心,注重让学生从做中学的教学思路。

5、加强反思,注重对学生数学思想方法的渗透。

美国认知心理学家加涅指出,学习者学会了如何学习、如何记忆、如何获得更多的学习思维和分析思维,将会使它们变得越来越自主学习。所以,在教学中非常注重引导学生进行反思,在探究问题的过程中引导学生思考运用了哪些数学思想,例如本课中将多项式乘法转化为单项式乘以多项式的“转化”的思想,运用乘法分配律时的“整体”思想,拼图列式中运用的“数形结合”思想等,可以帮助学生从本质上理解所学知识,并提高解决问题的能力,真正使教学过程起到“授之以渔”的作用。

一、内容分析。

整式的乘法是在学生学习了同底数幂的乘法、幂的乘方、积的乘方等知识之后安排的有关整式的运算学习。幂的有关运算法则的学习主要是幂的意义的基础之上来学习的,这一部分内容主要法则依据是乘法的交换律及结合律,知识点相对较少且难度不大,在这节课的学习中通常用“四环节”教学模式来安排每一节课的学习。

第一环节:自学质疑。

让学生自学课本相关内容,并提出相关问题:

(1)认真学习课本中探究,并对探究中问题认真填空,且要说明道理;。

(2)领会问题中作题依据;。

(3)归纳出你自学中体现出的乘法法则并会用字母表示,

(4)记下你在自学中遇到的问题以及在法则中的不解之处,以备讨论。

第二环节:合作释疑。

先以小组为单位进行组内讨论,对于每个组员出现的问题进行交流,解除疑惑,组内不能解决的,组长作好记录,以进行全班讨论。

而对于讨论仍然不能解决的问题老师要作好班内讲解。

第三环节:展示评价。

以小组为单位派一个中下等水平的学生进行展示。可口头也可黑板上板演,然后组与组间交换进行评价,查找问题,对出现的问题进行全班纠正。

第四环节:巩固深化。

由学生分组板演课后相关练习,并进行组间互评。若学生掌握较好,则适时给出一些较复杂的问题如把和差与乘法的结合的计算让学有余力的学生进行练习,从而提高其运算能力,然后布置难易两组作业,一组必作,一组选作。

这部分内容是在学习了有理数的四则混合运算、幂的定义、合并同类项、去括号、整式的加减、幂的有关运算法则内容的基础上进行的,它是前面知识的延伸,具有承前启后的作用,承前是继整式的加减之后而学习,启后是它是学习整式的除法、分式的运算、函数、二次方程的解法学习以及进行整式的加、减、乘、除综合运算的基础。整式的乘法这一部分内容主要分成三部分内容。

第一部分是单项式乘单项式,这一部分内容主要是要注意运算的法则依据是乘法的交换律,分成三步计算:一是各个单项式的系数相乘,二是同底数幂相乘,三是单独的字母照抄。这部分的计算中往往会混合了积的乘方,要注意运算的顺序,有乘方的要先算乘方,后算乘法,积的乘方应注意复习巩固。

第二部分是单项式乘多项式,这一部分内容是第一部分的延伸,其依据是乘法分配律,要注意有乘方运算时的运算顺序以及符号的确定,还要注意分配律的复习。

第三部分内容是多项式乘多项式,注意带符号运算以及不要漏乘。混合运算是一个难点,在混合运算中注意括号运算,不要漏括号。

在这几部分的学习中,从学生课堂表现与作业完成情况看,效果还不错,学生整体对法则的掌握较好,但在处理一些涉及符号以及乘除与加减同时出现的一些问题时,出现的错误较多,另外合并同类项与幂的运算法则在运用中也出现混淆的现象。

在整个这一部分的内容教学中,难点与易错点主要是:一、符号不能正确的判断,其中主要是没有注意带符号运算或者没有注意整体思想,漏掉括号或者去括号错误。二、同时注意整体思想的渗透,作为整体的相反数的的变形,根据指数的奇偶性来判断符号。三、混合运算中符号及各种运算法则混淆不清,运用还不够熟练。

对这些问题的解决除了加强基本法则运用之外,还应对于综合题目多加练习,以达到巩固提高的目的。

整式的乘法教案设计篇三

填。

7×()=56()×7=212×()=16。

()×()=32()×6=488×()=8。

二、解决问题。(基础训练p49)。

(1)每个8元,5个要多少元?

=

(元)。

(2)一个的价钱是一个的6倍,一个多少元?

=(元)。

(3)。

大白兔拔了多少个?

=(个)。

三、每星期工作多少小时?

(1)妈妈每星期工作多少小时?

(2)爸爸每星期工作多少小时?

以上就是人教新课标数学二年级上册:《8的乘法口诀》练习题全文,希望能给大家带来帮助!

小学频道二年级数学试题。

整式的乘法教案设计篇四

(1)要求出总产量应知道的条件是。

想求总产量应用题的数量关系是:

单产量×数量=总产量。

解括号中应填“单产量和数量”。

(2)如果知道衣服的价钱和买的件数,可以求出()。

想衣服的价钱就是单价;买衣服的件数也就是衣服数量。包含单价和数。

量的应用题的数量关系是:

单价×数量=总价。

解括号中应填“总价”。

【2】判断:下面的说法如果错了请改正。

(1)知道工效和时间就可以求出路程。

想工效×时间=工作总量速度×时间=路程。

解错了,应改正为:知道工效和时间就可以求出工作总量。或者是知道速度和时间就可以求出路程。

(2)“学校要购买3台录音机,每台需要450元,一共要用多少钱?”这道题目是已知单产量和数量,求总价。

想每件商品的价钱叫做单价。单价×数量=总价。

解错了,应改正为:这道题目是已知单价和数量,求总价。

(3)已知每小时走的路程和走了几小时,可以用乘法求出一共走的路程。

想每小时走的路程表示速度;走了几小时是指时间。速度×时间=路程。

所以用乘法求出一共走的路程是正确的。

解本题的说法正确。

(4)“修一条水渠,每天修20米,10天一共修多少米?”这道应用题的数量关系是工效×时间=工作总量。

想一天完成产品(任务)的多少叫做工效,因此“每天修20米”是工效;所用的几天叫做时间,所以“10天”是时间;一共完成的产品(任务)数量叫做工作总量,故“一共修多少米”是工作总量。可见,应用题的`数量关系是工效×时间=工作总量。

解本题的说法是正确的。

【3】编一道已知单价和数量求总价的应用题。

想单价×数量=总价。单价和数量要作为题目的已知条件,总价作为问题。

【4】用“8小时”编一道求工作总量的应用题。

想工效×时间=工作总量。“8小时”是时间,因此还要确定另一个已知条件“工效”。

解工人叔叔每小时能做5盒粉笔,1天工作8小时,工人叔叔一天能做多少盒粉笔?

【5】编一道求路程的应用题。

想速度×时间=路程。要求路程,需要速度和时间两个条件。

解高速列车每小时能行驶300千米,6小时一共能行驶多少千米?

【6】养鸡场每天出产鲜蛋400千克,7天一共出产鲜蛋多少千克?

(1)写出这道应用题的数量关系。

想题目求“一共生产鲜蛋多少千克?”,这是求总产量。

解单产量×数量=总产量。

(2)列式解答这道题目。

想每天出产的鲜蛋数量是单产量,即单产量是400;产蛋的天数是7天,即数量是7。

解400×7=2800(千克)。

答:7天一共产鲜蛋2800千克。

想求甲乙两地间相距多少米,实际上就是求甲地到乙地的路程。题目已经告知某人的骑车速度是每分钟300米,且所用的时间是12分钟,于是根据速度×时间=路程这一数量关系便可列式解题。

解300×12=3600(米)。

答:甲乙两地间相距3600米。

【8】先补充条件,再列式解答。

王伟每天写20个大字,__,一共写了多少个大字?

想题目求的是一共写了多少个大字。如果把写字看作是王伟的工作,那么,很容易知道题目实际上是求工作总量。其数量关系是工效×时间=工作总量。由此可知,这道应用题需要工效和时间两个条件,而工效是每天写20个大字,因此缺少的条件是时间。可补充为:他写了15天。

解补充的条件可以是:他写了15天。这时,可解答为:20×15=300(个)。

答:他一共写了300个大字。

想求卡车6分钟行多少米,也就是求路程。由速度×时间=路程可知,解答这道应用题需要两个条件:速度和时间。时间是6分钟,速度却没有直接告诉,因此先要求出卡车的速度。

解分步列式:

300+300=600(米)卡车每分钟行的路程。

600×6=3600(米)卡车6分钟行的路程。

综合列式:(300+300)×6=3600(米)。

答:卡车6分钟行3600米。

想要求做操的同学一共是多少,应知道两个已知条件:同学们站的行数和每行的人数。这两个条件只能根据小林站的位置推算出来。

的行数加起来便得到全体学生站的行数:6+12+1=19(行)。

再推算每行人数:因为从前面数起他是第8个,则他的前面有7个小;同时从后面数起他又是第14个,则他的后面有13个。把前后人数加起来再加上小林便得到每行人数:7+13+1=21(人)。由于每行人数同样多,因此可以算出做操的同学一共是多少。

解(7+13+1)×(6+12+1)=21×19=399(人)。

答:做操的同学一共是399人。

整式的乘法教案设计篇五

一、说教材:

《8的乘法口诀》是《义务教育课程标准实验教科书数学》二年级上册的内容。乘法口诀是学生学习乘法的开始,它是学生今后学习表内除法和多位数乘、除法的基础。教材的呈现是在学生学了“2——7的乘法口诀”以后,所以教材呈现形式没有给出一个完整的乘法算式和一句完整的口诀,意在让学生主动归纳出8的乘法口诀。体现了学生学习独立性要求的编写意图。熟练口算表内乘法,是每个学生应具备的最基本的计算能力。因此,本课的重点应该是让学生理解8的乘法口诀的形成过程;难点是怎样去熟记并利用乘法口诀来解决生活中的实际问题。

根据对教材的理解,我把教学目标定为:

1、知识与技能:

(1)让学生经历编制8的乘法口诀的过程,掌握和理解8的乘法口诀。

(2)引导学生探究找出8的乘法口诀的规律,并能用规律记口诀。

2、过程与方法:通过编制口诀,培养学生运用类推的方法学习新知识。

3、情感态度与价值观:激发学生的学习兴趣,让学生体验生活中处处有数学,会用数学知识解雇生活中的问题。

基于以上分析,我确定本节的教学重难点为:

教学重点:让学生结合已有的知识和经验,通过探索自主编出8的乘法口诀。

教学难点:探索8的乘法口诀的规律以及记忆方法。

二、说教学策略:

根据教学要求,结合教材的特点,为了更好地突出重点,突破难点,我采用了以下教学策略:

(一)教法。

1、提高学习兴趣,利用学生喜欢的动物———螃蟹引入课题,这样既能提高学生的学习兴趣,又能让学生体验生活中处处有数学。

2、抓起点,破难点。因为学生已经学习了2——7的乘法口诀,有了很高的学习起点,这时的学生对乘法口诀的形成过程应该说是清楚的,对8的乘法口诀也不会特别陌生。如果老师还是按照以往的思路先创设情境再一步步教学,势必已经无法引起学生的兴趣。因此放手让学生自己编乘法口诀。

3、游戏教学法。是新课改的教学理念做中学,玩中学的体现。这样的教学,更能体现“学生是学习数学的主人,教师是数学学习的组织者、引导者和合作者的功能。”

4、以小组合作的形式组织教学。体现了“自主探索、合作交流、实践创新”的数学学习方式。

5、学习形式多样化,为了让学生能记住口诀,采用了齐读、用自己喜欢的方式记8的乘法口诀、游戏对口令、开火车式背口诀、闭眼睛背口诀方式来记口诀。

6、设计多层次的练习,快乐大转盘,口算等练习,有意识的培养“用数学”的情感和态度,增加了他们学习数学的兴趣。

(二)学法。

通过这节课的教学,主要培养了学生以下学习方法:

1、本节课学生在游戏中运用学习成果,并把数学知识利用到显示生活中。

2、小组合作:这体现了新课标准要求学生要“有与同伴合作解决问题的体验”。培养学生共同合作,相互交流学习的方式。

三、教学过程:

本课的教学流程是温故知新、学前热身,创设情境、学中激趣,仔细观察、寻找规律,强化口诀、巩固基础,深入练习、发散思维,联系实际、应用口诀,总结方法、启迪后续共七个环节。

(1)温故知新、学前热身。

同学们,我们已经学习了1—7的乘法口诀,老师想考考你们,这有一组算式卡片,进行口算,部分算式要求说口诀。

(2)创设情境、学中激趣。

谈话引入:同学们算的真快,下面,老师给大家猜个谜语,八只脚,抬面鼓,两把剪刀鼓前舞,生来横行又霸道,嘴里常把泡沫吐,谁知道老师说的这个小动物是什么?(螃蟹)对!

我们来数一数,(出示动态课件)。

设问:两只螃蟹16条腿,你是用什么方法算出来的?

预设:加法或者乘法。

同学们的方法可真多!下面拿出老师课前发的小表格,用你自己喜欢的方法动手算一算(将3~7的写出来)。

这些得数都跟8有关,引入今天的课程:8的乘法口诀(板书)。

根据算式推出已经学过的5句口诀。并填写在上课发的表格上。

(指名订正并完善板书)。

(3)仔细观察、寻找规律。

设问:读完这些口诀,你发现了什么规律了吗?找规律。

预设:都是跟8相乘,依次多8或少8,积都是双数等。

师:知道了这些规律对我们记口诀有哪些帮助啊?

预设:如果忘了可以用前一句的积加八,或者后一句的积减八(板书)。

师:没错,看来同学们都知道了口诀的规律,那我们利用这些规律,更快更准确的记一记这些口诀,我们自己小声的背一背这些口诀!

(4)强化口诀、巩固基础。

(对口令)这么多同学都愿意,那跟你的同桌互相对口令(开始)。

打开书进行口算比赛,82页,第四题,开始做,全对的同学,奖励自己一个小星星!

谈话:同学们,我们的口诀学习这么好,连大森林里的小动物们都来请你们帮忙了,你能帮他找到自己的好朋友吗?(出示ppt课件)。

继续引入练习题:小动物们很感谢我们,送来了又香又甜的大苹果,能不能吃到,就要靠你们的本事啦。(出示ppt课件)。

引入数字大转盘游戏,你能迅速说得数吗?(出示ppt课件)。

(5)深入练习、发散思维。

谈话:调皮的小螃蟹,又和我们藏起了猫猫,躲在他们身后的数字娃娃,是几呢?(逆向思维)(出示ppt课件)。

同学们今天表现得真不错!老师奖励你们一首诗词,在听的过程中找一找,这首诗词跟8有关吗?(乘法算式)(出示ppt课件)。

(6)联系实际、应用口诀。

解决问题:一本书8元,两本、四本、六本的价钱,列算式……(出示ppt课件)。

你还能提出生活中用到8的乘法口诀的例子吗?

(7)总结方法、启迪后续。

同学们,今天,我们通过编口诀,找规律,背口诀,用口诀来学习了8的乘法口诀,相信我们能靠自己的力量去解决生活中的数学问题了,而且老师相信,你们掌握了这四种方法,学习9的乘法口诀就更容易了,对吗?今天的作业是背诵5遍8的乘法口诀。

四、课后反思:

课堂上,我从学生已有知识入手,让他们说说你都知道那些8的乘法口诀。找出那些是已经学过的口诀。当学生能说出没学过的口诀,对学生给予肯定及表扬。

因为通过前面的1~7的乘法口诀的教学,学生对口诀所表示的意义已经很明确了,所以在这没有做很多文章,而是让学生直接说出学过的“七八五十六”这句口决的所能计算哪两个算式,并说出意义。

最后一句是“八九七十二”。因为学生已经掌握了老师的教学思路,所以教师不必再带着他做。于是,我提出,请同学们自己读读口诀,编一道能用上这句口决的题,同桌间互相说说。学生编的题有的是用乘法计算。不仅熟悉了口诀的含义,还了解了他的来源。

在出示了全部的8的乘法口诀后,请学生说说“你有什么好方法来记住这些口诀”。学业生多种多样的记忆方法,其实也就是8的乘法口诀的规律,所以,这样,能让学生学习得更有兴趣,掌握得更牢固。

我觉的这节课能吸引学生的另外一点就是练习题中课件的展示。在练习题的安排上,我采用不同的题型来开拓学生的思路,不同的出示方式来激发学生的兴趣。如:在学生做将口诀与正确的算式连线这道题时,我为每个正确答案输入一句鼓励的话,当学生答对后,以此来激励他们。

当然,在这节课中也存在着不足,例如在记口诀的过程中,应形式多样,在以后的工作中,我要时刻注意观察学生,从为学生服务这个观念入手。

将本文的word文档下载到电脑,方便收藏和打印。

整式的乘法教案设计篇六

教学内容:

教科书第76页的例1及“做一做”的习题,练习二十二中的第1、2题,:7的乘法口诀。

教学目的:

1.使学生知道8的乘法口诀的来源,掌握8的乘法口诀,并会运用口诀正确计算。

2.通过8的乘法口诀的教学,培养学生初步的观察、分析、推理、概括、记忆等能力。

3.结合编、记、用8的乘法口诀的过程,渗透“联系”的观点,向学生进行辩证唯物主义观点的启蒙教育。

教具、学具准备:

教师准备cai课件、实物投影。学生准备游戏用卡片。

教学过程:

一、复习引入。

1.口算下面各题,并说出用哪一句口诀。

7×67×22×57×7。

4×75×66×34×5。

2.准备题:每次加8,把得数填在空格里。

学生独立填写,集体汇报。

让学生从1个8是8读到8个8是64。

3.揭题:“求几个8相加有更简便的方法吗?”(编出8的乘法口诀)(板书:8的乘法口诀)。

二、探究新知。

教学例1:摆1个大正方体要用几个小正方体?摆2个呢?……摆8个呢?

1.课件演示,学生列式。

(1)演示:cai课件立体展现8个小正方体,拼成一个大正方体的过程。

(2)提问:摆一个大立方体要用几个小正方体,就是求几个8?怎样列算式?(8×1=8)。

(3)再演示:cai课件逐步增加大正方体的个数,并让学生独立列出2个8、3个8……8个8的乘法算式。

(4)汇报:指名汇报乘法算式及结果,全班核对。

(5)追问:8×4=32中32是怎么来的?8×7=56中的56呢?

2.分组讨论,试编口诀。

(1)指导:8×1=8表示几个8?乘法口诀如何编写?(一八得八)2个8呢?

(2)讨论:另外几句口诀,请同学们根据乘法的意义试一试自己编出来,并填写在教科书上。

(3)反馈:指名汇报小组讨论编写出的乘法口诀。

让学生再说一说每句口诀的含义。(配合学生回答,演示cai,闪烁相应的大正方体,算式与口诀。)。

3.寻找规律,学记口诀。

(1)分组讨论并思考:有什么办法可以记住8的乘法口诀?

(3)设疑:如果六八得多少这句口诀忘了该怎么办呢?(cai演示:隐藏“四十八”。)。

引导学生回答,可以想五八四十,5个8加1个8是6个8,40+8=48;也可以想七八五十六,7个8减1个8是6个8,56-8=48。

4.形式多样,掌握口诀。

(1)读口诀:全班齐读,交错读,学生自由读。

(2)背口诀:师生对口令,同桌对口令,集体拍手背。

(3)把口诀补充完整。

二八()()八四十八。

五八()八()六十四。

四()三十二()八二十四。

5.新课小结,学生质疑。

三、巩固应用。

2.“做一做”的第2题。

8×48×38×28×7。

8×18×58×88×6。

学生汇报时,要求说说用了哪句口诀。

3.“做一做”的第3题。

8×2+88×5+88×7+8。

8×3+88×4+88×6+8。

4.第78页的第2题。

(1)6个8相加得多少?

(2)8和4相乘的积是多少?

学生独立练习,集体订正。

5.卡片游戏:同桌两名同学为一组,其中一人出示如“二八()”的卡片,另一人则出示标有结果的.卡片。

板书设计:

教学设计说明:

本节课是在学生已经掌握2~7的乘法口诀并对乘法的意义和口诀的来源都比较熟悉的基础上学习8的乘法口诀。新课的引入安排了每次加8的准备题,利用乘法的定义,加法的法则等基础知识,为编写8的乘法口诀做好充分铺垫,为学生自主学习创造好条件。

新课部分,引导学生分组合作。之后又深入地组织学生观察、比较,寻找规律,不仅便于学生掌握口诀,更培养了学生思维的灵活性。最后,让学生多种感官协同运作,将枯燥的背口诀过程转变成了形式丰富的数学活动。

练习组织,有层次、有坡度,并赋予了趣味性,使学生始终处于盎然的情绪中。另外、本节课还充分发挥了cai课件形、声、光、色的多项功能,借助闪烁、旋转、隐藏、呈现等手段,有效地突破了难点,帮助学生清楚地理解了口诀、算式、图形之间的联系。

整式的乘法教案设计篇七

3×4=126×7=424×2=82×6=121×7=77×7=49。

(二)引出新课。

师:1~7的乘法口诀同学们学得真好,今天我们将学习8的乘法口诀,相信同学们也能自己编出8的乘法口诀,并能用这些口诀进行计算。板书课题:8的乘法口诀。

二、学习例2。

课件出题例2的插图。

(一)提问:从这张图中你知道了哪些信息?

(我知道军乐队在演奏;军乐队站成了8排,每排8个人。)。

提问:同学们,你们看看小狗是怎样计算一共多少人的?

1排有8人;。

2排有8+8=6人;。

3排有8+8+8=4人;。

4排有8+8+8+8=32人;。

5排有8+8+8+8+8=40人;。

6排有8+8+8+8+8+8=48人;。

7排有8+8+8+8+8+8+8=56人;。

8排有8+8+8+8+8+8+8+8=64人。

(二)提问:小狗的计算简便吗?你能用更好地办法计算吗?

(四)汇报交流,教师做巡视、指导。

b指名同学说一下自己背诵的窍门。

c比如,怎么记5个8是几?可以想:6个8是48,用48减8得40。或者,4个8是32,用32加8得40啊。

(六)谁能说一下乘法口诀的意义?

比如,8×1=8就表示1个8相加;8×2=16表示2个8相加。

三、课堂练习。

计算有关8的乘法的式题,并能说出是用哪句口诀的。

四、拓展提升。

一只螃蟹八条腿,两只螃蟹()条腿,三只螃蟹()条腿,四只螃蟹()条腿,五只螃蟹()条腿,六只螃蟹()条腿,七只螃蟹()条腿,八只螃蟹()条腿。

【附答案】一只螃蟹八条腿,两只螃蟹(16)条腿,三只螃蟹(24)条腿,四只螃蟹(32)条腿,五只螃蟹(40)条腿,六只螃蟹(48)条腿,七只螃蟹(56)条腿,八只螃蟹(64)条腿。

课后小结。

提问:这节课你有什么收获?

2.理解了每一句乘法口诀的意义。

3.能利用口诀解决简单的实际问题,很高兴学会了这么多。

整式的乘法教案设计篇八

教学要求:

i能正确地、熟练地应用一个因数是一位数的乘法法则进行计算。

2.通过练习,体现认真、细致的重要性,培养良好的计算习惯。

教学过程:

一、知识铺垫:

一个因数是一位数的乘法法则。

二、练习设计:

1.听算:(只写得数)。

50072143203100094302。

2.找出下面各题的错误,并改正。

1355=5252696=656442735=8456。

3.计算下面各题。

(1)5乘173是多少?(2)4个2531是多少?(3)23的2倍是多少?

4.课本p80第2、3题。其中。

5.第4题可用比赛形式(看谁用最短的.时间完成或3分钟内全做对的给予表扬。

6.做好练习的订正工作。

三、作业:

1、34548967983695。

整式的乘法教案设计篇九

1、知识与技能。

我们要让学生进一步理解乘法的好处,经历探索5的乘法口诀的过程,掌握5的乘法口诀,能运用口诀正确地进行乘法计算。

2、过程与方法。

我们要让学生在参与学习的过程中,逐步发现一些简单规律,初步培养观察、分析、推理的潜力。

3、情感态度与价值观。

使学生在活动中积累用心的学习情感,培养学习数学的信心。

教学重难点。

教学方法:自主、合作、探究。

教具:课件。

教学过程。

一、我会学习(出示课件),学生独立完成。

1、把加法算式改写成乘法算式。

3+3+3+3+3+3=x()或()x()。

4+4+4+4=()x()。

1+1+1+1=()x()或()x()。

2+2+2=()x()或()x(。

2、写出乘法算式中各部分的名称。

6x3=18。

()()()。

3、读出下列乘法算式,并说出它的含义。

4x3读作:()表示()个()相加,或()个()相加。

3x3读作:()表示()个()相加。

学生代表展示,其他小朋友评价、补充。

二、故事引入。

生:想。

师:这节课我们一齐来学习5的乘法口诀(出示课件),板书课题。

三、我来探究。

1、猜谜语(出示课件)。

两棵小树十个叉,不长叶子不开花。能写会算还会画,天天干活不说话。

师:小朋友们猜一猜这是什么?

生:手。

生:5个(出示课件,一个手掌)。

师:一只手有5个手指,也就是求几个5是多少,是几个5呢?

生:1个5,

师:1个5是几?

生:是5(同步出示课件)。

师:1个5怎样用乘法表示?

生:1x5=55x1=5。

师:我们给1个5编个口诀好吗?

生:一五得五。

生:五一得五。

师:小朋友们认为这两句哪句对?

生:都对。

师:比较一下,哪句更好?

生:一五得五。

师:对,因为人们习惯上喜欢把小数放在前面,大数放在后面。

生齐读:一五得五。

师:这句口诀是什么意思呢?口诀前半句“一五”的“一”和“五”表示什么?

生:1个5相加。

生:1x5。

生:一五的“一”和“五”表示两个乘数。

师:真棒!那口诀的后半句中的“五”表示什么呢?

生:积。

师:小朋友们真聪明,很爱动脑,请为自己鼓掌3下。

生:鼓掌1、2、3。

师:我们刚才鼓掌用的是几只手?

生:2只(同步出示课件)。

师:2只手是几个5呢?

生:2个5。

师:2个5是几?怎样用乘法表示?

生:是10.,2x5=105x2=10。

师:那我们给2个5编句口诀好吗?

生:二五一十。

师:“二”和“五”表示什么?“一十”又表示什么?

生齐答:“二”和“五”表示乘数,“一十”表示积。

生:前半部分表示两个乘数,后半部分表示积。

师:说的真好!那要是3只手、4只手、5只手呢?你能模仿刚才的方法编出口诀吗?

(出示课件3只手、4只手、5只手)。

学生活动,把编口诀的过程写在练习本上,如果有困难,能够和小组里的同学一齐商量。

老师巡视,帮忙有困难的学生。

请每个小组派一个代表到黑板上写出编的口诀,并说一说编的过程,(同步出示课件)其他的小朋友能够进行评价、补充。

3、记忆口诀。

请小朋友们自由读一读5的乘法口诀,看谁最先记住这些口诀。

师:记住了吗?你是怎样记住了?发现什么规律了吗?

生:5乘几结果个位上不是5就是0。

生:用手指帮忙记忆,一个五、两个五......

4、游戏练习。

对口令:师生互对、男女生互对、同桌互对。

学生齐背口诀。

三、我来自测(出示课件)。

1、把口诀补充完整。

一五()二五()三五()四五()五五()。

2x5=(),口诀是()。

5x3=(),口诀是()。

1x5=(),口诀是()。

5x4=(),口诀是()。

5x5=(),口诀是()。

四、拓展延伸(出示课件)。

床前明月光,

疑是地上霜,

举头望明月,

低头思故乡。

你能提出一个数学问题并解答吗?

五、我会反思。

这节课,小朋友们学的高兴吗?你学会了什么?谈一谈你的收获。

整式的乘法教案设计篇十

教学目标:

1.在认识几个几的基础上学习乘法的含义,知道乘法算式各部分的名称,会读、写乘法算式。

2.能初步用乘法概念观察现象,在与加法的比较中体会用乘法写比较简便。

3.培养学生的观察推理能力和学习数学的兴趣及合作意识。

教学重难点:理解几个几相加可以用乘法算,认识乘法的意义。

教学准备:多媒体课件、卡片、实物等,生准备20个圆片。

教学过程:

一、创设情景,谈话导入。

1、师:小朋友,你们喜欢自己的学校吗?今天我们一起去动物学校去参观。(演示课件)。

2、算式分类:

(2)你为什么要这样分?

二、认识几个几。

1、难题解决了,让我们进入动物学校,看,小动物们正在活动呢!你看到了哪些小动物?

2、从图中你了解到兔子有几只?你是怎样数的?

为什么要这样数?(引导学生说一说兔子是几只几只站在一起的)。

有几个2只?(板书:3个2)。

3个2只是几只呢?谁能用我们学过的方法来算一算。

板书:2+2+2=63个2是6。

3、鸡有几只呢?你是怎样数的?

为什么要这样数?(引导学生说一说鸡是几只几只站在一起的)。

是几个3?(板书:4个3)。

4个3是多少呢?你能用学过的方法来算一算吗?

板书:3+3+3+3=124个3是12。

4、小结。

两个加法算式有什么共同的地方?

师:第一个算式中加数都是2,第二个算式中加数都是3。两个算式中的加数都是一样的。也就是说,这些小动物每一堆都是同样多的,每堆有3只,有这样的4堆,我们就说是4个3,每堆有2只,有这样的3堆,我们就说是3个2。

5、摆一摆。

像这样的几个几,你们会用手中的花片摆一摆吗?

(1)请大家拿出圆片摆一摆。每堆摆2个圆片,摆4堆。看看摆了几个2?(4个2)求一共摆了几个圆片,用加法怎样列式?(2+2+2+2=)。

(3)请学生自己摆,自己先想好几个一堆,摆这样的几堆。

先自己摆一摆。再和同桌说一说自己摆了几个几,求一共摆了几个几,加法算式是怎样的?

再指名说:一堆摆几个,摆了这样的几堆,是几个几?算式是怎样的。

6、动物学校的动物也摆了一些花片。

小动物们一共摆了多少个花片?你是怎样看的?怎样列式?是几个几?(横着看,每排5朵,有3排,一共的朵数是3个5相加。5+5+5=15;竖着看,每排3朵,有5排,一共的朵数是5个3相加。3+3+3+3+3=15)。

请学生观察:这两道题的得数相同吗?为什么呢?

小结:不管是3个5相加,还是5个3相加,他们的得数是相同的。

三、认识乘法。

1、师:我们再来参观动物学校的电脑教室。

一共有多少台电脑?你是怎么知道的?(我是2、4、6、8这样数出来的;我是加出来的;)。

根据回答板书:2+2+2+2=8,这里有几个2相加?板书:4个2相加。

求4个2是多少,还可以用一种新的运算方法乘法来计算。(板书:乘法)。

可以写成24=8,也可以写成42=8,带学生示范写。

看了这两个算式,你有什么问题想问老师?

请小朋友一起来课件上小豆夹的话,找到后互相说一说,再指名说。

这个符号叫什么?(板书:乘号)。

24怎么读?(板书:2乘4)。

42怎么读(板书:4乘2)。

乘号前面的数和乘号后面的数叫什么?(分别板书:乘数)。

=后面的数叫什么?(板书:积)。

2、这间电脑教室有多少台电脑呢?是几个2?(10个2)。

用加法和乘法你会列式吗?

用加法算:2+2+2+2+2+2+2+2+2+2。

用乘法算:210或者102。

3、在动物学校还有一个更大的电脑教室,一共有多少台电脑呢?(显示100个2)。

你想用什么方法算?为什么?

小结:看来求几个几用乘法计算比较简便。

四、应用拓展。

1、试一试。

动物学校的小动物邀请小朋友来玩长绳。每组有多少人?(5人)。

你能看图列出加法算式和乘法算式吗?

独立填写69页的下面的算式。

指名说加法算式和乘法算式。再一起读一读,比较哪种写法比较简便。

2、想想做做1。

小朋友们在参观中学到了不少本领,动物们也给我们带来了一些礼物。是什么呢?

师:1盒钢笔有几枝?一共有几个2枝?用加法怎样列式?用乘法呢?1束花有几朵?一共有几个5朵?先用加法列式,再列乘法算式。

学生填书、汇报、交流。

3、游戏:老狼老狼几点钟。

教师说明游戏规则:请12位学生上台扮演小动物,台下学生一齐问:老狼老狼几点钟,老狼说2点钟,台上小朋友就2个2个站在一起,3点钟,台上小朋友就3个3个站在一起,请台下小朋友说一说台上小朋友站成了几个几,乘法算式是怎样的。

请12位小朋友到台上,老狼分别说2点、3点、4点、5点、6点,学生活动并列式。

师小结:小朋友们游戏做得真棒,听听大灰狼对我们说什么?(播放录音)。

五、沟通联系。(机动)。

联系欢迎牌上的算式和新课学习中的主题图(鸡和兔),让学生运用所学知识说一说这些算式可以怎样用乘法来表示。

六、应用升华,巩固新知.

今天我们认识了一种新的运算方法,它叫乘法。

在我们日常生活种经常会碰到这种可以用乘法计算的问题。乘法在生活中应用很广泛,如,一双筷子有2根,一家3口人就用3双筷子吃饭,也就是3个2根。乘法算式是32=6或23=6;一只手有5个手指,一双手就是2个5只可以用25=1052=10计算。

将本文的word文档下载到电脑,方便收藏和打印。

整式的乘法教案设计篇十一

教学目标:

1、通过探索乘法分配律的活动,进一步体验探索规律的过程,并能用字母表示。

2、经历共同探索的过程,培养解决实际问题和数学交流的能力。

3、会用乘法分配律进行一些简便计算。

重点难点:

1、指导探索乘法分配律。

2、发现并归纳乘法分配律。

方法指导:

通过讲学练相结合,设计相应的练习题,逐步理解抽象的乘法分配律。

教学过程:

具体内容。

一、激趣导入。

(约3分钟)。

创设情境,提出问题。

2、学生思考:(1)有几种搭配方案。

(2)选择你喜欢的一种方案,并算出总价。

(学生自己选择方案并在练习本上完成。师强调:是买4套衣服)。

二、自主学习。

(约7分钟)。

(一)组内研讨,确定方案。

1、组内研讨。

(1)一共有几种搭配方案?

(2)介绍自己的方案,并说一说,你推荐的理由。

(3)说说你推荐的方案,需要花多少钱?你是怎么算的?

合作交流。

(约10分钟)。

2、汇报交流。

师:哪一个同学想先来给老师推荐他的方案?

师:要想求4套这样的衣服需要多少元?可以先求什么,再求什么?

分别列式解答。

师:因为总价相等,这两个算式我们可以用什么符号把它们连接起来?(学生回答后,师在两个算式中间用等号连接)。

师:这个等式怎么读呢?

生尝试读等式。

(预设学生读法:a.225加上75的和乘4等于乘225乘4加75乘4。

b.225加上75的和乘4等于225和75分别与4相乘的积再相加。)。

3、研究其它方案。

由学生依次汇报出其余3种不同的搭配方案,并引导说出是怎么想的。计算后分别加上等号。

教师板书。

一套×4=4件上衣+4条裤子。

(225+75)×4=225×4+75×4。

(225+125)×4=225×4+125×4。

(175+75)×4=175×4+75×4。

(175+125)×4=175×4+125×4。

精讲点拨。

(约8分钟)。

(二)观察比较、猜测验证。

1、观察比较。

2、提出猜想。

师:观察上面的等式,左右两边的算式什么变了什么没变?

你们有什么发现?

3、举例验证。

让学生再举出一些这样的例子进行验证,看看是否也有这样的规律?

学生汇报,教师根据汇报板书。

(三)总结规律,概括模型。

1、总结规律。

师:刚才同学们发现了数学中的一个规律,很了不起。大家知道这是什么规律吗?(生猜测)。

师:这个规律就是我们今天学习的乘法分配律。(齐读)你能说一说什么叫乘法分配律吗?

2、用字母表示。

师:用字母如何表示乘法分配律?

三、测评总结(约12分钟)。

巩固应用,训练提升。

1、请你根据乘法分配律填空。

(12+40)×3=×3+()×3。

15×(40+8)=15×()+15×()。

78×20+22×20=(+)×20。

66×28+66×32+66×40=(++)×40。

教师结合学生回答,介绍前两道为乘法分配律的正向应用,后三道属于乘法分配律的反向应用。

2、火眼金睛辨对错。

56×(19+28)=56×19+56×28。

(18+15)×26=18×15+26×15。

(11×25)×4=11×4+25×4。

(45-5)×14=45×14-5×14。

强调:两个数的差与一个数相乘,也可以把它们分别与这个数相乘,再相减。

3、用乘法分配律计算下面各题。

(40+4)×2539×8+39×6-4×39。

4、拓展提高。

你能用乘法分配律解决这道题吗?

86×101。

四、课堂小结。

说一说,今天我们研究了什么?你有什么收获。

板书设计:

整式的乘法教案设计篇十二

教学目标:

1、引导学生借助已有知识和经验编出7的乘法口诀,并掌握和熟练运用。

2、培养学生的推理和应用知识解决实际问题的.能力。

教具准备:

7的乘法口诀卡片、转盘。

教学过程:

一、复习引入。

1、直接写得数。

26=44=3365=11=64=54=46=44=51=22=14=。

2、准备题。

每次加7,把得数说出来.

(1)指名板演,其余在练习本上练习。

(2)集体评析。

提问:1个7是多少?2个7是多少呢?21是怎样得到的呢?几个7相加得28?

3、揭示课题:

师:1到6的乘法口诀大家学得很好,今天我们来学习7的乘法口诀。相信同学们能自己编出7的乘法口诀,并能用这些口诀进行计算。

板书:7的乘法口诀。

二、新课。

1、猜想。

根据学生回答板书:七()。

师:七的前面是哪些数?七的后面是什么?

2、生试编。

3、汇报。

学生口述。

教师引导学生借助准备题检查编的口诀是否正确,并理解口诀意义。

学生齐读七的乘法口诀。

5、交流。

6、记忆。

按顺序齐背口诀。

教师指着准备题中的得数,学生说出口决。

学生阅读课本,填写例题中的算式与口诀。

7、应用.完成想一想.

三、巩固练习。

1、完成想想做做。

2、集体订正。

四、课堂总结。

学生谈谈这节课的收获。

教师小结。

整式的乘法教案设计篇十三

教学内容:

课本第78页例3,练习十八第1――4题。

教学目标:

1、使学生掌握两、三位乘一位数连续进位的方法,并能正确地进行计算。

2、培养学生的分析、概括能力。

1、培养学生主动获取知识的良好学习习惯。

重点难点:

教具准备:

口算卡片、挂图。

教学过程:

一、学前准备:

1、口算下面各题。

4×4+25×7+46×5+1。

3×4+27×8+56×7+5。

3×9+56×9+82×9+3。

2、说一说计算两、三位乘一位数时应该怎样计算?(从个位乘起,用一位数依次去乘多位数的每一位,哪一位的积满几十,就向前一位进几。)。

3、计算下面各题。请三位同学板演,并说说自己是怎样计算的。

29142131。

×3×4×7。

二、学习新知:

1、出示例3的情境图。

2、引导学生说出图意。

3、怎样列式,为什么?

24×9,也就是求9个24是多少。

4、先估算一下,9箱大约是多少瓶?

10箱是240瓶,9箱一定比240瓶少。

5、用竖式计算。

请一位同学到黑板板演,其他同学在练习本上试算,做完后共同订正。

24。

×9。

————————。

216。

请计算正确的同学说说计算过程中需要注意的地方在哪里:个位4×9=36,向十位进3后,十位上2×9=18,表示18个十,18个十还要加上刚才进上来的3个十,共21个十,这个2应写在积的百位上,1应写在积的个位上。

师小结:用一位数乘另一位的十位后要看个位上乘得的积有没有进位,如果有进位,不要忘记加上进位的数,如加上进位的数后又需进位,那么还需向百位进位或把最高位写在百位上。

6、练习,用竖式计算。

68×7=69×8=72×5=76×4=。

学生独立完成,算完后组织学生讨论,在计算过程中,这几道题的主要区别在哪里?(有两道题十位乘完后再加上进位数后最高位没有改变,有两道题加上进位数后最高位又增加了1。

三、巩固练习:

1、自己列算式计算:137×6=。

2、学校运动会开幕式,有4个方阵,每个方阵128人,一共有多少人?

3、说说上面两道题计算中需要注意什么?

四、课堂作业:

1、练习十八第1题。

2、练习十八第2题。

3、练习十八第3题。

4、练习十八第4题。

五、思维训练:

最大的一位数与最大的两位数的乘积是多少?

整式的乘法教案设计篇十四

4/5b/a()b/a。

a/54/b()4/5。

2、一个真分数乘以一个假分数,结果大于真分数,对吗?

3、a、b互为倒数,那么1/a、1/b也互为倒数,对吗?

b、1.分数乘以整数的意义是什么?

2.一个数乘以分数的意义是什么?一个数乘以分数的计算法则是什么?

3.计算带分数的乘法应注意些什么?

4.分数乘法的简便运算可以应用哪些运算定律?

5.解答分数乘法应用题的关键是什么?

6.倒数的意义是什么?

学生回答这些问题时,只要意思说得正确就可以了。有些问题还可以问一些与之相。

关的'问题,如运算定律的表达式以及字母可以表示什么数等等。

整式的乘法教案设计篇十五

1.找1。

甲是乙的35。乙是甲的35。

甲比乙的35多1。乙比甲的35少1。

甲的35和乙同样多。

学生独立判断,集体订正。让学生说说是怎样判断的。教师可再补充几题:

2.做口算练习。

3.求下面各数的倒数。

2/71/96200.6。

学生独立解答,教师巡视,发现问题及时纠正。

5.已知a4/3=11/12b=3/3c,a、b、c都不是0,谁大?

【本文地址:http://www.pourbars.com/zuowen/13839062.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map