比和比例数学教案(优质20篇)

格式:DOC 上传日期:2023-11-23 05:41:13
比和比例数学教案(优质20篇)
时间:2023-11-23 05:41:13     小编:琉璃

教案是教师为了指导教学活动而制定的一份详细计划。教案的编写要考虑到学生的学习特点和水平,采用差异化教学,提供个性化的学习支持。高质量的教案可以提高教学效果,培养学生的学习兴趣和学习主动性。

比和比例数学教案篇一

知识目标使学会解比例的方法,进一步理解和掌握比例的基本性质。

能力目标联系的生活实际创设情境,体现解比例在生产生活中的广泛应用。

情感目标利用所学知识解决生活中的问题,进一步培养综合运用知识的能力及情度、价值观的发展。

重点使学会解比例的方法,进一步理解和掌握比例的基本性质。

难点体现解比例在生产生活中的广泛应用。

教学过程。

一、旧知铺垫。

1、什么叫做比例?

3、比例有几种表示形式?

二、探索新知。

1、出示埃菲尔铁挂图。

2、出示例题。

(1)、读题。

(2)、从这道题里,你们获得了哪些信息?

(3)、在这信息里,关键理解哪里?(埃菲尔铁模型与埃菲尔铁塔的高度比是1:10)。

(4)、这句话什么意思?(就是埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10)(板书)。

(5)、还有一个条件是什么?(埃菲尔铁塔的高是320米)。

(6)、我们把这个条件换到我们的这个关系中,就是(板书:埃菲尔铁塔的高度:320=1:10)。

(7)、这道题怎么列比例式解答呢?请同学们想想,想出来的同学请举手。

(8)、根据学生的反馈板书:“解:设埃菲尔铁塔模型的高度设为x米”,把这个x代入这个数学模式中就组成了一个比例式(板书x:320=1:10)。

(9)、这样在组成比例的四个项中,我们知道其中的几个项?还有几个项不知道?

(10)、不知道的这个项,我们来给它起个名字,好不好?叫做什么?(板书:未知项)。

(11)、指着x:320=1:10,问:“这个未知项是多少呢?那怎么办?”谁上来做做?(指名板演)。

(12)、为什么可以写成这样的等式呢?10x=320×1(根据比例的基本性质)。

(13)、对了,把上面的比例式改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,把比例式改写成了一个等式,这个等式还是一个什么样的等式呀?(含有未知数的等式)。

(14)、这样含有未知数的等式,叫做方程。那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)出示比例的意义。

(15)、我们解出的答案对不对呢?怎么知道?可以怎样检验?(把结果代入题目中看看对应的比的比值是不是能成比例.)。

(16)这道题还有其他的解法吗?(引导学生从比例的意义上来解。

2、教学例3。

过渡:我们知道比例还有另一种表示形式,当是=这样形式的时候,又该怎么解呢?

(1)、出示例3,问:这题与刚刚那个比例有哪些不同?

(2)、解这种比例时,要注意些什么呢?(找出比例的外项、内项)。

(3)、在这个比例里,哪些是外项?哪些是内项?

(4)、解答(提问:你们是怎么解答的?)、检验。

(5)、=。

总结这节课主要学习了什么内容?

作业布置教材43页5题。

板书设计解比例。

例3、解比例=。

解:2.4=1.5×6。

=×。

比和比例数学教案篇二

反比例。(教材第47页例2)。

1.使学生理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。

2.让学生经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。

引导学生总结出成反比例的量的特点,进而抽象概括出反比例的关系式。利用反比例的意义,正确判断两个量是否成反比例。

投影仪。

复习导入

1.让学生说说什么是正比例,然后用投影出示下面的题。

下面各题中哪两种量成正比例?为什么?

(1)每公顷产量一定,总产量和公顷数。

(2)一袋大米的重量一定,吃了的和剩下的。

(3)修房屋时,粉刷的面积和所需涂料的数量。

教师:如果加工零件总数一定,每小时加工数和加工时间会成什么变化?关系怎样?这就是我们这节课要学习的内容。

1.教学例2。

创设情境。

教师:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?

出示教材第47页例2的情境图和表格。

请学生认真观察表中数据的变化情况,组织学生分小组讨论:

(1)水的高度和底面积变化有关系吗?

(2)水的高度是怎样随着底面积变化的?

(3)水的高度和底面积的变化有什么规律?

学生不难发现:底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。

教师板书配合说明这一规律:

30×10=20×15=15×20=……=300

教师根据学生的汇报说明:高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。

2.归纳反比例的意义。

组织学生小组内讨论:反比例的意义是什么?

学生小组内交流,指名汇报。

教师总结:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

3.用字母表示。

学生探讨后得出结果。

x×y=k(一定)

4.师:生活中还有哪些成反比例的量?

在教师的引导下,学生举例说明。如:

(1)大米的质量一定,每袋质量和袋数成反比例。

(2)教室地板面积一定,每块地砖的面积和块数成反比例。

(3)长方形的面积一定,长和宽成反比例。

5.组织学生将例1与例2进行比较,小组内讨论:

正比例与反比例的相同点和不同点有哪些?

学生交流、汇报后,引导学生归纳:

相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。

不同点:正比例关系中比值一定,反比例关系中乘积一定。

6.你还有什么疑问

?如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。

反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。

课堂作业

1.教材第48页的“做一做”。

2.教材第51页第9、10题。

答案:1.(1)每天运的吨数和所需的天数两种量,它们是相关联的量。

(2)300×1=150×2=100×3=300(答案不唯一),积都是300。积表示货物的总量。

(3)成反比例,因为每天运的吨数变化,需要的天数也随着变化,且它们的积一定。

2.第9题:成反比例,因为每瓶的容量与瓶数的乘积一定。

第10题:5010012

说一说成反比例关系的量的变化特征。

课后作业

1.完成练习册中本课时的练习。

2.教材51~52页第8、14题。

答案:

2.第8题:成反比例,因为教室的面积一定,而每块地砖的面积与所需数量的乘积都等于教室的面积54m2。

第14题:(1)斑马和长颈鹿的奔跑路程和奔跑时间成正比例。

(2)分析:可以通过图像直接估计,先在横轴上找到18分的位置,然后在两个图像中找到相应的点,再分别在竖轴上找到与这个点对应的数值;也可以通过计算找到。

解答:从图像中可以知道斑马10min跑12km,那么1min跑1.2km,18min跑1.2×18=21.6(km)。

从图像中可以知道长颈鹿5min跑4km,1min跑0.8km,18min跑0.8×18=14.4(km)。

(3)斑马跑得快。

第3课时反比例

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

用x和y表示两种相关联的量,x和y成反比例关系用字母表示为×y=k(一定)

正比例与反比例的相同点和不同点:

相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。

不同点:正比例关系中比值一定,反比例关系中乘积一定。

比和比例数学教案篇三

教学内容:练习八的第5―9题。

教学目的:通过练习,使学生理解和掌握用正比例,反比例的知识解答应用题的。

方法。

教学过程:

一、复习。

1.什么叫成正比例的量?它的关系式是什么?

2.什么叫成反比例的量?它的关系式是什么?

3.做练习八的第5题:判断下面每题中的两种量成什么比例关系。

二、课堂练习。

教师:上节课我们学习了用正比例、反比例的意义和判断来解应用题,今天我们要通过练习,进一步理解和掌握用正比例、反比例意义和判断来解答应用题的方法。

1.做练习八的第6题。

让学生口头列出比例式,教师板书出来。

教师小结:像这道题,问题虽然变了,但题中基本数量关系没有变。晒出的盐和海水的吨数成正比例关系,解答这样的.应用题的关键:一是要正确判断相关联的两种量是成什么比例,二是要找准相关联的量中相对应的数:

2.做练习八的第7、8题。

集体订正后,指名讲一讲是怎样想的。

3.做练习八的第9题。

做题前,提示学生选用哪三个数据都可以,但所叙述的事情要符合实际情况。订正时,如果学生在编题中的语言不规范,要注意纠正。

比和比例数学教案篇四

请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的`一种应用。今天我们就来学习这方面的知识。

1.什么是比例尺(自学书上内容,学生交流汇报)。

出示图例1。

在绘制地图和其它平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。这时,就要确定图上距离和相对应的实际距离的比。一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

让学生看图。

我们经常在地图上看到的比例尺有这两种:1:100000000是数值比例尺,有时也可以写成:1/,表示图上距离1厘米相当于实际距离100000000厘米。

还有一种是线段比例尺(看北京地图),表示地图上1厘米的距离相当于地面上50km的实际距离。

出示图例2。

在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在图纸上。下面就是一个弹簧零件的制作图纸。

比和比例数学教案篇五

[设计意图]通过多种形式的练习,加强了学生对用数据说明成反比例的量和反比例关系的学习。使不同层次的学生从中体会到成功的快乐。

同学们,通过上节课的学习,我们已经学会了两个成反比例的量和它们的关系,今天我们一起来回顾复习一下成正比例的量和成反比例的量。

1、判断。

(1)一个因数不变,积与另一个因数成正比例。()。

(2)长方形的长一定,宽和面积成正比例。()。

(3)大米的总量一定,吃掉的和剩下的成反比例。()。

(4)圆的半径和周长成正比例。()。

(5)分数的分子一定,分数值和分母成反比例。()。

(6)铺地面积一定,方砖的边长和所需块数成反比例。()。

(7)铺地面积一定,方砖面积和所需块数成反比例。()。

(8)除数一定,被除数和商成正比例。()。

2、选择。

(1)把一堆化肥装入麻袋,麻袋的数量和每袋化肥的重量()。

a、成正比例b、成反比例c、不成比例。

(2)和一定,加数和另一个加数()。

a、成正比例b、成反比例c、不成比例。

(3)在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,成正比例关系是(),成反比例关系是()。

a、汽车每次运货吨数一定,运货次数和运货总吨数。

b、汽车运货次数一定,每次运货的吨数和运货总吨数。

c、汽车运货总吨数一定,每次运货的吨数和运货的次数。

3、判断题:自主练习第3题。

学生判断各题中的两个量是不是成反比例。并说说理由。

重点引导学生运用反比例的意义进行判断。

4、印刷厂用6000张纸装订练习本。

每本的页数。

(1)先填写上表。

(2)思考每本的页数与装订的本数有什么关系?

6、自主练习第2题。

这是一道用抽象形式巩固反比例意义的题目。学生先思考,根据x和成反比例,确定x和的乘积一定,再根据第一组数据找到x和的乘积,然后利用这个乘积和每组中的已知数据,求出另一数据。

介绍反比例图像,学生了解反比例关系也能用图像表示。由于理解难度较大,只作了解,不做学习要求。

教学反思:

本节课课堂练习。课上要重视学生掌握的情况,正确判断的同时,还要说理清楚。学生对一些不是很熟悉的关系如:车轮的直径一定,所行使的路程和车轮的转数成何比例?出粉率一定,面粉重量和小麦的总重量成何比例?判断时会较为困难,说理也不是很清楚。所以教师在补充这些练习时,应该有前瞻性,引导学生对以前所学的知识进行相关的复习,然后再进行相关形式的练习,我想对学生的后继学习必然有所帮助。

这节课我们研究了什么问题?你有什么收获?

(引导学生进行总结,能用自己的话说出学习主要内容。)。

教学反思:

本节课首先通过复习,巩固了正比例的意义。通过旧知识引出新知识“反比例的意义”,过渡自然,知识做到了连贯性。然后启发学生主动、自觉地去观察、分析、概括、发现规律。通过知识的对比,加强了知识的内在联系,并通过区别不同的概念,巩固了知识。学生的全面参与,有效地培养了总结、区别、沟通的能力。再加以练习的及时,使学生加深概念的理解。

比和比例数学教案篇六

由对现实问题的讨论抽象出反比例函数的概念,通过对问题的解决进一步明确:1.反比例函数的意义;2.反比例函数的概念;3.反比例函数的一般形式。

1.从现实情境和已有的知识、经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。

2.经历抽象反比例函数概念的过程,领会反比例函数的意义,表述反比例函数的概念。

1.经历对两个变量之间相依关系的讨论,培养辩证唯物主义观点。

2.经历抽象反比例函数概念的过程,发展抽象思维能力,提高数学化意识。

1.认识到数学知识是有联系的,逐步感受数学内容的系统性;

2.通过分组讨论,培养合作交流意识和探索精神。

理解和领会反比例函数的概念。

领悟反比例函数的概念。

启发引导、分组讨论

1课时

课件

复习引入

2.在上一学段,我们研究了现实生活中成反比例的两个量

比和比例数学教案篇七

反思整节课,体现了学生自主探究,从生活情境出发,真正解放了学生,既关注了学生的学习过程,又使学生在交流评价过程中情感、态度、价值观等方面获得丰富的体验,较好的体现了事先的教学设想,感触较深。

这部分内容是在教学过比和比例的知识的基础上进行教学的,着重使学生理解正比例的意义。比例是建立在比的关系的基础上的,所以必须让学生回顾明确什么是是比和比值。两个数相除叫做这两个数的比。所得的商叫做比值。比有两种写法,一种是比号写法,另一种是用分数写法。只有比值一样的两个比才能组成比例。从内容上看,“成正比例的量”这一内容,在整个小学阶段是一个较抽象的概念,他不仅要让学生理解其意义,还要学会判断两种是否是成正比例的量,同时还要理解用字母公式来表示正比例关系,要渗透给学生一些函数的思想,为以后初中学习打下基础。根据教材和内容的特点,我选择了师生互动,以教师的“引”为主导,学生为主体,让学生在互动交流中去理解成正比例的量这一概念。首先,让学生弄清什么叫“两种相关联”的量,我引导学生去从表格中去发现时间和路程两种量的变化情况,在变化中发现:路程随着时间的变化而变化的,同时引导学生初步感知成正比例的两种量的变化方向性。其次,我进一步引导学生考虑:路程随着时间的变化而变化,在这一变化过程中,有什么规律呢?学生看了春游路程和时间表中之后,发现路程和时间比的比值是一样的,都是500米。让学生理解相对应的路程和时间的比的比值都是500米,从而突破了正比例关系的第二个难点。两种量中相对应的两个数的比会一定。把学生对成正比例量的意义的理解成一系统。由于学生还是第一次接触这一概念,之后,例2的学习还是让学生对比例1来自己理解数量和总价的正比例关系。最后,在两个例题学习的基础上总结出成正比例量的意义,把这意义从局部的路程和时间、数量和总价推广到其他数量之间的关系。然后,老师例子说明,并且请学生互动找例子。

不足之处是在练习方面,学生找不到哪些数量成正比例时应让学生讨论,每个正比例关系都应让学生互相说一说,这样或许会懂得更多。

比和比例数学教案篇八

2、渗透数形结合思想,提高学生用函数观点解决问题的能力。

利用反比例函数的知识分析、解决实际问题。

分析实际问题中的数量关系,正确写出函数解析式。

教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。

教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。

例1、见教材第57页。

例2、见教材第58页。

例1、(补充)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(千帕)是气体体积v(立方米)的反比例函数,其图像如图所示(千帕是一种压强单位)。

(1)写出这个函数的解析式;。

(2)当气球的体积是0.8立方米时,气球内的气压是多少千帕?

答案:=,当v=2时,=7.15。

比和比例数学教案篇九

1、口答正比例的意义。

2、怎样判断两种量成正比例?

3、写出下面各题的数量关系,并判断在什么条件下,其中哪两种量成正比例?

(1)已知每小时加工零件数和加工时间,求加工零件总数。

(2)已知每本书的价钱和购买的本数,求应付的钱。

(3)已知每公亩产量和公亩数,求总产量。

比和比例数学教案篇十

师:同学们,你们见过这个成语吗?(板书:以――当――)。

生:以一当十。(指名回答)。

师:那这样的话以三当几?以七当几?你是怎么算的?

生:以三当三十,当七当七十。三乘十等于三十,七乘十等于七十。(指名回答)。

师:那反过来,以几当五十?以几当一百二十?你又是怎么算的呢?

生:以五当五十,以十二当一百二十。五十除以十等于五,一百二十除以十等于十二。

师:大家真聪明!今天我们就用数学的眼光来看一下在数学中如何以一当十,以一当百,以一当千,甚至以一当更多。

比和比例数学教案篇十一

使学生理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。

经历反比例意义的构建过程,培养发现的能力和归纳概括的能力。

体会反比例与生活之间的联系,感悟到事物之间相互联系和相互转化的辨证唯物主义的观点。

理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。

掌握反比例的特征,能够正确判断反比例关系。

1、成正比例的量有什么特征?什么叫正比例关系?

2、在生活中两个相关联的量有的成正比例关系,还可能成什么关系?学生很自然想到反比例,激发学生的学习欲望,问学生想学反比例的哪些知识,学生大胆猜测,对反比例的意义展开合理的猜想。由此导入新课。

达成目标:猜想导课,激发探究愿望。

1、明确这节课的学习目标:

(1)理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。

(2)经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。

2、情境导入,学习探究。

(1)我们先来看一个实验。

高度(厘米)302015105。

底面积(平方厘米)1015203060。

体积(立方厘米)。

提问:根据列表,你从中你发现了什么?

(2)学生讨论交流。

(3)引导学生回答:表中的两个量是高度和底面积。

高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。

每两个相对应的数的乘积都是300.

(4)计算后你又发现了什么?

每两个相对应的数的乘积都是300,乘积一定。

教师小结:我们就说水的高度和体积成反比例关系,水的高度和体积是成反比例的量。

教师提问:高底面积和体积,怎样用式子表示他们的关系?板书:高×底面积=水的体积(一定)。

(5)如果用字母x和y表示两种相关联的量,用k表示他们的积一定,反比例关系可以用一个什么样的式子表示?板书:x×y=k(一定)。

小结:通过上面的学习,你认为判断两种相关联的量是否成反比例,关键是什么?

(6)归纳总结反比例的意义。

(7)比较归纳正反比例的异同点。

达成目标:比较思想是在小学数学教学中应用十分普遍的数学思想方法,《成反比例的量》是继《成正比例的量》一课后学习的内容,两节课的学习内容和学习方法有相似之处,学生从知识的差别中找到同一,也可以从同一中找出差别,学生学习新知识,进行深化拓展,归纳总结。

1、生活中,哪些相关联的量成反比例关系,举例说一说。

2、课后做一做每天运的吨数和运货的天数成反比例关系吗?为什么?

3、出示反比例图像,与正比例图像进行比较学习。

达成目标:学生利用对反比例概念的理解,判断相关联的量是否成反比例,学会分析并进行判断。

判断下面每题中的两个量是不是成反比例,并说明理由。

(1)路程一定,速度和时间。

(2)小明从家到学校,每分走的速度和所需时间。

(3)平行四边形面积一定,底和高。

(4)小林做10道数学题,已做的题和没有做的题。

(5)小明拿一些钱买铅笔,单价和购买的数量。

达成目标:使学生体会到数学来源于现实生活,又服务于现实生活的特点,体现数学的应用性。

比和比例数学教案篇十二

学生思考回答(挖掘学生生活经验)。

同学们知道的真多,说明同学们平时认真观察,是个有心人。

二、引导探究,自主建构。

活动一:探究比例的意义。

1.你了解到哪些关于国旗大小的知识?

学生交流,给学生充分的交流机会。

(1)猜测。

预设:生1、长和宽的比值相等;生2、宽和长的比值相等,

(2)小组验证。

每个小组任选两种规格国旗,验证一下每种国旗长和宽之间存在的规律。

(3)展示交流小组验证结果,学生到黑板前板书得出结论。

预设:每种国旗的长和宽的比都是3:2,他们的比值相等。

每种国旗的宽和长的比是2:3,他们的比值相等。

怎么判断两个比是不是成比例?

试一试,判断下面哪组中的两个比可以组成比例。

2:3和6:94:2和28:405:2和10:420:5和1:4。

活动二:探究比例的基本性质。

2.小组内验证猜测结果。

3.展示验证猜测情况。得出结论,

预设:

“在比例里,两个外项相乘的积就等于两个内项相乘的得数”。

“在比例里,把两个外项乘起来,再把两个内项乘起来,它们的得数是一样的”。

教师归纳总结。

同学们说得对,在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

板书:比例的基本性质。

谁能用分数形式表示以上比例?怎样求两个内项和两个外项的积呢?(分子和分母交叉相乘)。

三、强化训练、应用拓展。

同学们学习了比例的意义与性质,那么能利用它们解决实际问题吗?

1.判断下面哪组中的两个比可以组成比例?

(1)6:9和9:12。

(2)1/2:1/5和5/8:1/4。

(3)1.4:2和7:10。

(4)0.5:0.2和10:4。

2.判断。

(1)表示两个比相等的式子叫做比例()。

(2)0.6:1.6与3:4能组成比例()。

(3)如果4a=5b,那么a:b=4:5()。

3.填空。

5:2=80:()。

2:7=():5。

1.2:2.5=():4。

在一个比例里,两个外项互为倒数,其中一个内项是6,另一个内项是()。

在一个比例里,两个内项的积是12,其中一个外项是2.4,另一个外项是()。

4.写出比值是5的两个比,并组成比例。

5.根据3a=5b把能组成的比例写出来。

四、自主反思、深入体验。

通过这节课的学习你有什么收获?

比和比例数学教案篇十三

1、使学生进一步认识正、反比例的意义,了解正反比例的区别和联系,更好的把握正、反比例概念的本质。

2、进一步加深学生对正、反比例意义的理解,使他们能够从整体上把握各种量之间的比例关系,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。

进一步认识正、反比例的意义,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。

实物投影。

一、复习。

要求学生说出成正反比例量的关键,根据学生回答板书关系式。

2、判断下面各题中的两种量是不是成比例,成什么比例。

(1)圆锥的体积和底面积。

(2)用铜制成的零件的体积和质量。

(3)一个人的身高和体重。

(4)互为倒数的两个数。

(5)三角形的底一定,它的`面积和高。

(6)圆的周长和直径。

(7)被除数一定,商和除数。

二、练习。

完成练习十三9~13题。

1、第9题。

观察每个表中的数据,讨论表下的问题。要注意启发学生根据表数据的变化规律,写出相应的数量关系式,再进行判断。

2、第10题。

(1)看图填写表格。

(2)求出这幅图的比例尺,再根据图像特点判断图上距离和实际距离成什么比例,也可以根据相关的计算结果作出判断。要让学生认识到:同一幅地图的比例尺一定,所以这幅图的图上距离和实际距离成正比例。

(3)启发学生运用有关比例尺的知识进行解答。

3、第11题。

填写表格,组织学生对两个问题进行比较,进一步突出成反比例量的特点。

4、第12题。

引导学生说说每题中的哪两种量是变化的,这两种量中,一种量变化,另一种量也随着变化,能不能用相应的数量关系式表示这种变化的规律。

5、第13题。

让学生小组进行讨论,教师指导有困难的学生。

三、补充练习。

1、a与b成正比例,并且在a=1。。时,b的对应值是0。15。

(1)a与b的关系式是a/b=()。

(2)当a=2。5时,b的对应值是()。

(3)当b=9。2时,a的对应值是()。

2、甲、乙两人步行速度的比为5:6,从a地到b地,甲走12小时,乙要走几小时?

比和比例数学教案篇十四

在上面的数量部系式中,如果加工零件总数一定,每小时加工零件和加工时间是什么关系?如果应付的总钱数一定,每本书的价钱和本数是什么关系?如果总产量一定,每公亩产量和公亩数是什么关系?这就是今天我们学习的内容:反比例的意义(板书)。

比和比例数学教案篇十五

1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

2、培养学生概括能力和分析判断能力。

3、培养学生用发展变化的观点来分析问题的能力。

成正比例的量的特征及其判断方法。

理解两个变量之间的比例关系,发现思考两种相关联的'量的变化规律.

启发引导法。

自主探究法。

课件。

一、定向导学(5分)。

1、已知路程和时间,求速度。

2、已知总价和数量,求单价。

3、已知工作总量和工作时间,求工作效率。

4、导入课题。

今天我们来学习成正比例的量。

5、出示学习目标。

1、理解正比例的意义。

2、能根据正比例的意义判断两种量是不是成正比例。

二、自主学习(8分)。

自学内容:书上45页例1。

自学时间:8分钟。

自学方法:读书法、自学法。

自学思考:

1、举例说明什么是成正比例的量,成正比例的量要具备几个条件?

2、正比例关系式是什么?

(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。例如底面积一定,体积和高成正比例。

y/x=k(一定)。

(4)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是175立方米?225立方厘米的水有9厘米。

2、归类提升。

引导学生小结成正比例的量的意义和关系式。

三、合作交流(5分)。

第46页正比例图像。

1、正比例图像是什么样子的?

2、完成46页做一做。

3、各组的b1同学上台讲解。

四、质疑探究(5分)。

1、第49页第1题。

2、第49页第2题。

3、你还有什么问题?

五、小结检测(8分)。

1、什么是正比例关系?如何判断是不是正比例关系?

2、检测。

1、49页第3题。

六、堂清作业(9分)。

练习九页第4、5题。

比和比例数学教案篇十六

p47~48,例7、正、反比例的比较。

进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能正确运用。

一、复习。

判断下面两种理成不成比例,成什么比例,为什么?

(1)单价一定,数量和总价。

(2)路程一定,速度和时间。

(3)正方形的边长和它的面积。

(4)工作时间一定,工作效率和工作总量。

二、新授。

1、揭示课题。

2、学习例7。

(1)认识:“千米/时”的读法意义。

(2)出示书中的问题要求学生逐一回答。

(3)提问:谁能说一说路程、速度和时间这三个量可以写成什么样的关系式?

(4)填空:用下面的形式分别表示两个表的内容。

当()一定时,()和()成()比例关系。

还有什么样的依存关系?

(5)教师作评讲并小结。

(6)用图表示例7中的两种量的关系。

指导学生描点、连线。

在这条直线上,当时间的.值扩大时,路程的对应值是怎样变化的?时间的值缩小呢?

用同样的方法观察右表。

3、总结正、反比例的特点(异同点)。

由学生比、说。

三、巩固练习。

1、练一练第1、2题。

2、p49第1题。

四、课堂小结:

正、反比例关系各有什么特点?怎样判断正比例或反比例关系?关键是什么?

五、作业。

六、课后作业。

比和比例数学教案篇十七

小学六年级的学生在学习正比例和反比例这部分内容时,尤其是在练习过程中容易混淆不清,经常弄错。下面,本文从不同的角度帮助他们正确区分这两者的关系,希望对他们的学习会有所帮助。

一、正确认识两者的意义。

正比例和反比例的意义教材中是安排在从p39到p47来进行叙述讲解的,且都是通过对实验中的数据进行分析之后概括得出的结论,这样学生相对易于接受。

1.正比例的意义:教材中的表述是“两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。”

2.反比例的意义:教材中的表述是“两种相关联的量,一种量变化,另种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。”

如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用下面的关系式来表示:

y/x=k(一定)或y=kx(k一定)。

(二)反比例关系的表达式。

如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系可以用下面的关系式来表示:

x×y=k(k一定)或y=kx(k一定)。

1.正比例关系中两种相关联的量的变化规律。正比例关系中两种相关联的量的变化规律是:同时扩大,同时缩小,比值(或商)不变。

例如:汽车每小时行驶的速度一定,所行的路程和所用的时间是否成正比例?

完成该题练习时,可以先写出路程、速度和时间三者之间的关系式:速度=路程/时间,已知条件中速度为一定(即常量),根据“速度=路程/时间”这一关系式,结合正比例的意义,即可知道所行的路程和所用的时间是成正比例关系的。也就是说,当速度一定时,走的路程越多,所花费的时间也越多,反之,亦然。换句话说,路程和时间是成倍增长或缩小的。

2.反比例关系的两种相关联的量的变化规律。

反比例关系的两种相关联的量的变化规律是:一种量扩大,另一种量缩小,一种量缩而另一种量则扩大,积不变。

例如:当图上距离一定时,实际距离和比例尺是否成反比例?因为实际距离×比例尺=图上距离(一定),所以,实际距离和比例尺是成反比例的。

1.在事物关系中都包含有三个量,(本网网)即有两个变量和一个常量(即定值)。

2.在相关联的两个变量中,当一个变量发生变化时(扩大或缩小),则另一个变量也随之发生变化。

3.它们相对应的两个变量的积或商都是一定的(即常量)。

也就是说,在正比例和反比例的两个相关联的变量中,均是一个量变化,另一个量也随之变化。并且变化方式均属于扩大(乘以一个数)或缩小(除以一个数)若干倍的变化。

1.正比例的定量(或定值)是两个变量中相对应的两个数(即变量)的比值(或商)。反比例的定量是两个变量中相对应的两个数的积。

2.当用图象来表示正比例或反比例中两个变量之间的关系时,所画出来的图象是不一样的。正比例的图象是一条倾斜的直线(又叫斜线)。反比例的图象是一条曲线,且两端永远不会与两条轴线(即横轴和纵轴或函数中所称的x轴和y轴)相交。

当正比例中的x值(自变量的值)转化为它的倒数时,由正比例转化为反比例;当反比例中的x值(自变量的值)也转化为它的倒数时,则由反比例转化为正比例。

需要说明的是,教科书中在“正比例和反比例的意义”的讲解中,并没有指出正比例和反比例关系表达式中常量和变量的取值范围。根据正比例的关系式y/x=k(一定)和反比例的关系x×y=k(k一定)可以知道,无论是正比例还是反比例,两个变量x、y和常量k均不能为零。试想,在正比例y/x=k(一定)中,如果x为0,式子无意义;如果y为0,x不为0,则x的值是不确定的(这时候k的值为0),此时x和y就不存在正比例的说法了。同样,在反比例x×y=k(k一定)中,如果x和y两个变量中,只要其中一个为0或两个都同时为0,则k的值都为0,x和y也无所谓反比例关系了。再说,如果x和y同时为0的话,那么x和y也不叫变量了,都不符合反比例的意义。所以,无论是正比例关系,还是反比例关系中,两个变量x和y以及常量k都不能为0。

因此,当正比例或反比例关系中其中一个变量用字母表示时,要求我们通过讨论确定另一个变量的取值范围的时候,我们就要注意正比例或反比例关系中两个变量的取值绝对不能为零,否则,就失去意义了。

【参考文献】。

1.卢江、杨刚主编,义务教育课程标准实验教科书小学六年级《数学》下册[s],人民教育出版社出版。

2.谢鼓平主编,小学六年级数学《教案与设计》[s],新疆青少年出版社出版。

3.《贵州教育》[j]第3-4期合订本第65页中《小学数学毕业复习建议》(王艳)。

比和比例数学教案篇十八

1.知识与技能:认识比例,知道比例的的内项和外项,理解和掌握比例的基本性质,会判断两个比能否组成比例。

2.过程与方法:通过自主探究、合作交流、观察、比较,培养学生分析、比较、抽象和概括的能力,经历认识比例和比例的基本性质的过程。

3.情感态度与价值观:体会国旗中隐含的数学规律,丰富关于国旗的知识,培养学生爱国旗、爱祖国的情感。

比和比例数学教案篇十九

知识与技能目标:使学生理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。

能力目标:经历反比例意义的构建过程,培养发现的能力和归纳概括的能力。

情感与态度目标:体会反比例与生活之间的联系,感悟到事物之间相互联系和相互转化的辨证唯物主义的观点。

重点:理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。

难点:掌握反比例的特征,能够正确判断反比例关系。

(一)复习猜想导入,引出问题。

1、成正比例的量有什么特征?什么叫正比例关系?

2、在生活中两个相关联的量有的成正比例关系,还可能成什么关系?学生很自然想到反比例,激发学生的学习欲望,问学生想学反比例的哪些知识,学生大胆猜测,对反比例的意义展开合理的猜想。由此导入新课。

达成目标:猜想导课,激发探究愿望。

(二)共同探索,总结方法。

1、明确这节课的学习目标:

(1)理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。

(2)经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。

2、情境导入,学习探究。

(1)我们先来看一个实验。

高度(厘米)302015105。

底面积(平方厘米)1015203060。

体积(立方厘米)。

提问:根据列表,你从中你发现了什么?

(2)学生讨论交流。

(3)引导学生回答:表中的两个量是高度和底面积。

高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。

每两个相对应的数的乘积都是300.

(4)计算后你又发现了什么?

每两个相对应的数的乘积都是300,乘积一定。

教师小结:我们就说水的高度和体积成反比例关系,水的高度和体积是成反比例的量。

教师提问:高底面积和体积,怎样用式子表示他们的关系?板书:高×底面积=水的体积(一定)。

(5)如果用字母x和y表示两种相关联的量,用k表示他们的积一定,反比例关系可以用一个什么样的式子表示?板书:x×y=k(一定)。

小结:通过上面的学习,你认为判断两种相关联的`量是否成反比例,关键是什么?

(6)归纳总结反比例的意义。

(7)比较归纳正反比例的异同点。

达成目标:比较思想是在小学数学教学中应用十分普遍的数学思想方法,《成反比例的量》是继《成正比例的量》一课后学习的内容,两节课的学习内容和学习方法有相似之处,学生从知识的差别中找到同一,也可以从同一中找出差别,学生学习新知识,进行深化拓展,归纳总结。

(三)运用方法,解决问题。

1、生活中,哪些相关联的量成反比例关系,举例说一说。

2、课后做一做每天运的吨数和运货的天数成反比例关系吗?为什么?

3、出示反比例图像,与正比例图像进行比较学习。

达成目标:学生利用对反比例概念的理解,判断相关联的量是否成反比例,学会分析并进行判断。

(四)反馈巩固,分层练习。

判断下面每题中的两个量是不是成反比例,并说明理由。

(1)路程一定,速度和时间。

(2)小明从家到学校,每分走的速度和所需时间。

(3)平行四边形面积一定,底和高。

(4)小林做10道数学题,已做的题和没有做的题。

(5)小明拿一些钱买铅笔,单价和购买的数量。

达成目标:使学生体会到数学来源于现实生活,又服务于现实生活的特点,体现数学的应用性。

(五)课堂总结,提升认识。

比和比例数学教案篇二十

教学目标:

1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式;。

2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质;。

3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想;。

4、体会数学从实践中来又到实际中去的研究、应用过程;。

5、培养学生的观察能力,及数学地发现问题,解决问题的能力。

教学重点:

教学用具:直尺。

教学方法:小组合作、探究式。

教学过程:

我们在小学学过反比例关系。例如:当路程s一定时,时间t与速度v成反比例。

即vt=;。

当矩形面积s一定时,长a与宽b成反比例,即ab=。

从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:

(s是常数)。

(s是常数)。

一般地,函数(k是常数,)叫做反比例函数。

如上例,当路程s是常数时,时间t就是v的反比例函数.当矩形面积s是常数时,长a是宽b的反比例函数。

在现实生活中,也有许多反比例关系的例子.可以组织学生进行讨论。

解:列表。

说明:由于学生第一次接触反比例函数,无法推测出它的大致图象.取点的时候最好多取几个,正负可以对称着取分别画点描图。

一般地反比例函数(k是常数)的图象由两条曲线组成,叫做双曲线。

3、观察图象,归纳、总结出反比例函数的性质。

前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习。

显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证。

(1)的图象在第一、三象限.可以扩展到k=0时的情形,即k=0时,双曲线两支各在第一和第三象限。从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限的讨论与此类似。

抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法.体现了由特殊到一般的研究过程。

(2)函数的图象,在每一个象限内,y随x的增大而减小;。

从图象中可以看出,当x从左向右变化时,图象呈下坡趋势。从列表中也可以看出这样的变化趋势。有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小。由此可归纳出,当k0时,函数的图象,在每一个象限内,y随x的增大而减小。

同样可以推出的图象的性质。

(3)函数的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出,.如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子。同理,抽象出图象的性质。

函数的图象性质的讨论与次类似。

4、小结:

本节课我们学习了反比例函数的概念及其图象的性质.大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识.数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释.即数学是世界的一个部分,同时又隐藏在世界中。

5、布置作业习题13.81-4。

【本文地址:http://www.pourbars.com/zuowen/14279019.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map