教案可以是个人编写的,也可以是团队合作编写的,通过不同教师之间的交流与分享,可以提高教案的质量和效果。教案的编写要善于引导学生思考和探究,培养他们的综合素养。教案范例中展示了教学目标的明确、教学步骤的合理和评价方式的科学等特点。
长方体和正方体的表面积教案篇一
使学生理解长方体和正方体的表面积的概念,在理解概念的基础上初步学会求长方体表面积的计算方法;发展学生的空间观念,培养学生概括、推理的能力。
谈话:出示长方体,如果想把这件礼物包装一下,你觉得需要知道什么?
师:在生活中我们有时需要知道长方体或者正方体6个面的总面积,这就叫长方体或正方体的表面积。(板书:长方体或正方体的表面积)。
师:要求出长方体或正方体的表面积,你觉得要知道什么?
教师出示长方体透视图。
长方体有几个面?每个面是什么形状?面与面有什么特点?
说说各个面的长与宽。
提问:什么是长方体的表面积?想一想,要计算长方体的表面积必须先算出哪些面积?
出示例1。
学生读题,找出条件和问题。
提问:求这个木箱的表面积是多少实际就是求什么?(六个面的面积)。
那我们可以怎么想呢?
引导学生列出算式:8×5×2+8×4×2+5×4×2。
提问:8×5×2、8×4×2、5×4×2分别求的什么?
学生回答,教师边在算式下标明上下、前后、左右,接着,让学生检查一下?有没有漏算或者重复计算的面,然后让学将完成例题。
提问:这道题还可以怎么列式呢?
同桌同学讨论,解答。教师巡视。
指名汇报算式:(8×5+8×4+5×4)×2。
提问:问什么先算3个面的面积和再乘以2?
学生用以长方体教具演示帮助学生回答,然后,将黑板上的原长方体的展开图的前、下、右面裁下,与左、上、后面进行重叠,帮助学生弄清道理。
提问:这两种计算方法有什么不同?又有什么联系?(第一种方法是先分别算出上下、前后、左右面的面积,然后再加起来。第二种方法,算出前面、右面、下面的面积再乘以2。第二种方法是第一种方法根据乘法分配律变成的。)。
提问:哪一种方法更简便?(第二种)。
教师:计算长方体的表面积,最关键的事要正确找出3组面中每个面的长和宽。
完成练一练第1题。
你还有什么方法?如果有两个面是正方形,那么其它四个面都是一样的。
独立完成试一试,说说立方体表面积计算方法是怎样的?
完成练一练。
长方体或者正方体的6个面的总面积,叫做它的表面积。要计算长方体的表面积,关键是要准确找到每个面的长和宽。
作业本。
2、一个长方体的上下两个面都是正方形,表面积是224平方厘米,正好能截成体积相等的三个立方体,每个立方体的表面积是()平方厘米。
长方体和正方体的表面积教案篇二
学习目标:
2.培养学生分析、解决问题的能力,以及良好的思维品质。
教学重点:
教学难点:
能灵活地解决一些实际问题。
教具运用:
课件。
教学过程:
一、复习导入。
1.如果告诉了长方体的长、宽、高,怎样求它的表面积?
2.如果要求正方体的表面积,需要知道什么?怎样求?
二、课堂作业。
完成教材第26页第11~13题。
1.第11题。
(1)分析题目的已知条件和问题。
(2)粉刷教室要粉刷几个面?哪一个面不要粉刷?还要注意什么?
(3)列式解答。
4[86+(83+63)2-11.4]。
=4120.6=482.4(元)。
答:粉刷这个教室需要花费482.4元。
2.第12题。
这是一道计算组合图形的表面积的题,提醒学生:两个图形重叠部分的.面积不能算在表面积里。
分析:前后面的面积是相等的,就是把3个长方体前面的面相加即可。
左右两面也相等,实际上就是求中间这个长方体左右的两个面即可。
=(2200+2600+1600)2=12800(cm2)。
涂红油漆40652+40403=5200+4800=10000(cm2)。
答:涂黄油漆的总面积为12800cm2,涂红油漆的面积为10000cm2。
3.第13题。
提示:把一个长方体从中间截断,就可以分成两个正方体。
让学生分别计算出长方体的表面积和切后的两个正方体的表面积和,再比较它们的表面积,看有没有发生变化。
小结:截完后,增加了两个截面。所以,两个正方体的表面积大于原来长方体的表面积。
三、课堂小结。
通过这节课的学习,你有什么收获?还有什么问题?
四、课后作业。
完成练习册中本课时练习。
板书设计:
长方体和正方体的表面积教案篇三
教学内容:义务教育教科书人教版教材五年级下册第三单元第三课时。
教学目标:
1.认识长方体和正方体的展开图,理解长方体和正方体的表面积的概念,会计算长方体和正方体的表面积。
2.经历观察、操作、想象、探索等数学活动过程,理解长方体展开图中每个面与长方体长、宽、高之间的关系,探索长方体和正方体的表面积的计算方法,能解决有关表面积计算的实际问题。
3.体验数学与生活的联系,培养学生的空间观念,培养学生比较、观察、推理的能力。
教学重点:
认识长方休和正方体表面积的展开图,掌握长方体和正方体表面积的计算方法。
教学难点:
应用表面积的计算方法解决有关实际问题,培养学生的空间想象能力。
教学资源:
长方体、正方体的纸盒,长方体和正方体的展开图。
教学过程:
一、创设情境,导入新课。
1.课件出示长方体和正方体。这是我们以前学过和长方体和正方体,老师想用彩纸把这两个立体图形包装起来,但是不知道至少要用多大的彩纸,你能帮我想想办法吗?(把这长方体和正方体的6个面的面积和算出来,就是至少要用的彩纸)。
2.长方体或正方体6个面的总面积,叫做它们的表面积。这节课我们就来研究长方体和正方体的表面积。板书课题:长方体和正方体的表面积。
二、自主探索,合作交流。
(1)如果我们把长方体和正方体的纸盒展开,会是什么形状呢?请你闭上眼睛想象。
(3)请同学们用上、下、左、右、前、后,分别标出6个面。一个同学上黑板上标注。
2.教学长方体表面积的计算方法。
(1)现在你会算包装这个长方体至少要用多少平方米的彩纸了吗?
(2)汇报:
六个面加起来;
相对的面只算一个再乘2;
(长×宽+长×高+宽×高)×2;
通过研究我们发发现长方体的表面积和它的面有关,其实就是和它的长、宽、高关,我们要找准每个面的长和宽,才不会出错。
其实我觉得第一种方法是最基本的方法,也很重要,你知道为什么吗?(不规则的物体)。
3.教学正方体的表面积计算方法。会求正方体的表面积吗?怎么求?
三、巩固练习,应用拓展。
1.按要求计算各长方体各个面的面积和表面积。
(1)全图。
(2)半图。
3.p26第13题。把一个长方体截成两个立体图形,两个立体图形的面总面积比原来的长方体增加了两个截面。
四、反思总结,自我建构。
这节课我们研究了什么?你有什么收获?你有什么问题?有兴趣的同学课后可以研究一下。
长方体和正方体的表面积教案篇四
1.口答课本p27:1。
2.计算课本p27:2。(各请两位同学用投影片写,集体订正。)。
3.口答。判断正误,并说明理由。
(1)长方体的三角棱分别叫它的长、宽、高。()。
(2)一个棱长4分米的正方体,求它的表面积的列式是42×6,结果是48分米2。()。
(3)用四个同样大的正方体小木块拼成一个长方体,这个长方体的表面积,比原来四个小正方体表面积的和小。()。
(四)课堂总结及课后作业。
2.作业:课本p27:3,4,5。
长方体和正方体的表面积教案篇五
教学内容:
教学目标:
3.培养学生分析能力,发展学生的空间概念。
教学重点:
教学难点:
教具运用:
教学过程:
一、复习导入。
1.什么是长方体的长、宽、高?什么是正方体的棱长?
2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。
二、新课讲授。
(1)请同学们拿出准备好的长方体纸盒,在上面分另标出上、下、前、后、左、右六个面。
师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。
(2)请同学们拿出准备好的正方体纸盒,分别标出上、下、前、后、左、右六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。
观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。
(1)在日常生活和生产中,经常需要计算哪些长方体或正方体的表面积?
(2)出示教材第24页例1。
理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)。
先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。
(3)尝试独立解答。
(4)集体交流反馈。
老师根据学生的解题思路进行板书。
0.70.4+0.70.4+0.50.4+0.50.4+0.70.5+0.70.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)。
0.70.42+0.50.42+0.70.52=0.7+0.56+0.4=1.66(m2)。
方法三:(上面的面积+前面的面积+左面的面积)2。
(0.70.4+0.50.4+0.70.5)2=0.832=1.66(m2)。
(6)请同学们尝试自己解答教材第24页例2,集体交流算法,请学生说说你是怎样解答计算正方体表面积的。
三、课堂作业。
1.完成教材第23页做一做。
2.完成教材第24页做一做。
3.完成教材第25~26页练习六第1、2、3、4、6、7题。
四、课堂小结。
板书设计:
长方体和正方体的表面积教案篇六
教学内容:
教学目标:
1.利用长方体和正方体的表面积计算方法,结合实际生活,求一些不是完整六个面的长方体、正方体的表面积。
2.通过练习、操作发展空间想象能力。培养学生对数学的兴趣与求知欲。
教学重点:
教学难点:
教具运用:
课件。
教学过程:
一、复习导入。
师:上节课我们认识了长方体和正方体的表面积,并且学习了表面积的计算方法,请大家试着解决下面的两个问题。(出示课件)。
1.做一个长8厘米,宽6厘米,高5厘米的纸盒,至少需要多少纸板?
2.一个棱长和为180的正方体,它的表面积是多少?学生独立计算,教师巡视指导,集体订正。师:通过前两节课的学习,我们学会了长方体、正方体表面积的计算方法,就是计算出它们6个面的面积之和,但在实际生活中,有时只需要计算其中一部分面的面积之和,这就要根据实际情况来思考了。
二、新课讲授。
1.教材25页第5题。
(2)学生读题,看图,理解题意。
(3)“上下面不贴”说明什么?(说明只需要计算4个面的面积,上下两个面不计算)。
(4)学生尝试独立解答。
(5)集体交流反馈。
方法一:10×12×2+6×12×2=240+144=384(cm2)。
方法二:(10×12+6×12)×2=(120+72)×2=384(cm2)。
答:这张商标纸的面积至少需要384平方厘米。
2.教材26页第8题。
(1)课件出示教材26页第8题图片及文字:一个玻璃鱼缸的形状是正方体,棱长3dm,制作这个鱼缸时至少需要玻璃多少平方分米?(鱼缸的上面没有盖)。
(2)学生读题,看图,理解题意。
(3)提问“鱼缸的上面没有盖”说明什么?(说明只需计算正方体5个面的面积之和)。
(4)请学生独立列式计算,教师巡视,了解学生是否真正掌握。
3×3×5=9×5=45(dm2)。
答:制作这个鱼缸时至少需要玻璃45平方分米。
三、课堂作业。
完成教材第26页练习六第9、10题。
四、课堂小结。
五、课后作业。
完成练习册中本课时练习。
板书设计:
方法一:10×12×2+6×12×2。
=240+144。
=384(cm2)。
方法二:(10×12+6×12)×2。
=(120+72)×2。
=384(cm2)答:这张商标纸的面积至少需要384平方厘米。
一个玻璃鱼缸的形状是正方体,棱长3dm,制作这个鱼缸时至少需要玻璃多少平方分米?
3×3×5。
=9×5。
=45(dm2)答:制作这个鱼缸时至少需要玻璃45平方分米。
长方体和正方体的表面积教案篇七
1.口答填空。
(1)长方体有()个面,一般都是(),相对的面的()相等;
(2)正方体有()个面,它们都是(),正方形各面的()相等;
(4)这是一个(),它的校长是()厘米,它的棱长之和是()厘米。
教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积。)。
长方体和正方体的表面积教案篇八
教学基本。
内容六年级数学(上册)第二单元教学第15页的例4,以及相应的“试一试”,完成随后的“练一练”和练习四第1~5题。
教学。
目的。
和要。
求1、使学生理解并掌握长方体和正方体的表面积的含义和计算方法,能运用长方体和正方体的表面积的计算方法解决一些简单的实际问题。
2、使学生在活动中进一步积累空间与图形的学习经验,发展空间观念和数学思考。
3、使学生进一步感受立体图形的学习价值,增强学习数学的兴趣。
教学重点。
教学方法。
及手段使学生在活动中进一步积累空间与图形的学习经验,发展空间观念和数学思考。
学法指导。
尝试与教师一同解决问题,积极思考。
集体备课个性化修改。
预习阅读书本15页,了解方程解应用的方法。
教学。
环节。
设计。
一、复习导入。
谈话:前两节课我们探索了长方体和正方体的基本特征,这节课我们继续学习有关长方体和正方体的知识。
提问:长方体有几个面?这几个面之际有什么关系?他们可以分为几组?正方体呢?
二、自主探究。
1、探究长方体表面积的计算方法。
(3)比较小结:这两种方法都反映了长方体的什么特征?你认为计算长方体6个面的面积之和时,最关键的环节是什么?(要根据长宽高正确找出3组面中相关的长和宽)。
(4)提出要求:用这两种方法计算长方体6个面的面积之和,都是可以的,请用自己喜欢的方法算出结果。
2、探究正方体表面积的计算方法。
3、揭示表面积的含义。
谈话才我们刚才我们在求长方体或正方体纸盒致少各要用多少硬纸板的问题时,都算出了它们6个面的面积之和,长方体或正方体6个面的总面积,叫做它的表面积。
作
业1、做“练一练”
2、做练习四第1题。
3、做练习四第2题。
4、做练习四第5题。
板书设。
计
执行。
情况。
与课。
后小。
结
长方体和正方体的表面积教案篇九
学习任何知识的最佳途径是由学生自己去发现,因为这种发现,理解最深,也是最容易掌握其中的内在规律和联系。”(著名数学家波利亚)在这个案例中,从学生已有的知识以及学生熟悉的生活情境和感兴趣的具体事物出发,通过实物、教具引导学生在理解的基础上掌握知识,给学生充分观察和实际操作的机会,让他们体会到数学来源于生活、来源于生产实践,增强学生学好数学的兴趣,这是新大纲中所强调的。
教师遵循了新大纲的理念,从生活实际引入,为学生创设了探索新知识的条件,让学生参与到获取新知识的过程中去。将抽象的知识变成了学生能看得见、摸得着的现实东西,使学生在观察和操作中,对知识的思考与实物模型的演示和操作有机的结合起来,在学生头脑中形成表象,建立概念,以动促思。
引导学生在探索中发现和总结出计算长方体和正方体的方法,并给学生机会,让学生充分发表自己的见解,在多种算法的交流中选择适合自己的算法,不但调动了学生学习的积极性,更有助于学生形成探索性学习方式,我们深刻体会到老师充分尊重学生的个性,不包办代替,努力创设情景,提供空间,让学生动手实践,自主探索,让学生充分经历-和感受了知识产生和发展的过程,引导学生把所学的数学知识应用到现实中去,使学生更好地理解和掌握了长方体和正方体的表面积意义和计算方法,并且初步培养了学生的探究能力、创新思维和应用数学的意识。使学生在数学学习活动中建立了自信心,激发了求知欲,获得了成功得体验。
将本文的word文档下载到电脑,方便收藏和打印。
长方体和正方体的表面积教案篇十
教材第23~24页,以及第25~26页练习六第1、2、3、4、6、7题。
3.培养学生分析能力,发展学生的空间概念。
一、复习导入。
2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的`特征。
二、新课讲授。
(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。
师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到展开图。
(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。
观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。
(2)出示教材第24页例1。
理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)。
先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。
(3)尝试独立解答。
(4)集体交流反馈。
老师根据学生的解题思路进行板书。
0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)。
0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)。
方法三:(上面的面积+前面的面积+左面的面积)×2。
(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)。
(6)请同学们尝试自己解答教材第24页例2,集体交流算法,请学生说说你是怎样解答计算正方体表面积的。
三、课堂作业。
1.完成教材第23页“做一做”。
2.完成教材第24页“做一做”。
3.完成教材第25~26页练习六第1、2、3、4、6、7题。
四、课堂小结。
长方体和正方体的表面积教案篇十一
(三)培养和发展学生的空间观念。
(二)确定长方体每一个面的长和宽。
教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。
1.口答填空。
(1)长方体有()个面,一般都是(),相对的面的()相等;
(2)正方体有()个面,它们都是(),正方形各面的()相等;
(4)这是一个(),它的校长是()厘米,它的棱长之和是()厘米。
教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积。)。
教师出示长方体教具,用手摸一下前面(面对学生的面),说明这是长方体的一个面,这个面的大小就是它的面积;再用手摸一下左边的面,说它也是长方体的一个面,它的大小是它的面积。
教师:长方体有几个面?学生:6个面。
教师用手按前、后,上、下,左、右的顺序摸一遍,说明这六个面的总面积叫做它的表面积。
请学生拿着自己准备的长方体盒子也摸一摸,同时两人一组相互说一说什么是长方体的表面积。
学生讨论。(把六个面展开放在一个平面上。)。
教师演示:把长方体盒子、正方体盒子展开,剪去接头粘接处,贴在黑板上。也请每位同学把自己准备的长、正方体盒子的表面展开铺在课桌上。
学生四人一组边操作边讨论后归纳:
请同学用自己的展开图练习找各面的长宽。然后再请一两位同学上讲台,指出黑板上展开图中相等的面和对应的长和宽。
教师:我们再从立体图形上看一看。(用电脑动画软件或抽拉投影片演示)。
(图像要验证相对的面相等,展示每个面对应的长和宽。)。
学生讨论后归纳,老师板书:
上下面:长×宽×2。
前后面:长×高×2。
左右面:高×宽×2。
学生口答老师板书:(或学生板书,同时其余同学填书上。)。
解法1:6×5×2+6×4×2+5×4×2。
=60+48+40。
=148(厘米2)。
解法2:(6×5+6×4+5×4)×2。
=(30+24+20)×2。
=74×2。
=148(厘米2)。
答:至少要用148厘米2纸板。
练一练:(投影片)一个长方体长4米,宽3米,高25米。它的表面积是多少米2?(请几位同学用投影片做,选作订正样题。)。
教师:如此题改为同样尺寸的无盖塑料盒求表面积如何办?
学生:应该少算上边的一面。列式:
学生:一个面的面积乘以6。
学生:棱长×棱长×6。
(2)试解下面的题。
例2(投影片)一个正方体纸盒,棱长3厘米,求它的表面积。
请同学们填在书上,一位同学板书:
32×6。
=9×6。
=54(厘米2)。
答:它的表面积是54厘米2。
教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?
学生:少一个面。列式:32×5。
教师:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,审题时要分清求的是哪几个面的和。
(3)练习:课本p26做一做。(请两位同学写投影片,其余同学做本上。)。
用学生投影片集体订正。
1.口答课本p27:1。
2.计算课本p27:2。(各请两位同学用投影片写,集体订正。)。
3.口答。判断正误,并说明理由。
(1)长方体的三角棱分别叫它的长、宽、高。()。
(2)一个棱长4分米的正方体,求它的表面积的列式是42×6,结果是48分米2。()。
(3)用四个同样大的正方体小木块拼成一个长方体,这个长方体的表面积,比原来四个小正方体表面积的和小。()。
(四)课堂总结及课后作业。
2.作业:课本p27:3,4,5。
长方体和正方体中每个面的面积计算是旧知识,这节课的主要任务是要帮助学生建立空间观念,使学生准确地把握长方体和正方体六个面之间的位置、大小关系,进而理解并掌握长方体和正方体的表面积计算方法。
教学过程中,设计安排了学生实物操作,观察平面图、立体图的动画演示,其目的是让学生的思维活动上两个台阶,其一是由看实物到看立体图,其二是由知道了长、宽、高就能想象出实物图形,这样既使学生在空间图形的基础上理解长方体和正方体表面积计算方法的算理,掌握计算方法,又发展了学生的空间观念。
本节新课教学分为三部分。
长方体和正方体的表面积教案篇十二
教学目标:
2、探究性目标:能根据现实情景和信息,通过动手操作、小组合作、观察思考等解决问题的方法,去探求、经历、感受长方体和正方体的表面积概念和计算方法,初步培养学生探求意识和探求能力。
3、情感性目标:使学生感受到数学与生活的密切联系,培养学生初步的数学应用意识,并在探究过程中获得积极的数学情感体验。
教具、学具准备:
长方体和正方体药盒、长方体和正方体学具、直尺、不同规格的长方形和正方形纸板若干组、剪刀、透明胶、卷尺、竹竿等。
教学设计理念:
学生作为学习的主体,教师应积极创设各种有利于开发学生创造思维的教育情境,引导学生发现问题,分析矛盾,独立思考和相互启发。因此在教学设计中应加强对学生活动的设计,使活动的内在结构以及活动之间的结构有利于培养学生敢于求知、求异的探索态度,善于求新、设疑、迁移的学习能力,发散性思维和创造性动手操作能力。其次、要从学生的生活经验出发,用丰富多彩的亲历活动来充实教学过程,让学生在活动中运用多种知识和技能创造性地学习和实践。因此在教学设计中,要注意选取符合儿童的年龄特征和经验背景的活动,按由近及远、由浅入深、由具体到抽象、由简单到复杂。第三、教学内容要有利于学生的探究活动的开展,有利于学生提出问题、进行猜想、假设并制定科学探究活动计划,有利于学生的观察、实验、记录、统计等,有利于学生思索并得出结论。第四、探究活动要在情感态度上与儿童贴近,在一定程度上能够调动儿童参与活动的积极性。
教学过程:
一、创设活动情景,复习导入。
1、师:同学们,我们已经学习了长方体和正方体的认识了,下面请同学们用老师为大家准备的这些长方形或正方形纸板每个小组做一个封闭的长方体纸盒。比一比哪一个小组合作得最好,最先做完,下面开始吧!
2、小组合作,利用长、正方形纸板动手制作长方体纸盒。
3、师:同学们合作得很好。哪个小组的同学能说一说你们制作的长方体纸盒它得基本特征,指出它的长、宽、高,并分别指出和长、宽、高相等的棱。
生1:长方体有6个面、12条棱、8个顶点。
生2:在一个长方体中,相对的面完全相同,相对的棱长度相等。
生3:长方体的6个面是长方形,特殊情况有两个相对的面是正方形。
生4:拿着长方体指出它的长、宽、高。
师:沿着长方体纸盒的前面和上面相交的棱剪开,再展平。(教师将长方体表面积教具展开贴再黑板上)。
简析:此环节为学生创设了充分的想象空间,让学生在动手操作中运用所学知识,巩固所学知识,发展了学生的思维,并使学习数学成了一种乐趣,从而唤起了学生观察、探究、发现数学规律的欲望,为学生学习新知作了铺垫,使学生顺利进入下个环节的学习。
二、自主探究,合作交流。
师:同学们说得真好,下面请同学们观察自己制作好的长方体纸盒,分别用"上"、"下"、"左"、"右"、"前"、"后"标明六个面。
师:长方体有哪些面是完全相同的长方形?它们的面积怎么样?
生:(拿着手中展开的长方体)上面和下面、左面和右面、前面和后面是完全相同的长方形,它们的面积相等。
师:有几组面积相等的长方形?
生:总共有三组面积相等的长方形。
师:刚才我们观察了长方体的展开图形,现在我们一起来观察正方体的展开图形(课件演示正方体展开图形)。
师:展开后的每个面是什么形状的?有几个相等的面?
生:每个面是正方形的,有6个相等的面。
师:(指着两个展开的图形说明)长方体和正方体的6个面的面积总和叫做它的表面积。(板书课题:长方体和正方体的表面积、长方体表面积的计算)。
简析:为了使学生更好的理解表面积的概念,通过让学生亲自操作,认真观察,使其更清楚的看出长方体相对面的面积相等,也为下面学习计算长方体的表面积做好准备。
师:既然长方体六个面的总面积叫做它的表面积,那么怎样求长方体的表面积呢?请你们用自己制作的长方体纸盒,想一想、量一量、算一算,合作完成。
生合作探究计算方法,汇报如下:
生1:我们组列式是6×5+6×5+6×3+6×3+5×3+5×3,分别求出长方体上、下、前、后、左、右6个面的面积,再把它们的积加起来就是它们的表面积。
生2:我们组列式为6×5×2+6×3×2+5×3×2。我用6×5×2求上下两个面的面积;用6×3×2求出前后两个面的面积;用5×3×2求出左右两个面的面积,然后把三次乘得的结果加起来就是长方体的表面积。
生3:我们组列式是(6×5+6×3+5×3)×2。我用6×5求出上面;6×3求出前面;5×3求出后面。然后用它们相加的和再乘以2,就求出六个面的总面积。因为长方体六个面中分别有三组相对的面的面积相等。
生4:我们组列式是(5+3+5+3)×6+5×3×2。我用5+3+5+3求的是长方体展开后大长方形的长,再乘以6就求出上下、前后4个面的面积;5×3×2求的是左右两个面的面积。最后再求出它们的和。
生5:我们组制作的长方体纸盒和他们的不一样,因为左右两个面是正方形,所以我列式是:6×3×4+3×3×2,我用6×3×4求的是上下、前后四个面的面积;用3×3×2求的是左右两个面的面积。把两次乘得的结果加起来就是长方体的表面积。
师:你们计算的很准确!你们组制作的长方体纸盒是一个特殊的长方体,你能具体问题具体分析,找到简捷的计算方法,很值得学习。生活中的长方体确实是各种各样的,找到解决实际问题的好方法才是最重要的。
生1:正方体同长方体一样都是六个面,而这六个面的面积是相等的,每个面都是正方形,所以我认为正方体的表面积等于正方形面积乘以6。
生2:正方体的六个面都是正方形,面积相等,所以正方体的表面积等于棱长×棱长×6。
简析:当学生理解表面积的概念后,急于知道长方体表面积的计算方法,如果把求法直接告诉学生或引导学生一步一步推导出表面积的公式,就不利于学生创新思维的发展。因此,让学生运用自己的长方体纸盒,通过讨论、测量、计算等方法,解决实际问题,降低了理解的难度,也进一步激发了学习数学的兴趣,增强了合作和探求知识的意识。在此环节中学生不仅自己主动经历表面积的计算过程,感受到了表面积的意义,而且也使自己探索到解决问题的方法,加深了学生对知识的理解,培养了学生的创新能力。
三、巩固练习,深化理解。
1、师出示一个长方体药盒,问:你能计算出它的表面积吗?(不能。)为什么?(生:因为不知道每个面的长和宽、)现在告诉你这个长方体的长、宽、高分别是10、8、6厘米,你能算出它的表面积吗?只列出算式不计算。
2、生独立计算。
3、师:通过列算式,你有什么发现?(只要知道了长方体的长、宽、高,我们就可以求出它的表面积。)。
简析:此环节是加强了学生对所学内容进一步理解深化巩固,也是对学生由感性认识上升到理性认识的抽象过程。
四、联系实际、学以致用。
2、师出示一个正方体纸盒,让学生观察有什么特别之处?(只有5个面)告诉学生它的棱长是10厘米,求出制作一个这样的纸盒至少要用多少纸板?(只说算式)。
3、师:假如我们的教室要重新粉刷,你能计算出需要粉刷的面积是多少吗?请同学们利用老师给大家准备的测量工具,分工合作,看哪一个组最先计算出结果。(可把学生分成两个或三个组,在实际测量中遇到困难可与本组同学或老师进行交流)。
简析:数学学习,从理解知识到具体应用,解决实际问题,这是一次“飞跃”。本节课所设计的练习题都是学生熟悉的生活实际物品,灵活应用长方体和正方体表面积的意义和计算方法解题,让学生运用所学知识解决实际问题在应用中发展智能。体会到生活中处处有数学,还了数学的本来面目。
五、课堂总结。
师:这节课你有什么收获?
简析:归纳本节课的基础知识和基本技能,总结交流学习方法,对知识的掌握及今后的学习相得益彰。
反思:
“学习任何知识的最佳途径是由学生自己去发现,因为这种发现,理解最深,也是最容易掌握其中的内在规律和联系。”(著名数学家波利亚)在这个案例中,从学生已有的知识以及学生熟悉的生活情境和感兴趣的具体事物出发,通过实物、教具引导学生在理解的基础上掌握知识,给学生充分观察和实际操作的机会,让他们体会到数学来源于生活、来源于生产实践,增强学生学好数学的兴趣,这是新大纲中所强调的。教师遵循了新大纲的理念,从生活实际引入,为学生创设了探索新知识的条件,让学生参与到获取新知识的过程中去。将抽象的知识变成了学生能看得见、摸得着的现实东西,使学生在观察和操作中,对知识的思考与实物模型的演示和操作有机的结合起来,在学生头脑中形成表象,建立概念,以动促思。引导学生在探索中发现和总结出计算长方体和正方体的方法,并给学生机会,让学生充分发表自己的见解,在多种算法的交流中选择适合自己的算法,不但调动了学生学习的积极性,更有助于学生形成探索性学习方式,我们深刻体会到老师充分尊重学生的个性,不包办代替,努力创设情景,提供空间,让学生动手实践,自主探索,让学生充分经历-和感受了知识产生和发展的过程,引导学生把所学的数学知识应用到现实中去,使学生更好地理解和掌握了长方体和正方体的表面积意义和计算方法,并且初步培养了学生的探究能力、创新思维和应用数学的意识。使学生在数学学习活动中建立了自信心,激发了求知欲,获得了成功得体验。
长方体和正方体的表面积教案篇十三
尊敬的评委们,老师们:
一、教材简析:
本节内容是在学生认识并掌握了长方体基本特征的基础上进行教学的,通过学习,有助于学生解决生活中的实际问题,切身感受数学的价值。同时,发展学生的空间观念,是进一步学习其他立体几何图形的'基础。
二、学生情况分析:
学生已经掌握了长方形、正方形面积的计算方法,表面积对于他们来说,是一个全新的概念,显得有点抽象。虽然五年级学生的抽象思维有了一定的发展,但仍以形象思维为主,分析、归纳、概括的能力有待进一步加强。
三、教学目标:遵照“新课标”的基本理念,根据《数学课程标准》要求,目标的制定应该是多元的,结合本课的教材内容和学生实际情况,我确立了如下教学目标:
认知目标:使学生理解长方体表面积的意义,掌握长方体表面积的计算方法。
技能目标:培养学生运用新知灵活解题的能力,发展学生的思维,培养学生分析、归纳、推理的能力。
情感目标:培养学生互助、合作的精神,促进学生在态度、情感等方面的健康发展。
四、教学重点、难点:
教学重点:让学生掌握长方体表面积的计算方法,并能运用所学知识解决实际问题。
教学难点:根据长方体的长、宽、高,确定每个面的长、宽各是多少。
五、教法、学法,
资料共享平台。
为了使数学知识、思想和方法在学生的数学实践活动中得到理解与发展,这节课我主要采用小组合作学习的形式,辅以“情境探究”法、“观察法”、“演示法”、“比较法”等,实现师生互动,生生互动,有计划地对学生进行思维训练,进一步激发学生学习数学的热情。
为构建和谐的课堂气氛,培养学生的观察能力和归纳概括能力,我激发学生积极参与动手实践、自主探索与合作交流等活动,让学生经历知识的形成过程,培养学生探索能力和创新精神。
六、教学准备:多媒体课件,长方体纸盒、剪刀。
七、教学设计。
本着让学生“主动参与、乐于探究、勤于动手、学有所得”的理念,我设计了如下教学过程:
第一个环节:创设情景,激趣导入。
上课伊始,我就创设如下情景:(今天是聪聪妈妈的生日)聪聪:“妈妈,生日快乐!”妈妈:“真乖,礼物包装得真精美!妈妈考考你,包装这份礼物时,至少要用多大的彩纸呢?”聪聪“……”我顺势把问题抛给学生,从而引出课题——长方体的表面积。
这一设计意在赋于教材以生活的气息,让学生切身感受数学就在身边,激发学生强烈的求知欲望。
第二个环节:实践探索、获取新知。(我设计了三个活动)。
第一个活动:独立感知——建立长方体表面积的概念。
我请学生闭上眼睛,触摸长方体的各个面,感知“表面”的含义,引导学生概括出长方体表面积的意义。
这一做法目的是让学生借助实物,建立表面积的表象,使抽象的概念形象化、具体化。
长方体和正方体的表面积教案篇十四
教学难点:
如何利用所学知识解决生活实际问题。
教学准备:
长方体,正方体,多媒体。
教学过程:
一、联系实际,揭示课题。
同学们,学校利用这个假期同学们休息的时间,要对我们的教室进行从新粉刷。
在粉刷之前,校方提前进行了资料收集,收集的资料如下:
1.每个教室的长8米,宽5米,高3米;
2.每个教室要对四壁和屋顶进行粉刷;
3.每个教室门窗的面积共20平方米;
4.每个教室要粉刷三次;
5.第一次粉刷每平米用涂料0.5千克;第二次和第三次粉刷每平米只用去涂料0.2千克。
6.我校共有个教室需要粉刷。你能根据校方收集的上述信息帮助校方计算出应该买多少涂料吗?(揭示课题)。
二、师生交流,提出问题。
师:同学们,看到这个课题,你想知道什么?
生1:什么叫表面积?
生2:长方体与正方体的表面积怎么求?它们的表面积之间有什么关系?
生3:学了这些知识有什么用处?
三、师生互动,探究问题。
1.学生操作,解决问题;
(1)请同学们拿出准备好的正方体纸盒,请将这个正方体纸盒沿着棱剪开。(学生操作)我们将正方体沿着棱剪开,就得到了一个正方体表面的展开图。
(出示学生得到的正方体表面的展开图。)。
(2)引导学生观察得到的正方体的展开图,思考:正方体表面的展开图有什么特征?
2.组内交流,发表见解;
(1)正方体表面的展开图有6个正方形的面组成。(2)它们的形状都相同。
(3)它们的面积都相等。
3.教师引导,深入探究;
(1)想一想可以怎么求这6个面的面积总和。先求出1个面的面积,再乘以6,就是这6个面的面积总和。
(2)请你试着求一求你手中的正方体6个面的面积总和。
注意:先测量棱长的尺寸,再计算,取整厘米数。(学生计算)看书巩固,掌握方法;刚才我们计算的就是正方体的表面积,那什么是正方体的表面积?正方体的表面积可以怎么求呢?书上有具体的.介绍,请打开书,翻到p39,看书回答:
四、巧加点拨,学而致用。
1.追随上知,质问质疑。
2.迁移知识,灵活运用。
3.组际交流,发表见解。
4.看书小结,掌握方法。
请打开书,翻到p40,看书回答:
5.引用方法,灵活解答。
长方体和正方体的表面积教案篇十五
三、教学活动过程:
1.回忆 。
2.联想:
3.归纳引入新课: 。
4.教学例2。
二、鱼缸的制作问题。
1.帮助学生回忆鱼缸的形状(长方体,但是没有上面)。
3.教学例3。
(出示长方体模型,把它看成鱼缸的模型)。
(1)鱼缸缺少哪个面的玻璃?(上面)。
(3)指名学生板演,集体订正。
学生1:长方体的宽和高相等时,它的左面和右面是两个完全相同的正方形。
学生2:长方体的宽和高相等时,它的前、后、上、下四个面是完全相同的长方形。
4、练习。
书p42页练习二的第一、二 题。
一、积极参与,发现问题。
二、以事实为依据,解决问题。
三、巩固知识,归纳要点。
四、教学需改进之处:
教师要进一步做好“六认真”工作,提高教学能力,培养学生的叙述能力和运用能力,使得教学工作能够让学生学以致用,全面发展,成为一个“十”字型人才。
长方体和正方体的表面积教案篇十六
3.培养学生的动手操作能力和空间观念.。
教学重点。
建立表面积概念,初步学会计算长方体和正方体的表面积.。
教学难点。
正确建立表面积的概念.。
教学步骤。
一、铺垫孕伏.。
2.标出自带长方体纸盒的长、宽、高,并说出右面、上面的长和宽是多少?面积是多少?
二、探究新知.。
1、教师提问:什么叫做面积?
(用手按前、后,上、下,左、右的顺序摸一遍)。
2、教师明确:这六个面的总面积叫做它的表面积.。
(二)长方体表面积的计算方法.【演示课件“长方体的表面积”】。
1.学生归纳:
上下两个面大小相等,它是由长方体的长和宽作为长和宽的;
前后两个面大小相等,它是由长方体的长和高作为长和宽的;
左右两个面大小相等,它是由长方体的高和宽作为长和宽的.。
2.教学例1.。
做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?
第一种解法:
长方体和正方体的表面积教案篇十七
(三)培养和发展学生的空间观念。
(二)确定长方体每一个面的长和宽。
教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。
1.口答填空。
(1)长方体有()个面,一般都是(),相对的面的()相等;
(2)正方体有()个面,它们都是(),正方形各面的()相等;
(4)这是一个(),它的校长是()厘米,它的棱长之和是()厘米。
教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积。)。
教师出示长方体教具,用手摸一下前面(面对学生的面),说明这是长方体的一个面,这个面的大小就是它的面积;再用手摸一下左边的面,说它也是长方体的一个面,它的大小是它的面积。
教师:长方体有几个面?学生:6个面。
教师用手按前、后,上、下,左、右的顺序摸一遍,说明这六个面的总面积叫做它的表面积。
请学生拿着自己准备的长方体盒子也摸一摸,同时两人一组相互说一说什么是长方体的表面积。
学生讨论。(把六个面展开放在一个平面上。)。
教师演示:把长方体盒子、正方体盒子展开,剪去接头粘接处,贴在黑板上。也请每位同学把自己准备的长、正方体盒子的表面展开铺在课桌上。
学生四人一组边操作边讨论后归纳:
请同学用自己的展开图练习找各面的长宽。然后再请一两位同学上讲台,指出黑板上展开图中相等的面和对应的长和宽。
教师:我们再从立体图形上看一看。(用电脑动画软件或抽拉投影片演示)。
(图像要验证相对的面相等,展示每个面对应的长和宽。)。
学生讨论后归纳,老师板书:
上下面:长×宽×2。
前后面:长×高×2。
左右面:高×宽×2。
学生口答老师板书:(或学生板书,同时其余同学填书上。)。
解法1:6×5×2+6×4×2+5×4×2。
=60+48+40。
=148(厘米2)。
解法2:(6×5+6×4+5×4)×2。
=(30+24+20)×2。
=74×2。
=148(厘米2)。
答:至少要用148厘米2纸板。
练一练:(投影片)一个长方体长4米,宽3米,高25米。它的表面积是多少米2?(请几位同学用投影片做,选作订正样题。)。
教师:如此题改为同样尺寸的无盖塑料盒求表面积如何办?
学生:应该少算上边的一面。列式:
学生:一个面的面积乘以6。
学生:棱长×棱长×6。
(2)试解下面的题。
请同学们填在书上,一位同学板书:
32×6。
=9×6。
=54(厘米2)。
答:它的表面积是54厘米2。
教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?
学生:少一个面。列式:32×5。
教师:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,审题时要分清求的是哪几个面的和。
(3)练习:课本p26做一做。(请两位同学写投影片,其余同学做本上。)。
用学生投影片集体订正。
1.口答课本p27:1。
2.计算课本p27:2。(各请两位同学用投影片写,集体订正。)。
3.口答。判断正误,并说明理由。
(1)长方体的三角棱分别叫它的长、宽、高。()。
(2)一个棱长4分米的正方体,求它的表面积的列式是42×6,结果是48分米2。()。
(3)用四个同样大的正方体小木块拼成一个长方体,这个长方体的表面积,比原来四个小正方体表面积的和小。()。
(四)课堂总结及课后作业 。
2.作业 :课本p27:3,4,5。
长方体和正方体中每个面的面积计算是旧知识,这节课的主要任务是要帮助学生建立空间观念,使学生准确地把握长方体和正方体六个面之间的位置、大小关系,进而理解并掌握长方体和正方体的表面积计算方法。
教学过程 中,设计安排了学生实物操作,观察平面图、立体图的动画演示,其目的是让学生的思维活动上两个台阶,其一是由看实物到看立体图,其二是由知道了长、宽、高就能想象出实物图形,这样既使学生在空间图形的基础上理解长方体和正方体表面积计算方法的算理,掌握计算方法,又发展了学生的空间观念。
本节新课教学分为三部分。
长方体和正方体的表面积教案篇十八
新课程倡导学生学习有用的数学,并尽可能在有趣的情境中进行学习。教学《长方体表面积》这一课时我也在努力着,力求让学生乐学、学懂、学会,并在教学中不断地调整自己的思路。先是从生活实际出发,求长方体表面积的方法。。接着解决为什么要求长方体的表面积(学有用的数学),解决生活中,如:包装盒子、粉刷墙壁等不是都求六个面的表面积的具体问题,即组织学生完成“练一练”的题。反思如下:
一、继续抓好计算。我发现有很大一部分学生方法懂了,计算却出错了,孩子们的借口是数字太大容易出错。所以计算应是常抓不懈的。
二、进一步培养学生的抽象思维能力。学生出错的原因之一是分不清底面是哪两条棱相乘的面积,之所以这样是因为对长方体革面的人是没有理解透彻。
三、进一步在学生“乐学”方面下功夫,从这一节课看数字是大点,算起来复杂些,孩子们就觉得没趣了,有部分学生对数学有了畏惧的念头,这是最不利于我们教学的因素之一。
四、通过让学生自己动手剪、看观察分析得出表面积的几种计算方法,学生能自主探索出表面积的计算方法,学习兴趣较浓,且对计算方法也掌握的较好,避免了死记公式的办法。
五、在学生掌握了表面积的计算方法后,再出示一些生活实际应用题,既练习了实际又提高了学生学习的兴趣。
将本文的word文档下载到电脑,方便收藏和打印。
长方体和正方体的表面积教案篇十九
教具、学具准备:教师和学生准备1个正方体纸盒。
教学难点 :培养空间概念。
一、复习铺垫。
1、口算。
让学生做练习二第5题,指名一人板演,其余学生做在课本上,时间2分钟。
集体订正。
3、引入课题。
二、教学新课。
1、教学例2。
出示例2。
提问:这道题告诉我们什么,要我们求什么问题?
请同学们讨论一下:这个正方体的表面积怎样求?然后列式计算。
提问:要求长方体表面积要怎样想?
指名学生口答解答这道题的过程。(教师板书)。
集体订正,让学生说一说每一步求的是什么?
追问:为什么用棱长乘棱长求一个面的面积?算式中为什么要乘6?
2、做“练一练”第1题。
3、教学例3。
出示例3,让学生读题。
这道题你会算吗?
指名一人板演,其余做在练习本上。
集体订正,让学生说一说每一步求什么。
追问:哪几对面有相同的两个?是怎样算的?那个面只有一个,怎样算的?
4、做“练一练”第2题。(读题,改变例3的条件。)。
现在求5个面积的面积和会算吗?
想一想,有没有简便算法。请大家做在作业 本上。
指名口答算式,教师板书,让学生说明每一步求的是什么。说明得数并板书.
追问:这种算法简便在哪里?
三、巩固练习。
1、做练习二第6题。
集体订正让学生说说每一步求什么。
2、做练习二第9题。
(1)指名读题。
提问:这长商标纸的面积是几个面的面积和?
谁来说一说商标纸的面积怎样算?
求这张商标纸的面积还可以怎样算?
让学生做在练习本上,指名一人板演。哪中算法比较简便?
四、课堂小结。
五、课堂作业 。
练习二第7、8题。
长方体和正方体的表面积教案篇二十
(二)理解并掌握长方体和正方体表面积的计算方法。
(三)培养和发展学生的空间观念。
教学重点和难点。
(二)确定长方体每一个面的长和宽。
教学用具。
教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。
学具:长方体、正方体纸盒、剪刀。
教学过程设计。
(一)复习准备。
1.口答填空。
(1)长方体有()个面,一般都是(),相对的面的()相等;
(2)正方体有()个面,它们都是(),正方形各面的()相等;
(4)这是一个(),它的校长是()厘米,它的棱长之和是()厘米。
2.说一说长方体和正方体的区别?
教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积。)。
(二)学习新课。
长方体和正方体的表面积教案篇二十一
学习内容:
求一些不是完整六个面的长方体、正方体的表面积,(教材25页第5题、教材第26页第9、10题)。
学习目标:
1、利用长方体和正方体的表面积计算方法,结合实际生活,求一些不是完整六个面的长方体、正方体的表面积。
2、通过练习、操作发展空间想象能力。培养学生对数学的兴趣与求知欲。
教学重点:
能根据生活实际,对不是完整六个面的长方体、正方体的表面积进行正确的判断。
教学难点:
教具运用:
课件。
教学过程:
一、复习导入。
师:上节课我们认识了长方体和正方体的表面积,并且学习了表面积的计算方法,请大家试着解决下面的两个问题。(出示课件)。
1、做一个长8厘米,宽6厘米,高5厘米的纸盒,至少需要多少纸板?
2、一个棱长和为180的正方体,它的表面积是多少?学生独立计算,教师巡视指导,集体订正。师:通过前两节课的学习,我们学会了长方体、正方体表面积的计算方法,就是计算出它们6个面的面积之和,但在实际生活中,有时只需要计算其中一部分面的面积之和,这就要根据实际情况来思考了。
二、新课讲授。
1、教材25页第5题。
(2)学生读题,看图,理解题意。
(3)上下面不贴说明什么?(说明只需要计算4个面的.面积,上下两个面不计算)。
(4)学生尝试独立解答。
(5)集体交流反馈。
方法一:10122+6122=240+144=384(cm2)。
方法二:(1012+612)2=(120+72)2=384(cm2)。
答:这张商标纸的面积至少需要384平方厘米。
2、教材26页第8题。
(1)课件出示教材26页第8题图片及文字:一个玻璃鱼缸的形状是正方体,棱长3dm,制作这个鱼缸时至少需要玻璃多少平方分米?(鱼缸的上面没有盖)。
(2)学生读题,看图,理解题意。
(3)提问鱼缸的上面没有盖说明什么?(说明只需计算正方体5个面的面积之和)。
(4)请学生独立列式计算,教师巡视,了解学生是否真正掌握。
335=95=45(dm2)。
答:制作这个鱼缸时至少需要玻璃45平方分米。
三、课堂作业。
完成教材第26页练习六第9、10题。
四、课堂小结。
五、课后作业。
完成练习册中本课时练习。
板书设计:
方法一:10122+6122。
=240+144。
=384(cm2)。
方法二:(1012+612)2。
=(120+72)2。
=384(cm2)答:这张商标纸的面积至少需要384平方厘米。
一个玻璃鱼缸的形状是正方体,棱长3dm,制作这个鱼缸时至少需要玻璃多少平方分米?
335。
=95。
=45(dm2)答:制作这个鱼缸时至少需要玻璃45平方分米。
【本文地址:http://www.pourbars.com/zuowen/14535081.html】