长方体和正方体的表面积教案(汇总20篇)

格式:DOC 上传日期:2023-11-24 16:04:11
长方体和正方体的表面积教案(汇总20篇)
时间:2023-11-24 16:04:11     小编:ZS文王

教案可以促进教师对教学目标和方法的思考和规划。教案应通过多种途径和手段激发学生的学习动力和自主学习能力。掌握好教案的编写方法可以提高教学效果,我们一起来看看吧。

长方体和正方体的表面积教案篇一

使学生理解长方体和正方体的表面积的概念,在理解概念的基础上初步学会求长方体表面积的计算方法;发展学生的空间观念,培养学生概括、推理的能力。

谈话:出示长方体,如果想把这件礼物包装一下,你觉得需要知道什么?

师:在生活中我们有时需要知道长方体或者正方体6个面的总面积,这就叫长方体或正方体的表面积。(板书:长方体或正方体的表面积)。

师:要求出长方体或正方体的表面积,你觉得要知道什么?

教师出示长方体透视图。

长方体有几个面?每个面是什么形状?面与面有什么特点?

说说各个面的长与宽。

提问:什么是长方体的表面积?想一想,要计算长方体的表面积必须先算出哪些面积?

出示例1。

学生读题,找出条件和问题。

提问:求这个木箱的表面积是多少实际就是求什么?(六个面的面积)。

那我们可以怎么想呢?

引导学生列出算式:8×5×2+8×4×2+5×4×2。

提问:8×5×2、8×4×2、5×4×2分别求的什么?

学生回答,教师边在算式下标明上下、前后、左右,接着,让学生检查一下?有没有漏算或者重复计算的面,然后让学将完成例题。

提问:这道题还可以怎么列式呢?

同桌同学讨论,解答。教师巡视。

指名汇报算式:(8×5+8×4+5×4)×2。

提问:问什么先算3个面的面积和再乘以2?

学生用以长方体教具演示帮助学生回答,然后,将黑板上的原长方体的展开图的前、下、右面裁下,与左、上、后面进行重叠,帮助学生弄清道理。

提问:这两种计算方法有什么不同?又有什么联系?(第一种方法是先分别算出上下、前后、左右面的面积,然后再加起来。第二种方法,算出前面、右面、下面的面积再乘以2。第二种方法是第一种方法根据乘法分配律变成的。)。

提问:哪一种方法更简便?(第二种)。

教师:计算长方体的表面积,最关键的事要正确找出3组面中每个面的长和宽。

完成练一练第1题。

你还有什么方法?如果有两个面是正方形,那么其它四个面都是一样的。

独立完成试一试,说说立方体表面积计算方法是怎样的?

完成练一练。

长方体或者正方体的6个面的总面积,叫做它的表面积。要计算长方体的表面积,关键是要准确找到每个面的长和宽。

作业本。

2、一个长方体的上下两个面都是正方形,表面积是224平方厘米,正好能截成体积相等的三个立方体,每个立方体的表面积是()平方厘米。

长方体和正方体的表面积教案篇二

教师出示长方体教具,用手摸一下前面(面对学生的面),说明这是长方体的一个面,这个面的大小就是它的面积;再用手摸一下左边的面,说它也是长方体的一个面,它的大小是它的面积。

教师:长方体有几个面?学生:6个面。

教师用手按前、后,上、下,左、右的顺序摸一遍,说明这六个面的总面积叫做它的表面积。

请学生拿着自己准备的长方体盒子也摸一摸,同时两人一组相互说一说什么是长方体的表面积。

学生讨论。(把六个面展开放在一个平面上。)。

教师演示:把长方体盒子、正方体盒子展开,剪去接头粘接处,贴在黑板上。也请每位同学把自己准备的长、正方体盒子的表面展开铺在课桌上。

学生四人一组边操作边讨论后归纳:

请同学用自己的展开图练习找各面的长宽。然后再请一两位同学上讲台,指出黑板上展开图中相等的面和对应的长和宽。

教师:我们再从立体图形上看一看。(用电脑动画软件或抽拉投影片演示)。

(图像要验证相对的面相等,展示每个面对应的长和宽。)。

学生讨论后归纳,老师板书:

上下面:长×宽×2。

前后面:长×高×2。

左右面:高×宽×2。

学生口答老师板书:(或学生板书,同时其余同学填书上。)。

解法1:6×5×2+6×4×2+5×4×2。

=60+48+40。

=148(厘米2)。

解法2:(6×5+6×4+5×4)×2。

=(30+24+20)×2。

=74×2。

=148(厘米2)。

答:至少要用148厘米2纸板。

练一练:(投影片)一个长方体长4米,宽3米,高2。

长方体和正方体的表面积教案篇三

学习任何知识的最佳途径是由学生自己去发现,因为这种发现,理解最深,也是最容易掌握其中的内在规律和联系。”(著名数学家波利亚)在这个案例中,从学生已有的知识以及学生熟悉的生活情境和感兴趣的具体事物出发,通过实物、教具引导学生在理解的基础上掌握知识,给学生充分观察和实际操作的机会,让他们体会到数学来源于生活、来源于生产实践,增强学生学好数学的兴趣,这是新大纲中所强调的。

教师遵循了新大纲的理念,从生活实际引入,为学生创设了探索新知识的条件,让学生参与到获取新知识的过程中去。将抽象的知识变成了学生能看得见、摸得着的现实东西,使学生在观察和操作中,对知识的思考与实物模型的演示和操作有机的结合起来,在学生头脑中形成表象,建立概念,以动促思。

引导学生在探索中发现和总结出计算长方体和正方体的方法,并给学生机会,让学生充分发表自己的见解,在多种算法的交流中选择适合自己的算法,不但调动了学生学习的积极性,更有助于学生形成探索性学习方式,我们深刻体会到老师充分尊重学生的个性,不包办代替,努力创设情景,提供空间,让学生动手实践,自主探索,让学生充分经历-和感受了知识产生和发展的过程,引导学生把所学的数学知识应用到现实中去,使学生更好地理解和掌握了长方体和正方体的表面积意义和计算方法,并且初步培养了学生的探究能力、创新思维和应用数学的意识。使学生在数学学习活动中建立了自信心,激发了求知欲,获得了成功得体验。

将本文的word文档下载到电脑,方便收藏和打印。

长方体和正方体的表面积教案篇四

使学生理解长方体和正方体的表面积的概念,在理解概念的基础上初步学会求长方体表面积的计算方法;发展学生的空间观念,培养学生概括、推理的能力。

谈话:出示长方体,如果想把这件礼物包装一下,你觉得需要知道什么?

师:在生活中我们有时需要知道长方体或者正方体6个面的总面积,这就叫长方体或正方体的表面积。(板书:长方体或正方体的'表面积)

师:要求出长方体或正方体的表面积,你觉得要知道什么?

1、教学长方体的表面积

教师出示长方体透视图。

长方体有几个面?每个面是什么形状?面与面有什么特点?

说说各个面的长与宽。

提问:什么是长方体的表面积?想一想,要计算长方体的表面积必须先算出哪些面积?

出示例1

学生读题,找出条件和问题。

提问:求这个木箱的表面积是多少实际就是求什么?(六个面的面积)

那我们可以怎么想呢?

引导学生列出算式:8×5×2+8×4×2+5×4×2

提问:8×5×2、8×4×2、5×4×2分别求的什么?

学生回答,教师边在算式下标明上下、前后、左右,接着,让学生检查一下?有没有漏算或者重复计算的面,然后让学将完成例题。

提问:这道题还可以怎么列式呢?

同桌同学讨论,解答。教师巡视。

指名汇报算式:(8×5+8×4+5×4)×2。

提问:问什么先算3个面的面积和再乘以2?

学生用以长方体教具演示帮助学生回答,然后,将黑板上的原长方体的展开图的前、下、右面裁下,与左、上、后面进行重叠,帮助学生弄清道理。

提问:这两种计算方法有什么不同?又有什么联系?(第一种方法是先分别算出上下、前后、左右面的面积,然后再加起来。第二种方法,算出前面、右面、下面的面积再乘以2。第二种方法是第一种方法根据乘法分配律变成的。)

提问:哪一种方法更简便?(第二种)

教师:计算长方体的表面积,最关键的事要正确找出3组面中每个面的长和宽。

完成练一练第1题。

你还有什么方法?如果有两个面是正方形,那么其它四个面都是一样的。

2、立方体表面积计算

独立完成试一试,说说立方体表面积计算方法是怎样的?

完成练一练

长方体或者正方体的6个面的总面积,叫做它的表面积。要计算长方体的表面积,关键是要准确找到每个面的长和宽。

作业本

2、一个长方体的上下两个面都是正方形,表面积是224平方厘米,正好能截成体积相等的三个立方体,每个立方体的表面积是( )平方厘米。

长方体和正方体的表面积教案篇五

教材第23~24页,以及第25~26页练习六第1、2、3、4、6、7题。

3.培养学生分析能力,发展学生的空间概念。

一、复习导入。

2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的`特征。

二、新课讲授。

(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。

师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到展开图。

(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。

观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。

(2)出示教材第24页例1。

理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)。

先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。

(3)尝试独立解答。

(4)集体交流反馈。

老师根据学生的解题思路进行板书。

0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)。

0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)。

方法三:(上面的面积+前面的面积+左面的面积)×2。

(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)。

(6)请同学们尝试自己解答教材第24页例2,集体交流算法,请学生说说你是怎样解答计算正方体表面积的。

三、课堂作业。

1.完成教材第23页“做一做”。

2.完成教材第24页“做一做”。

3.完成教材第25~26页练习六第1、2、3、4、6、7题。

四、课堂小结。

长方体和正方体的表面积教案篇六

投影出示练习六第l题。

解答练习六第2题,步骤同第1题。

教师:在日常生活和生产中,往往不是算长方体的每一个面的面积,而是需要计算长方体的表面积。

出示例3。

学生读题,找出条件和问题。

让学生看第25页例1下面的“想”,并填好空。然后,引导学生列出算式:6×5×2+6×4×2+5×4×2+6×4。

提问:6×5×2、6×4×2、5×4×2分别求的什么?

学生回答,教师边在算式下标明上下、前后、左右,接着,让学生检查一下,有没有漏算或者重复计算的面,然后让学将计算过程和结果填在书上。

提问:这道题还可以怎么列式呢?

同桌同学讨论,解答。教师巡视。

指名汇报算式:(6×5+6×4+5×4)×2。

提问:问什么先算3个面的面积和再乘以2?

学生用以长方体教具演示帮助学生回答,然后,将黑板上的原长方体的展开图的前、下、右面裁下,与左、上、后面进行重叠,帮助学生弄清道理。

提问:这两种计算方法有什么不同?又有什么联系?(第一种方法是先分别算出上、下面的面积和,然后再加起来。第二种方法,实现算出前面、右面、下面的面积再乘以2。第二种方法是第一种方法根据乘法分配律变成的。)。

提问:哪一种方法更渐变?(第二种)。

前左下。

的宽找错了)。

接着,教师小结:计算长方体的表面积,最关键的事要正确找出3组面中每个面的长和宽。

三、课堂练习。

做例1下面的做一做中的题目。先让学生独立做,教师巡视,对有困难的学生给予指导,然后汇报解法,并说出思考过程。

四、全课总结。

长方体或者正方体的6个面的总面积,叫做它的表面积。要计算长方体的表面积,关键是要准确找到每个面的长和宽。

五、布置作业。

练习第3、4题。

长方体和正方体的表面积教案篇七

2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。

二、新课讲授。

(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。

师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。

(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。

观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。

(2)出示教材第24页例1。

理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)。

先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。

(3)尝试独立解答。

(4)集体交流反馈。

老师根据学生的解题思路进行板书。

0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)。

0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)。

方法三:(上面的面积+前面的面积+左面的面积)×2。

(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)。

(6)请同学们尝试自己解答教材第24页例2,集体交流算法,请学生说说你是怎样解答计算正方体表面积的。

三、课堂作业。

1.完成教材第23页“做一做”。

2.完成教材第24页“做一做”。

3.完成教材第25~26页练习六第1、2、3、4、6、7题。

四、课堂小结。

板书设计:

教学内容:

教学目标:

1.利用长方体和正方体的表面积计算方法,结合实际生活,求一些不是完整六个面的长方体、正方体的表面积。

2.通过练习、操作发展空间想象能力。培养学生对数学的兴趣与求知欲。

教学重点:

能根据生活实际,对不是完整六个面的长方体、正方体的表面积进行正确的判断。

教学难点:

教具运用:

课件。

教学过程:

师:上节课我们认识了长方体和正方体的表面积,并且学习了表面积的计算方法,请大家试着解决下面的两个问题。(出示课件)。

1.做一个长8厘米,宽6厘米,高5厘米的纸盒,至少需要多少纸板?

2.一个棱长和为180的正方体,它的表面积是多少?学生独立计算,教师巡视指导,集体订正。师:通过前两节课的学习,我们学会了长方体、正方体表面积的计算方法,就是计算出它们6个面的面积之和,但在实际生活中,有时只需要计算其中一部分面的面积之和,这就要根据实际情况来思考了。

二、新课讲授。

1.教材25页第5题。

(2)学生读题,看图,理解题意。

(3)“上下面不贴”说明什么?(说明只需要计算4个面的面积,上下两个面不计算)。

(4)学生尝试独立解答。

(5)集体交流反馈。

方法一:10×12×2+6×12×2=240+144=384(cm2)。

方法二:(10×12+6×12)×2=(120+72)×2=384(cm2)。

答:这张商标纸的面积至少需要384平方厘米。

2.教材26页第8题。

(1)课件出示教材26页第8题图片及文字:一个玻璃鱼缸的形状是正方体,棱长3dm,制作这个鱼缸时至少需要玻璃多少平方分米?(鱼缸的上面没有盖)。

(2)学生读题,看图,理解题意。

(3)提问“鱼缸的上面没有盖”说明什么?(说明只需计算正方体5个面的面积之和)。

(4)请学生独立列式计算,教师巡视,了解学生是否真正掌握。

3×3×5=9×5=45(dm2)。

答:制作这个鱼缸时至少需要玻璃45平方分米。

三、课堂作业。

完成教材第26页练习六第9、10题。

四、课堂小结。

五、课后作业。

完成练习册中本课时练习。

板书设计:

长方体和正方体的表面积教案篇八

1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。

3.培养学生分析能力,发展学生的空间概念。

长方体、正方体纸盒,剪刀,投影仪。

一、复习导入。

1.什么是长方体的长、宽、高?什么是正方体的棱长?

2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。

二、新课讲授。

(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。

师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。

(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。

观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。

(2)出示教材第24页例1。

理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)。

先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。

(3)尝试独立解答。

(4)集体交流反馈。

老师根据学生的解题思路进行板书。

方法一:长方体的表面积=6个面的面积和。

0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)。

0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)。

方法三:(上面的面积+前面的.面积+左面的面积)×2。

(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)。

(6)请同学们尝试自己解答教材第24页例2,集体交流算法,请学生说说你是怎样解答计算正方体表面积的。

三、课堂作业。

1.完成教材第23页“做一做”。

2.完成教材第24页“做一做”。

3.完成教材第25~26页练习六第1、2、3、4、6、7题。

四、课堂小结。

长方体和正方体的表面积教案篇九

2、培养学生分析、解决问题的能力,以及良好的思维品质。

能灵活地解决一些实际问题。

课件。

一、复习导入。

2、如果要求正方体的表面积,需要知道什么?怎样求?

二、课堂作业。

完成教材第26页第11~13题。

1、第11题。

(1)分析题目的已知条件和问题。

(2)粉刷教室要粉刷几个面?哪一个面不要粉刷?还要注意什么?

(3)列式解答。

4[86+(83+63)2-11.4]。

=4120.6=482.4(元)。

答:粉刷这个教室需要花费482.4元。

2、第12题。

这是一道计算组合图形的表面积的题,提醒学生:两个图形重叠部分的面积不能算在表面积里。

分析:前后面的面积是相等的,就是把3个长方体前面的面相加即可。

左右两面也相等,实际上就是求中间这个长方体左右的两个面即可。

=(2200+2600+1600)2=12800(cm2)。

涂红油漆40652+40403=5200+4800=10000(cm2)。

答:涂黄油漆的总面积为12800cm2,涂红油漆的面积为10000cm2。

3、第13题。

提示:把一个长方体从中间截断,就可以分成两个正方体。

让学生分别计算出长方体的表面积和切后的两个正方体的表面积和,再比较它们的表面积,看有没有发生变化。

小结:截完后,增加了两个截面。所以,两个正方体的表面积大于原来长方体的表面积。

三、课堂小结。

通过这节课的学习,你有什么收获?还有什么问题?

四、课后作业。

完成练习册中本课时练习。

长方体和正方体的表面积教案篇十

教学内容:

教学目标:

3.培养学生分析能力,发展学生的空间概念。

教学重点:

教学难点:

教具运用:

教学过程:

一、复习导入。

1.什么是长方体的长、宽、高?什么是正方体的棱长?

2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。

二、新课讲授。

(1)请同学们拿出准备好的长方体纸盒,在上面分另标出上、下、前、后、左、右六个面。

师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。

(2)请同学们拿出准备好的正方体纸盒,分别标出上、下、前、后、左、右六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。

观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。

(1)在日常生活和生产中,经常需要计算哪些长方体或正方体的表面积?

(2)出示教材第24页例1。

理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)。

先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。

(3)尝试独立解答。

(4)集体交流反馈。

老师根据学生的解题思路进行板书。

0.70.4+0.70.4+0.50.4+0.50.4+0.70.5+0.70.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)。

0.70.42+0.50.42+0.70.52=0.7+0.56+0.4=1.66(m2)。

方法三:(上面的面积+前面的面积+左面的面积)2。

(0.70.4+0.50.4+0.70.5)2=0.832=1.66(m2)。

(6)请同学们尝试自己解答教材第24页例2,集体交流算法,请学生说说你是怎样解答计算正方体表面积的。

三、课堂作业。

1.完成教材第23页做一做。

2.完成教材第24页做一做。

3.完成教材第25~26页练习六第1、2、3、4、6、7题。

四、课堂小结。

板书设计:

长方体和正方体的表面积教案篇十一

说教材:

二)本节课的地位和作用:这部分内容是在学生学习了长方形和正方形的面积的计算方法,学生对长方体和正方体的表象有了充分的认识并掌握了长方体和正方体的特征的基础上进行教学的。

三)教学目标的确立:

1、知识与技能:

2)、掌握长方体和正方体表面积的计算方法,并且会根据具体情况解决实际生活中有关长方体或正方体表面积的实际问题。(比如有五个面或四个面的长方体或正方体)。

2、过程与方法:

1)知识产生的过程:在实际的生产和生活中,有很多需要求长方体和正方体的表面积或跟表面积有关的问题,如工业生产中需要的包装盒,装潢时对长方体或正方体进行外包装,建筑时要粉刷墙壁等。

2)掌握知识的过程:情景引入,感知计算长方体和正方体表面积的必要性——分组讨论计算长方体表面积的计算方法——全班总结长方体表面积的计算方法,选择最优方案——小组探讨正方体表面积的计算方法——自主练习,巩固知识——拓展延伸,形成能力。

3、情感态度与价值观:

1)培养学生观察分析、归纳和语言表达能力,发扬尝试、合作的协调精神,促进思维能力的发展。

2)在学习活动中,增强学生的学习兴趣和信心。

四)重难点的确立:

2、难点:根据给出的长方体的长或宽确定每个面的长和宽,这是本课的难点。

二、说教法和学法:

现代数学理论认为,小学数学课应增加学生的数学活动,依据本单元教材特点和学生认知规律,这节课我主要运用复习引入法、情境教学法、启发分析法动手操作法等进行教学。

教与学密不可分,教是为了更好地学。根据学生的学习规律,在教学过程中,主要指导学生掌握如下学习方法:转化迁移的方法、比较分析法、总结归纳法。

三、说教学流程:

(一)巧设情景,生活引入:

师:同学们,学校要给灾区的小朋友捐款,并决定本周三在学校的操场上举行募捐仪式。总务处的刘老师要制一个象样的募捐箱,他听说我们正在学习长方体和正方体的有关知识,所以请我们帮个忙。请你想一想我们该怎样制呢?(生答)我们还需要知道那些信息呢?(生答)总务处备有硬纸板,那我们该去领多少呢?由此引出本节课要学习的内容:长方体的表面积。

(二)自主探索,形象感知。

动手操作的过程是一个手脑并用的过程,学生在用学具进行操作性学习的过程中,多种感官参与学习活动,不仅能调动了学生的学习积极性,而且能让学生主动操作、主动探索、主动思考。

1、引导学生展开上节可课制作的长方体,依次标明上下左右前后六个面,使学生明确至少需要多少硬纸板就求这个长方体表面积这六个面的总面积。在学生的头脑里建立起表面积的概念。

(1)引导学生动手量出长、宽、高,尝试通过小组合作算出表面积,然后向全班汇报。

(2)小组讨论长方体表面积的计算方法。在这个过程中要注意引导学生通过观察和操作真正弄清楚每个面的长和宽与长方体的长和宽有什么关系?教师有在关键处进行点拨、引导,突破这一难点问题。

3、募捐箱做好后,想找一些漂亮的红纸贴一下箱子的外面,观察一下哪些面需要装饰?(上面和四周)那需要多少红纸?(小组讨论解决)。

通过这个例题的解决让学生知道生活中有时并不需要求出6个面的总面积,这时启发学生说一说生活中还有哪些类似的情况,(如木制的粉笔盒、煤箱子等)引导学生解决实际问题。

4、师出示募捐箱的长宽高的具体数据,分别求出需要多少硬纸板和红纸。

6、交流。学生可能有按照长方体的表面积的计算方法计算的。交流时注意引导学生比较哪种方法最简便,同时明确在正方体表面积的计算公式中为什么要乘6。

7、质疑问难。

(三)巩固练习,扩展应用。数学来源于生活,又服务于生活,学生学到的知识通过应用才能真正理解和掌握。

1、书中的习题。通过有目的的基本练习、巩固练习、综合练习,使学生进一步加深了对新知识的理解。强化了学生运用新知解决实际问题的能力,使学生形成了一定技能技巧。

2、设计磁带包装。

1)单个包装:同学们为一个磁带盒设计外包装,并把设计方案填写在设计表中。

2)两盒包装:两盒一套有几种摆放方式。初步估算一下:哪种最省料,哪种最废料。

3、课后实践作业:

1)按你喜欢的摆放的方式设计并制作两盒一套的磁带外包装盒,并计算出至少要多少材料。如果你感兴趣的话,还可以设计制作盒数更多的磁带外包装,下节课我们进行汇报交流和展示。

四、说教后反思:

学习本节课,如果学生在上节课会求指定的长方体的某个面的面积,学习本节课的时候问题不大。估计学习本节课的时候有一部分学生会有一定的困难,要加强对这部分学生的个别辅导,要多利用实物让学生观察,逐步建立起空间概念。

长方体和正方体的表面积教案篇十二

教学目的:使学生理解长方体和正方体的表面积的概念,在理解概念的基础上初步学会求长方体表面积的计算方法;发展学生的空间观念,培养学生概括、推理的能力。

教学过程:。

一、复习导入。

谈话:出示长方体,如果想把这件礼物包装一下,你觉得需要知道什么?

师:在生活中我们有时需要知道长方体或者正方体6个面的总面积,这就叫长方体或正方体的表面积。(板书:长方体或正方体的表面积)。

师:要求出长方体或正方体的表面积,你觉得要知道什么?

二、新课教学。

教师出示长方体透视图。

长方体有几个面?每个面是什么形状?面与面有什么特点?

说说各个面的长与宽。

提问:什么是长方体的表面积?想一想,要计算长方体的表面积必须先算出哪些面积?

出示例1。

学生读题,找出条件和问题。

提问:求这个木箱的表面积是多少实际就是求什么?(六个面的面积)。

那我们可以怎么想呢?

引导学生列出算式:8×5×2+8×4×2+5×4×2。

提问:8×5×2、8×4×2、5×4×2分别求的什么?

学生回答,教师边在算式下标明上下、前后、左右,接着,让学生检查一下?有没有漏算或者重复计算的面,然后让学将完成例题。

提问:这道题还可以怎么列式呢?

同桌同学讨论,解答。教师巡视。

指名汇报算式:(8×5+8×4+5×4)×2。

提问:问什么先算3个面的面积和再乘以2?

学生用以长方体教具演示帮助学生回答,然后,将黑板上的原长方体的展开图的前、下、右面裁下,与左、上、后面进行重叠,帮助学生弄清道理。

提问:这两种计算方法有什么不同?又有什么联系?(第一种方法是先分别算出上下、前后、左右面的面积,然后再加起来。第二种方法,算出前面、右面、下面的面积再乘以2。第二种方法是第一种方法根据乘法分配律变成的。)。

提问:哪一种方法更简便?(第二种)。

教师小结:计算长方体的表面积,最关键的事要正确找出3组面中每个面的长和宽。

完成练一练第1题。

你还有什么方法?如果有两个面是正方形,那么其它四个面都是一样的。

独立完成试一试,说说立方体表面积计算方法是怎样的?

三、课堂练习。

完成练一练。

四、全课总结。

长方体或者正方体的6个面的总面积,叫做它的表面积。要计算长方体的表面积,关键是要准确找到每个面的长和宽。

五、布置作业。

作业本。

六、课外延伸:

2、一个长方体的上下两个面都是正方形,表面积是224平方厘米,正好能截成体积相等的三个立方体,每个立方体的表面积是()平方厘米。

长方体和正方体的表面积教案篇十三

(三)培养和发展学生的空间观念。

(二)确定长方体每一个面的长和宽。

教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。

1.口答填空。

(1)长方体有()个面,一般都是(),相对的面的()相等;

(2)正方体有()个面,它们都是(),正方形各面的()相等;

(4)这是一个(),它的校长是()厘米,它的棱长之和是()厘米。

教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积。)。

教师出示长方体教具,用手摸一下前面(面对学生的面),说明这是长方体的一个面,这个面的大小就是它的面积;再用手摸一下左边的面,说它也是长方体的一个面,它的大小是它的面积。

教师:长方体有几个面?学生:6个面。

教师用手按前、后,上、下,左、右的顺序摸一遍,说明这六个面的总面积叫做它的表面积。

请学生拿着自己准备的长方体盒子也摸一摸,同时两人一组相互说一说什么是长方体的表面积。

学生讨论。(把六个面展开放在一个平面上。)。

教师演示:把长方体盒子、正方体盒子展开,剪去接头粘接处,贴在黑板上。也请每位同学把自己准备的长、正方体盒子的表面展开铺在课桌上。

学生四人一组边操作边讨论后归纳:

请同学用自己的展开图练习找各面的长宽。然后再请一两位同学上讲台,指出黑板上展开图中相等的面和对应的长和宽。

教师:我们再从立体图形上看一看。(用电脑动画软件或抽拉投影片演示)。

(图像要验证相对的面相等,展示每个面对应的长和宽。)。

学生讨论后归纳,老师板书:

上下面:长×宽×2。

前后面:长×高×2。

左右面:高×宽×2。

学生口答老师板书:(或学生板书,同时其余同学填书上。)。

解法1:6×5×2+6×4×2+5×4×2。

=60+48+40。

=148(厘米2)。

解法2:(6×5+6×4+5×4)×2。

=(30+24+20)×2。

=74×2。

=148(厘米2)。

答:至少要用148厘米2纸板。

练一练:(投影片)一个长方体长4米,宽3米,高25米。它的表面积是多少米2?(请几位同学用投影片做,选作订正样题。)。

教师:如此题改为同样尺寸的无盖塑料盒求表面积如何办?

学生:应该少算上边的一面。列式:

学生:一个面的面积乘以6。

学生:棱长×棱长×6。

(2)试解下面的题。

请同学们填在书上,一位同学板书:

32×6。

=9×6。

=54(厘米2)。

答:它的表面积是54厘米2。

教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?

学生:少一个面。列式:32×5。

教师:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,审题时要分清求的是哪几个面的和。

(3)练习:课本p26做一做。(请两位同学写投影片,其余同学做本上。)。

用学生投影片集体订正。

1.口答课本p27:1。

2.计算课本p27:2。(各请两位同学用投影片写,集体订正。)。

3.口答。判断正误,并说明理由。

(1)长方体的三角棱分别叫它的长、宽、高。()。

(2)一个棱长4分米的正方体,求它的表面积的列式是42×6,结果是48分米2。()。

(3)用四个同样大的正方体小木块拼成一个长方体,这个长方体的表面积,比原来四个小正方体表面积的和小。()。

(四)课堂总结及课后作业 。

2.作业 :课本p27:3,4,5。

长方体和正方体中每个面的面积计算是旧知识,这节课的主要任务是要帮助学生建立空间观念,使学生准确地把握长方体和正方体六个面之间的位置、大小关系,进而理解并掌握长方体和正方体的表面积计算方法。

教学过程 中,设计安排了学生实物操作,观察平面图、立体图的动画演示,其目的是让学生的思维活动上两个台阶,其一是由看实物到看立体图,其二是由知道了长、宽、高就能想象出实物图形,这样既使学生在空间图形的基础上理解长方体和正方体表面积计算方法的算理,掌握计算方法,又发展了学生的空间观念。

本节新课教学分为三部分。

长方体和正方体的表面积教案篇十四

片段一:

生1:我觉得长方体用的纸板多。因为它比这个正方体长。

生2:我觉得正方体用的纸板多。因为它比这个长方体高。

生3:我觉得这两个纸盒用的纸板同样多。因为长方体比正方体长,而正方体又比长方体高,所以就同样多。

师:究竟怎样才能得出正确结果呢?你觉得我们应该怎么办?

生:我们应该分别计算出它们六个面的总面积。

生:边指边说,包括上下、左右和前后六个面。

反思:课的开始,创设一个让学生“猜一猜”做一个长方体纸盒和正方体纸盒,哪个用的纸板较多的情境,引发学生思考,“用什么方法才能比较出来呢?”学生通过思考与交流,认识到“必须分别计算出六个面的总面积”,这样设计能激发学生产生好奇心,使学生在自主的观察中理解了表面积的意义,为探索长方体和正方体表面积的计算打下了良好的基础。

片段二:

师:如果告诉我们这个长方体纸盒的长、宽、高,你能想办法算出做这个长方体纸盒至少要用多少平方厘米硬纸板吗?(长6厘米、宽5厘米、高4厘米)。

师:小组讨论一下,借助手中的长方体,想办法算出所求问题,并把结果写在作业本上,并在小组中交流一下自己的方法。

生:小组活动,反馈交流。

师:这几种方法都可以,你喜欢用哪一种就用哪一种。但在实际生活中还会遇到很多实际情况,我们要根据实际情况灵活运用计算表面积的方法。

反思:当学生急于想知道长方体表面积的计算方法时,如果把求法直接告诉学生或引导学生一步一步推导出表面积的公式,就不利于学生创新思维的发展。因此,让学生通过小组讨论、探索尝试计算等,共同探索出长方体表面积的计算方法,不仅学生自己主动参与了获取知识的过程,而且也自己探索到解决问题的方法,同时培养了学生的求异思维。

片段三:

生1:正方体同长方体一样都是六个面,而这六个面的面积是相等的,每个面都是正方形,所以我认为正方体的表面积等于一个正方形的面积乘6。

生2:正方体的六个面都是正方形,面积相等,所以正方体的表面积等于棱长×棱长×6。

生:3×3×6,我用3×3求出正方体一个面的面积,再乘以6就求出6个面的总面积。

反思:正方体的表面积的计算方法是在长方体表面积的基础上推导出来的,教师没有讲,而是把迁移类推的机会留给了学生,让学生自己去发现,类推出正方体表面积的计算方法,培养了学生的逻辑思维能力。

片段四:

53。

3

生1:(5×3+5×3+3×3)×2。

生2:5×3×4+3×3×2。

反思:学生学会了计算长方体的表面积之后,往往只会机械的进行计算,这是一个其中有两个面是正方形的长方体,使学生认识到这样的长方体其中有四个面的面积是相等的,我们可以用更简洁的方法来计算。培养了学生优化思维的能力,促进课堂效益的提高,也使学生在愉快的气氛中感受到学习数学的乐趣。

长方体和正方体的表面积教案篇十五

3.培养学生的动手操作能力和空间观念.。

教学重点。

建立表面积概念,初步学会计算长方体和正方体的表面积.。

教学难点。

正确建立表面积的概念.。

教学步骤。

一、铺垫孕伏.。

2.标出自带长方体纸盒的长、宽、高,并说出右面、上面的长和宽是多少?面积是多少?

二、探究新知.。

1、教师提问:什么叫做面积?

(用手按前、后,上、下,左、右的顺序摸一遍)。

2、教师明确:这六个面的总面积叫做它的表面积.。

(二)长方体表面积的计算方法.【演示课件“长方体的表面积”】。

1.学生归纳:

上下两个面大小相等,它是由长方体的长和宽作为长和宽的;

前后两个面大小相等,它是由长方体的长和高作为长和宽的;

左右两个面大小相等,它是由长方体的高和宽作为长和宽的.。

2.教学例1.。

做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?

第一种解法:

长方体和正方体的表面积教案篇十六

教学难点:

如何利用所学知识解决生活实际问题。

教学准备:

长方体,正方体,多媒体。

教学过程:

一、联系实际,揭示课题。

同学们,学校利用这个假期同学们休息的时间,要对我们的教室进行从新粉刷。

在粉刷之前,校方提前进行了资料收集,收集的资料如下:

1.每个教室的长8米,宽5米,高3米;

2.每个教室要对四壁和屋顶进行粉刷;

3.每个教室门窗的面积共20平方米;

4.每个教室要粉刷三次;

5.第一次粉刷每平米用涂料0.5千克;第二次和第三次粉刷每平米只用去涂料0.2千克。

6.我校共有个教室需要粉刷。你能根据校方收集的上述信息帮助校方计算出应该买多少涂料吗?(揭示课题)。

二、师生交流,提出问题。

师:同学们,看到这个课题,你想知道什么?

生1:什么叫表面积?

生2:长方体与正方体的表面积怎么求?它们的表面积之间有什么关系?

生3:学了这些知识有什么用处?

三、师生互动,探究问题。

1.学生操作,解决问题;

(1)请同学们拿出准备好的正方体纸盒,请将这个正方体纸盒沿着棱剪开。(学生操作)我们将正方体沿着棱剪开,就得到了一个正方体表面的展开图。

(出示学生得到的正方体表面的展开图。)。

(2)引导学生观察得到的正方体的展开图,思考:正方体表面的展开图有什么特征?

2.组内交流,发表见解;

(1)正方体表面的展开图有6个正方形的面组成。(2)它们的形状都相同。

(3)它们的面积都相等。

3.教师引导,深入探究;

(1)想一想可以怎么求这6个面的面积总和。先求出1个面的面积,再乘以6,就是这6个面的面积总和。

(2)请你试着求一求你手中的正方体6个面的面积总和。

注意:先测量棱长的尺寸,再计算,取整厘米数。(学生计算)看书巩固,掌握方法;刚才我们计算的就是正方体的表面积,那什么是正方体的表面积?正方体的表面积可以怎么求呢?书上有具体的.介绍,请打开书,翻到p39,看书回答:

四、巧加点拨,学而致用。

1.追随上知,质问质疑。

2.迁移知识,灵活运用。

3.组际交流,发表见解。

4.看书小结,掌握方法。

请打开书,翻到p40,看书回答:

5.引用方法,灵活解答。

长方体和正方体的表面积教案篇十七

(二)理解并掌握长方体和正方体表面积的计算方法。

(三)培养和发展学生的空间观念。

教学重点和难点。

(二)确定长方体每一个面的长和宽。

教学用具。

教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。

学具:长方体、正方体纸盒、剪刀。

教学过程设计。

(一)复习准备。

1.口答填空。

(1)长方体有()个面,一般都是(),相对的面的()相等;

(2)正方体有()个面,它们都是(),正方形各面的()相等;

(4)这是一个(),它的校长是()厘米,它的棱长之和是()厘米。

2.说一说长方体和正方体的区别?

教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积。)。

(二)学习新课。

长方体和正方体的表面积教案篇十八

教具、学具准备:教师和学生准备1个正方体纸盒。

教学难点 :培养空间概念。

一、复习铺垫。

1、口算。

让学生做练习二第5题,指名一人板演,其余学生做在课本上,时间2分钟。

集体订正。

3、引入课题。

二、教学新课。

1、教学例2。

出示例2。

提问:这道题告诉我们什么,要我们求什么问题?

请同学们讨论一下:这个正方体的表面积怎样求?然后列式计算。

提问:要求长方体表面积要怎样想?

指名学生口答解答这道题的过程。(教师板书)。

集体订正,让学生说一说每一步求的是什么?

追问:为什么用棱长乘棱长求一个面的面积?算式中为什么要乘6?

2、做“练一练”第1题。

3、教学例3。

出示例3,让学生读题。

这道题你会算吗?

指名一人板演,其余做在练习本上。

集体订正,让学生说一说每一步求什么。

追问:哪几对面有相同的两个?是怎样算的?那个面只有一个,怎样算的?

4、做“练一练”第2题。(读题,改变例3的条件。)。

现在求5个面积的面积和会算吗?

想一想,有没有简便算法。请大家做在作业 本上。

指名口答算式,教师板书,让学生说明每一步求的是什么。说明得数并板书.

追问:这种算法简便在哪里?

三、巩固练习。

1、做练习二第6题。

集体订正让学生说说每一步求什么。

2、做练习二第9题。

(1)指名读题。

提问:这长商标纸的面积是几个面的面积和?

谁来说一说商标纸的面积怎样算?

求这张商标纸的面积还可以怎样算?

让学生做在练习本上,指名一人板演。哪中算法比较简便?

四、课堂小结。

五、课堂作业 。

练习二第7、8题。

长方体和正方体的表面积教案篇十九

尊敬的评委们,老师们:

一、教材简析:

本节内容是在学生认识并掌握了长方体基本特征的基础上进行教学的,通过学习,有助于学生解决生活中的实际问题,切身感受数学的价值。同时,发展学生的空间观念,是进一步学习其他立体几何图形的'基础。

二、学生情况分析:

学生已经掌握了长方形、正方形面积的计算方法,表面积对于他们来说,是一个全新的概念,显得有点抽象。虽然五年级学生的抽象思维有了一定的发展,但仍以形象思维为主,分析、归纳、概括的能力有待进一步加强。

三、教学目标:遵照“新课标”的基本理念,根据《数学课程标准》要求,目标的制定应该是多元的,结合本课的教材内容和学生实际情况,我确立了如下教学目标:

认知目标:使学生理解长方体表面积的意义,掌握长方体表面积的计算方法。

技能目标:培养学生运用新知灵活解题的能力,发展学生的思维,培养学生分析、归纳、推理的能力。

情感目标:培养学生互助、合作的精神,促进学生在态度、情感等方面的健康发展。

四、教学重点、难点:

教学重点:让学生掌握长方体表面积的计算方法,并能运用所学知识解决实际问题。

教学难点:根据长方体的长、宽、高,确定每个面的长、宽各是多少。

五、教法、学法,

资料共享平台。

为了使数学知识、思想和方法在学生的数学实践活动中得到理解与发展,这节课我主要采用小组合作学习的形式,辅以“情境探究”法、“观察法”、“演示法”、“比较法”等,实现师生互动,生生互动,有计划地对学生进行思维训练,进一步激发学生学习数学的热情。

为构建和谐的课堂气氛,培养学生的观察能力和归纳概括能力,我激发学生积极参与动手实践、自主探索与合作交流等活动,让学生经历知识的形成过程,培养学生探索能力和创新精神。

六、教学准备:多媒体课件,长方体纸盒、剪刀。

七、教学设计。

本着让学生“主动参与、乐于探究、勤于动手、学有所得”的理念,我设计了如下教学过程:

第一个环节:创设情景,激趣导入。

上课伊始,我就创设如下情景:(今天是聪聪妈妈的生日)聪聪:“妈妈,生日快乐!”妈妈:“真乖,礼物包装得真精美!妈妈考考你,包装这份礼物时,至少要用多大的彩纸呢?”聪聪“……”我顺势把问题抛给学生,从而引出课题——长方体的表面积。

这一设计意在赋于教材以生活的气息,让学生切身感受数学就在身边,激发学生强烈的求知欲望。

第二个环节:实践探索、获取新知。(我设计了三个活动)。

第一个活动:独立感知——建立长方体表面积的概念。

我请学生闭上眼睛,触摸长方体的各个面,感知“表面”的含义,引导学生概括出长方体表面积的意义。

这一做法目的是让学生借助实物,建立表面积的表象,使抽象的概念形象化、具体化。

长方体和正方体的表面积教案篇二十

学习内容:

求一些不是完整六个面的长方体、正方体的表面积,(教材25页第5题、教材第26页第9、10题)。

学习目标:

1、利用长方体和正方体的表面积计算方法,结合实际生活,求一些不是完整六个面的长方体、正方体的表面积。

2、通过练习、操作发展空间想象能力。培养学生对数学的兴趣与求知欲。

教学重点:

能根据生活实际,对不是完整六个面的长方体、正方体的表面积进行正确的判断。

教学难点:

教具运用:

课件。

教学过程:

一、复习导入。

师:上节课我们认识了长方体和正方体的表面积,并且学习了表面积的计算方法,请大家试着解决下面的两个问题。(出示课件)。

1、做一个长8厘米,宽6厘米,高5厘米的纸盒,至少需要多少纸板?

2、一个棱长和为180的正方体,它的表面积是多少?学生独立计算,教师巡视指导,集体订正。师:通过前两节课的学习,我们学会了长方体、正方体表面积的计算方法,就是计算出它们6个面的面积之和,但在实际生活中,有时只需要计算其中一部分面的面积之和,这就要根据实际情况来思考了。

二、新课讲授。

1、教材25页第5题。

(2)学生读题,看图,理解题意。

(3)上下面不贴说明什么?(说明只需要计算4个面的.面积,上下两个面不计算)。

(4)学生尝试独立解答。

(5)集体交流反馈。

方法一:10122+6122=240+144=384(cm2)。

方法二:(1012+612)2=(120+72)2=384(cm2)。

答:这张商标纸的面积至少需要384平方厘米。

2、教材26页第8题。

(1)课件出示教材26页第8题图片及文字:一个玻璃鱼缸的形状是正方体,棱长3dm,制作这个鱼缸时至少需要玻璃多少平方分米?(鱼缸的上面没有盖)。

(2)学生读题,看图,理解题意。

(3)提问鱼缸的上面没有盖说明什么?(说明只需计算正方体5个面的面积之和)。

(4)请学生独立列式计算,教师巡视,了解学生是否真正掌握。

335=95=45(dm2)。

答:制作这个鱼缸时至少需要玻璃45平方分米。

三、课堂作业。

完成教材第26页练习六第9、10题。

四、课堂小结。

五、课后作业。

完成练习册中本课时练习。

板书设计:

方法一:10122+6122。

=240+144。

=384(cm2)。

方法二:(1012+612)2。

=(120+72)2。

=384(cm2)答:这张商标纸的面积至少需要384平方厘米。

一个玻璃鱼缸的形状是正方体,棱长3dm,制作这个鱼缸时至少需要玻璃多少平方分米?

335。

=95。

=45(dm2)答:制作这个鱼缸时至少需要玻璃45平方分米。

【本文地址:http://www.pourbars.com/zuowen/14678987.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map