找次品第一课时教学反思 找次品教学实录(10篇)

格式:DOC 上传日期:2023-03-04 10:01:22
找次品第一课时教学反思 找次品教学实录(10篇)
时间:2023-03-04 10:01:22     小编:zdfb

人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。

找次品第一课时教学反思 找次品教学实录篇一

(1)导入激发学生学习热情

首先,我以讲故事美国航空飞机爆炸导入,抓住学生好奇心理,(飞机的爆炸真的和一个次品有关)课一开始,发挥学生对新课学习的积极性和主动性,形成主体意识。而后又加以课件来解决他们心中的某些疑问,这样能激发学生学习的热情。

(2)民主导学中渗透“退”也就是“化繁为简”的数学思想

我在教学中体现了华罗庚“退”的数学思想——善于“退”足够“退”,“退”到最原始而不失去重要性的地方,也是学好数学的一个诀窍。把复杂的问题退回简单化,再从解决简单的问题中发现规律,用这个规律解决复杂的问题。在本节课的开始我就设计了让学生猜“从81瓶钙中找一个次品,用天平称,至少要称几次就一定能找出次品”学生猜无论如何都要81次,有的说42次。要解决这个难题,我们首先研究2瓶,3瓶5瓶等逐渐寻找规律和方法,最后找到“平均分3份来称所需次数最少”的方法,然后用找到的方法来解决从81瓶中找次品的问题。后来经过探究后发现从81瓶中找次品只需4次即可,在这种强烈的对比之中学生感受到数学思想方法的魅力,数学的奇妙!从而激发了学生数学的学习欲望。

(3)展示交流中体验“猜想与验证”的数学思想方法

猜测与验证是学生开展数学活动的一种重要思想方法。正如荷兰数学教育家弗赖登塔尔所说“真正的数学家——常常凭借数学的直接思维做出各种猜想,然后加以证实。”因此小学数学教学中教师要重视猜想验证思想方法的渗透,以增强学生主动探索、获取数学知识的能力,促进学生创新能力的发展。本节课就让学生经历了“实验探究——猜想——验证——归纳”的过程。首先从9瓶中找1瓶次品的几种方法的对比中,我们发现均分3份的方法所需次数最少,是否无论是多少瓶都是均分3份的方法所需的次数最少那?为了验证这一猜想,就必须再用一个例子去实验,最后归纳得出结论。学生通过经历知识的形成过程,不仅获得了数学结论,更重要的是逐步学会了获得数学结论的思想方法——猜想验证,提高了主动探索,获取知识的能力,增强了学好数学的信心。

在得出待测物品是3的倍数后,我适当将知识进行了拓展,学生经过观察后,很快地分别说出了所要称的次数。这一拓展,有效地开启了学生的思维。当然不足之处也有很多:(1)本节是思维训练课,但最终是不是所有的同学的思维都得到了不同的发展呢?现在反思一下,确实课堂上还有一部分同学一直很“安静”,那就是他们的思维根本就没有调动起来。

(2)另外所用的图示的办法,应该多做讲解,要让每一位同学能熟练的运用它。

(3)在板书中由于看到黑板是一块,本来设计的板书临时改为2列,结果出现了板书中“操作方法”占了2行。总之,这次教学优质活动给我了一次很好的锻炼机会,找到自身的不足,方可对症下药!我深信,只要我们想方设法摸清学生的学情,找到他们的现有知识起点,不断改变教学方式,使他们乐学、爱学、好学,定会为学生和自身成长辅垫出一条坚实之路!

找次品第一课时教学反思 找次品教学实录篇二

一、尽量体现教材意图。

《找次品》是新课标人教版教材五年级下册数学广角中的内容,优化时一种重要的数学思想方法,可有效地分析和解决问题。本单元主要以“找次品”这一操作活动为载体,让学生通过观察、实验来体会解决问题的多样性,在此基础上,通过推理的方法运用优化解决问题的有效性。

二、尽量体现“数学味”。

数学味或者说数学化是现在数学课堂提倡的理念,是我们所追求的。那么,怎样体现出数学味呢?怎样运用数学的眼光观察与认识生活中常见的数学问题呢?教师在本节课作了一些努力,例如:出示5件物品,找出其中的一件次品。让学生经历多次观察、比较、分析,在师生之间的交流和互动中,加强横向与纵向数学化的过程,使学生能从找次品的具体实例中初步了解蕴含其中的一些简单信息。

三、尽量体现方法渗透。

本节课中教者还力图渗透一些基本的学习方法,观察、比较、分析、猜测等方法贯穿整节课。我觉得,如果单单让学生获得一些有关找次品的知识似乎意义不大,而日常生活中的很多问题也不可能在一节课中一一认识,只有具备了一双善于发现的眼睛和一颗乐于探索的心,才能更多更好的学会找次。

找次品第一课时教学反思 找次品教学实录篇三

“找次品”是五年级下学期数学广角中安排的教学内容,其目的是让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,再通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养学生观察、分析、推理以及解决问题的能力,同时也让学生感受到数学与日常生活的密切联系。

教学中我先让学生探究3个物品中如何寻找轻的一个,利用学会已有的知识经验,充分发挥学生的想像和思维能力,在体验了找次品方法的多样性后,以用天平称作为实践操作,第一次优化找次品的方法,使学生得出找次品用天平称最方便。

接着让学生利用不同的分法分别探究出4个物品和5个物品中找一个次品的方法,在学生实践操作和数字化的分析过程后,质疑利用天平称找次品时,一般要将物品分

成几分?两份还是三份?引出用较大数量来进行研究的必要性,并随机引导学生用数字化的方法去研究8个物品中的次品应如何找。当学生得出方法后,将学生的所有方法罗列在黑板上,利用观察让学生发现数据大时分两份的方法次数不是最少,第二次优化找次品的方法,是学生初步得出用天平称找次品时一般要分成三份,两份在天平上、一份在天平外。但同时有给学生制造一个悬念:同样分三份,有些称的次数少,有些却反而更多?激起学生进一步探究的欲望。

接下来以9个物品为例继续研究,第三次优化找次品的方法。在关注学生用数字化的形式来分析问题的同时,反馈出学生的解题方法,关注学生解题策略的多样化。

9(4、4、1)4(1、1、2)2(1、1)3次

9(3、3、3)3(1、1、1)2次

9(2、2、5)5(2、2、1)2(1、1)1次

9(1、1、7)7(1、1、5)5(1、1、3)2(1、1、1)4次

然后重点指导交流:哪种分法能保证用最少的次数称出次品?这种分法有什么特点?从而得出平均分能够保证找出次品且称的次数最少这一结论。随机使学生产生不能平均份的数量应该怎样处理的问题,引导学生观察刚才8个物品找次品的方法,思考其中分三份的几个情况?从中发现“利用天平找次品,如果待测物品的数量不能平均分成3份时,我们要尽可能的使每一份的数量差不多,其中必须有两份要一样多,另一份的数量尽可能与之接近。”最终优化找次品问题的解题策略。

找次品第一课时教学反思 找次品教学实录篇四

作为一线的数学教师,我一直在不遗余力地追求心目中的理想课堂:直面学生的数学现实、尊重教师的个性创造、目标落实有效、学生持续发展。而有效的课堂教学需要教师通过不断的反思发现不足,从而改进教学设计。最近教研室开展了“一课同上,同课异构”活动,作为青年教师的我经历了两周的精心准备,并进行了多次的的课堂实践之后,感慨颇多,收获颇多,并对有效的课堂教学有了更深的认识。

找次品这节课属于思维训练课,主要培养学生的优化意识和逻辑推理能力,同时掌握找次品的最优方法。

我是这样设计教学过程的:先从3个零件中找一个偏重的次品,再从5瓶口香糖中找一个轻一点的次品,让学生初步掌握找次品的基本方法,接着再来分析9筐松果中找次品的方法和次数,这时进行优化,并用12个零件进行验证,最后设计的巩固练习是:有15箱饼干,其中有一箱是次品,轻一点。至少称几次一定能把它找出来?该怎么分?在教学中我让学生利用手中的学具做一做(称的.过程),然后同桌说一说(怎样称的)。看着学生们动手又动脑,积极、主动地参与研究,我也禁不住加入其中。精心预设后的课堂显得更加活跃,更加生机勃勃。在这时问题出现了,学生在验证时发现12个零件不用平均分成3份,平均分成4份,3个3个的也可以只用3次就找到次品。我随即问道:“有没有比平均分成3份更少的分法?”学生:“没有。”“一般情况下我们就平均分成3份去称,次数一定是最少的。”我仓促的进行了小结。40分钟的课堂就这样结束了,带着遗憾,带着疑问下了课。

课后我又反复解读教材,回忆着课堂上的一个个镜头,听了其他老师的点评和建议,我重新备课,又进行了第二次上课。

这次我是这样预设的,把3个零件和5瓶口香糖作为学生研究的起点,3给以最优策略的暗示,5给予学生研究方法的指导,师生结合共同研究,训练学生的逻辑思维能力和表述能力,而9个零件是研究的主体,学生独立自主研究,找出最优方案,并体会最优方案的道理。将待测物品平均分成3份这种方法,在第一次称时,能确定合格品的个数最多。无论天平是否平衡,都能一次排除三分之二的合格品。将第二次称的范围缩小到待测物品的三分之一。经过老师的引导,学生发现了其中的奥妙。这次我把原来的巩固练习换成了有趣的小游戏——猜一猜,猜猜如果有27个、81个、243个待测物品,要想找出唯一的次品,用天平称至少称几次一定能找到次品?让学生运用本节课的知识实现思维的跨越,并从中发现规律,如果待测物品个数×3,那么找次品称的次数会加1。课堂上学生们积极举手发言,交流想法。通过观察、猜测、实验操作、画图、推理与合作交流等学习方法,使学生的思维逐步提高,进行优化思维的渗透。

本节课所研究的待测物品个数都比较特殊,都是3的倍数,刚好可以平均分成3份,我准备第二课时再研究其他普通的一些数如8个、10个等。

“学然后知不足,教然后知困”。面对新的教学内容,我们习惯性的反应就是“难”,可经过这次磨练,我才发现不是教材难,而是自己太“懒”,不愿意去学习,不愿意去思索,其实方法总比困难多。有效的课堂需要精心的预设,有效的课堂需要不断反思。

找次品第一课时教学反思 找次品教学实录篇五

新课程数学五下教材在数学广角中安排了“找次品”这一内容的教学,其目的是通过“找次品”这一探索性操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,再通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养学生观察、分析、推理以及解决问题的能力,同时也让学生感受到数学与日常生活的密切联系。基于以上认识在进行“找次品”这一内容的教学时,对教材进行了处理,以求更好的促进学生的思维发展。

教学过程中我放弃的了教材中以3个物品、5个物品再到9个物品的研究顺序,将其改为3个物品、4个物品、8个物品、9个物品进而扩展到10个、27个物品中找次品的研究。操作过程简述如下:

1.探究3个物品中如何寻找轻的一个,利用学会已有的知识经验,充分发挥学生的想像和思维能力,在体验了找次品方法的多样性后,以用天平称作为实践操作,第一次优化找次品的方法,使学生得出找次品用天平称最方便。并在教师的指点下完成数字化的分析方法:

平衡1次3(1、1、1)

不平衡1次

2.利用不同的分法探究出4个物品中找一个次品的方法,在学生实践操作和数字化的分析过程后,质疑利用天平称找次品时,一般要将物品分成几分?两份还是三份?引出用较大数量来进行研究的必要性,并随机引导学生用数字化的方法去研究8个物品中的次品应如何找。当学生得出方法后,将学生的所有方法罗列在学生面前,利用观察让学生发现数据大时分两份的方法次数不是最少,第二次优化找次品的方法,是学生初步得出用天平称找次品时一般要分成三份,两份在天平上、一份在天平外。但同时有给学生制造一个悬念:同样分三份,有些称的次数少,有些却反而更多?激起学生进一步探究的欲望。

3.以9个物品为例继续研究,第三次优化找次品的方法。在关注学生用数字化的形式来分析问题的同时,反馈出学生的解题方法,几关注解题策略的多样化,又为方法的优化提供可做分析的蓝本。(其中部分方法不做全面展示)

9(4、4、1)4(1、1、2)2(1、1)3次

9(3、3、3)3(1、1、1)2次

9(2、2、5)5(2、2、1)2(1、13次

9(1、1、7)7(1、1、5)5(1、1、3)2(1、1、1)4次

而后教师重点指导交流:哪种分法能保证用最少的次数称出次品?这种分法有什么特点?从而得出平均分能够保证找出次品且称的次数最少这一结论。随机使学生产生不能平均份的数量应该怎样处理的问题,引导学生观察刚才8个物品找次品的方法,思考其中分三份的几个情况?从中发现“利用天平找次品,如果待测物品的数量不能平均分成3份时,我们要尽可能的使每一份的数量差不多,其中必须有两份要一样多,另一份的数量尽可能与之接近。”最终优化找次品问题的解题策略。

回顾前面找次品的研究,让学生发现在3个物品中找只要1次,4个物品中找只要2次,8个、9个物品中找也只要2次。并猜想5个、6个、7个物品中找的话,要用几次才可以了?并进行分析验证,得出在4个到9个物品中找一个次品只要用天平称2次的结论。随后让学生研究10个和27个物品中找一个次品的次数,既做为前面所学知识的巩固练习,又让学生进一步探究找次品的规律,得出相应的结论。

《找次品》数学教学反思

这节课,我连试教合在一起,一共上了3次,但是每一节的教学任务都没有,这到底是什么原因呢?针对各位老师对我的评课意见和自己的想法,对这节《找次品》进行如下的教学反思:

这节课以“找次品”这一操作活动为载体,让学生通过观察、猜测、实验等方式感受解决问题的策略的多样性,在此基础上,通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力。

在课前谈话环节,我用分过的一瓶七彩糖和没分过的七彩糖进行对比,从而引出“次品”这一概念,让学生从这两瓶中找出次品,根据学生的回答,引出用天平称。这一环节,我感觉上还好。

但是在学生示范了从3个物品中,只要称1次就可以找出次品这个环节后,我不应该重复学生的示范过程,而是应该呼应此环节的开始部分,让学生思考从2个物品中只要称一次就可以找出1个次品,为什么从3个物品中也只要称一次?这个道理不应该由我来说,而是应该让学生自己想明白找次品的基本原理。

接下来的从4个物品中找1个次品环节,此环节的教学目标是让学生能够用数学的方式来表示找次品的教学过程。我采用学生边说找次品的过程,我随机板书。由于多媒体的黑板离学生比较远,而这节课要板书的内容比较多,所以我写的字相对很小,这些种种原因,大多数学生对我在黑板上写的数学方式,并不是十分理解,虽然对着黑板又引导学生把找次品的过程又说了一次,但亡羊补牢的效果已经不明显了。在学生说方法时,我不应该随机板书,而应该跟学生点明,由于随着物品数目的增多,找次品的过程就更加地繁琐,所以要采用一种新的表现方式,从而引出用数学方式来表示找的过程,边回想刚才学生找次品的方法,教师边随机板书,也边介绍怎么样用数学方式来表现。

由于用数学方式来表示找次品的过程这一环节落实地很不到位,导致下面的环节的瘫痪,所以学生从8或9个物品找出次品,在小组内探索花的时间很多,集体反馈时花的时间也很多,但学生都只是还停留在口头表达层次上,并不能用数学的方式很好地表达出来。

一堂课要想上得成功,必须环环相扣,每一个教学环节都必须落实到位。这三次的上课,也让我深刻地体会到,作为一个老师,是整节课的引领人物,教学节奏的把握尤其重要,这是我今后教学应该尤其要注意的,高段教学的节奏该怎样把握呢?以后要多听听高段老师的课,多学习他们教学时节奏地把握,哪里该讲,哪里不该讲。

找次品第一课时教学反思 找次品教学实录篇六

本单元以找次品这一探索性操作活动为载体,让学生通过观察、猜测、试验等方式探索解决问题的策略。同时,进一步理解随机事件,感受解决问题策略的多样性和优化思想,培养学生的观察、分析、逻辑推理能力,并学习如何用直观的方式清晰、简洁、有条理地表示逻辑推理过程。

1.重视感受解决问题的多样性和优化思想。在例题的教学中,首先通过动脑思考怎样从3瓶钙片才能找出次品,并能用简单的过程清楚地描述出来。然后再从8个零件中找出次品,并让学生思考至少称几次能保证找出次品,在这一过程中,学生独立探索,并将自己探索的情况填入课本中的`表格里。探索情况如下:

8(1,1,1,1,1,1,1,1)分成8份至少称4次

8(4,4)分成2份至少称3次

8(2,2,2,2)分成4份至少称3次

8(3,3,2)分成3份至少称2次

通过观察学生发现当平均分成3份时,称的次数最少,这3份应使多的一份与少的一份相差1。根据这一规律再让学生找出9、10、11个零件中的一个次品,至少称几次才能保证找出次品,并感受到把待测物品要尽可能的均分成3份,进一步明确找次品的最优方法,从而体会到优化思想的重要性。

2.理解题目中的关键词。找次品中的“至少称几次能保证找出次品”是什么意思,先让学生理解关键词的意义,然后教师明确“能保证”就是在运气最差的情况下也能找到才叫保证,而“至少”就是指在所有各种方法中,称量次数最少的那种方案。

1.在探索多种方法的过程中,用时较多,导致时间分配不均匀,练习时间少。

2.对于运气好的情况明确的不是很清楚,可以直接告诉学生待测物品无论是多少个,称一次是有可能称出来的。

3.对于不知道次品是轻或重,还需要再称一次才能得出答案也没有明确。

可以改用分组探索,每组探索一种,集体交流时共同总结归纳找次品的最优方案。

找次品第一课时教学反思 找次品教学实录篇七

执教《找次品》一节课时,在导入环节,我用孩子们最常见的事物——“口香糖”引入课题,既与本课内容相关,又能提高孩子们的兴趣,从而引出“次品”。

在探索新知环节中,我让孩子从易到难,从3瓶口香糖中找出一瓶次品,然后为了让学生对所学知识产生浓厚的兴趣,我设置了一个环节:让电脑大屏滚动起来,最后停在哪个数字上,就从那个数字的口香糖中找出一瓶次品,最后电脑停在了19683瓶上,学生的兴趣陡然升高。此时老师告诉孩子们,像这种情况我们可以利用“化繁为简”的数学思想来解决类似问题,作为老师,不仅要对学生“授以鱼”,更要“授以渔”,让学生学会解决数学问题的方法。接着从6瓶、9瓶口香糖中找出一瓶次品,其中在从9瓶口香糖中找次品时,我设计了一个小组合作的活动,旨在让孩子自己在动手的过程中发现找次品的规律,发现规律后再从27瓶、81瓶、243瓶、729瓶、2187瓶、6561瓶、19683瓶口香糖中找次品,当学生发现从19683瓶口香糖中至少9次就能找出一瓶次品时,孩子们的情绪立即达到了高潮,也加深了对新知的理解。接着我设计的是让学生发现问题:当待测物品数不是3的倍数时又该如何找次品?引导学生得出当待测物品数平均分成3份后余一瓶或余两瓶时如何放就不影响我们用天平找次品,在这个环节的设计上,旨在让学生养成勤动脑、细观察的好习惯。最后,我设计的是让学生口述出找次品的最优化策略,目的.在于培养孩子的总结表达能力。

在接下来的练习环节中,通过孩子们感兴趣的闯关模式,练习由易到难,让孩子们本节课所学的知识在练习中得到升华。

执教过这一节课后,感到存在的不足是:

1、学情把握不准,准备不充分。在小组合作时,学生对待测物品分份数时,不大胆,导致老师提示过于明显。

2、对教学时间把握不好。

找次品第一课时教学反思 找次品教学实录篇八

《找次品》是人教版数学五年级下册第七单元数学广角的内容。本节课以找次品这一操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,在此基础上,通过归纳、推理的方法体会缩小待测物品范围的优化策略。初步培养学生的应用意识和解决实际问题的能力。

传统设计一般是首先找5个零件中的次品(目标:在认识平衡与不平衡两种可能结果的基础上引导学生画框图,经历逻辑推理的过程);再找9个零件(目标:找到最优称法,形成猜想);然后称8个,27个,探索规律;最后称100个、243个零件(目标:继续学习化归方法,找到零件个数与称的次数之间的关系)。这种设计从过程来看体现了操作 ----猜测----验证 ---- 归纳 ----应用的教学思路,它的重点放在学生优化方案的比较上。这样设计有两个弊端。问题一:按这种单刀直入式进行研究,因学生的知识和方法储备不够、跨度过大,思维难以突然从方法多样性提升到最优化策略上来,学生的思维容易断层,探究会屡屡受挫,从而造成对此类问题的探究兴趣不足,影响学生思维的主动性。问题二:在9个物品中找次品的探究过程中,让学生猜想最佳策略:分三堆,每堆尽量同样多的规律,学生不容易找出来,再让学生举例验证更难。学生探究的多样化一方面暴露了学生的思考过程,另一方面也影响了学生对最佳策略的关注。如何通过优化策略的形成,提升学生的思维品质,高老师进行了如下的探索。

1、巧:游戏互动做铺垫--巧妙渗透优化思想

在学生的猜数过程中,高老师总让学生处于最不利的处境,除非他选择了最佳策略,否则猜的次数总是最多。高老师心中想的数不是固定的,是根据学生的猜在不断的变化,也就是说,一开始他心中并没有想好一个具体的数。让最不利发挥到极致时,学生就会最大限度地理解策略的重要性。通过找中间数,学生认识到运用缩小范围猜数可以提高效率 ,让学生在无意识的猜数游戏中感悟快速猜数的方法与策略。

2、趣:交流策略多样化---引出优化方法

有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。在这一环节中,让学生动手动脑,亲身经历分、称、想的全过程,从不同的方法中体验解决问题策略的多样性。我让学生用肢体模拟天平来进行实践探究,学生非常感兴趣。高老师放手让学生探究3个、5个测品中找一个次品,体现策略多样化,引出优化的方法,分三原则。图示法较为抽象,对学生来说不容易理解,教学时我根据学生的回答同步板书,即外显了学生的思维痕迹,又便于学生理解每项数据的含义,为后续的学习打下一定的基础。

3、实:打破常规设悬念---激起优化需求

如果说数学思想方法是可以传授的话,那教师肯定是把其中富有思考意义的东西机械化了,这样就失去了它应有的价值。所以渗透优化思想一定要让学生经历了自主体验和反思顿悟的过程。本节课高老师打破常规,让学生大胆猜测:如果有2187个测品中找一个次品,你认为至少称几次保证找到这个次品?要想解决这个问题,你觉得有什么办法?(把数据变小些,并举例研究。)激起学生优化需求,学生也从中认识到以退为进是一种很好的学习策略,为渗透化繁为简的数学思想走好了坚实的一步。

4、准:找准盲区巧点拨---形成优化策略

学生挑战在100个中找次品时,高老师及时点拨引导---------当遇到一个问题时,我们迈出第一步至关重要。结合课前游戏,借鉴缩小范围的策略。小组合作拟订第一步怎么办?的计划。当出现分2份和3份的对比分析时,我又适时提问导引:是不是分的份数越多越好呢?让学生在例证中归纳出将待测物品尽量等分成三份的规律来。用准时点拨为学生扫清思维盲区,为优化策略的形成搭桥铺路。

启示一:发展才是硬道理。在备这课时,高老师也考虑到用天平来操作演示,但由于现场条件的限制----没有准备现成的天平;同时又考虑到学生用天平来称在操作上也会很麻烦,以前对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握,在此处多用时间有喧宾夺主、影响主题的嫌疑,因此他在本节课中没有把实物天平带进课堂,而是让学生用自己的肢体演示代替天平操作。只要能让学生得到发展,删繁就简是很划算的。

启示二:万丈高楼平地起。解决再难的问题,丰实基础是至关重要的。为了让学生的思维顺利由方法的多样性转向最优化,高老师在教材例1之前增设在3个中找次品的环节,目的有二:

1、走实第一步。在这一环节中让学生重温天平的结构和用法,收集平衡与不平衡所反映的信息,为后续研究储备能量。

2、强化和预示方法。通过在3个中找次品的演练,引起学生思维方法的先入为主趋势,同时也顺应了学生的学习从模仿开始的习惯。要想学生的思维提升的更高,必须把思维的基础打得最牢。

思考一:经历了本堂课的预设与生成后,对于本课这样有一定难度的教学内容,教到怎样一个度是最合适的?

思考二:这节课中,对于最佳策略的成因还有没有更好的、更有说服力的解释方法呢?

古希腊数学家毕达哥拉斯说过,在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。从高老师的数学课中,我们领悟到了这样的理念:通过数学学习,领悟数学思想和方法,提升学生的思维品质。

找次品第一课时教学反思 找次品教学实录篇九

《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”这节课的设计着力让学生通过参与有效的实际操作、观察比较来概括出“找次品”的最佳方案。把学生的学习定位在自主建构知识的基础上,建立了“猜想——验证——反思——运用”的教学模式。让学生体验解决问题策略的多样性及运用优化的方法解决问题的有效性。培养学生的自主性学习能力和创造性解决问题的能力。

为学生创设问题情景,让数学问题生活化,一上课就吸引住学生的注意力,调动他们的探究兴趣,为后面的教学做好铺垫,使学生进入最佳的学习状态。以前的视频画面距离学生的生活较远,孩子们兴趣不大。集体备课时大家建议这一环节,还是应该联系生活实际,这样可以更加激起孩子们学习的兴趣,让学生充分感受到数学与日常生活的密切联系。

按照例题,本课例1是从5瓶钙片中找到次品,而我却让孩子们先从3个药瓶中找出次品,这样就降低了教学起点,孩子很容易的从3个中找到次品。那么在后面的5个、9个中找次品就容易多了。不会产生挫败感,增加成功的体验,使本课更容易进行。

本课我让孩子们从3个中找出次品这比较简单,然后加深到从5个、9个中找次品,并且在9个中找次品的过程中渗入优化思想,让孩子们寻找优化策略,接下来让学生再用12进行验证,加深了学生的体验。整个教学过程注重让学生经历了探索知识的过程,使他们知道这些知识是如何被发现的,结论是如何获得的。在此过程中知识层层推进,步步加深,让孩子的推理能力慢慢地达到一定的高度,思维也不至于感到困难。

在教学过程中,充分的运用了研究性学习的教学方法,不把现成的答案或结论告诉给学生,而是试图创设出问题情境,引发学生认知上的矛盾、冲突,激起学生探求知识经验和事理的欲望,继而调用已有的知识经验和生活积累,提出解决问题的猜想和策略,并通过观察、实验、操作、讨论、思索等多种活动进行研究检验。在研究性数学学习中,知识不再是被学生消极接受的,而是学生自身积极地、主动地去探求获取的。学生在教育教学中是发现者、研究者,充分体现学生的主体地位。不足之处:

由于时间关系,在研究从9个和12个中找次品时,学生小组交流的时间不够充分,汇报时有些方法,没有反馈。

找次品第一课时教学反思 找次品教学实录篇十

《数学课程标准》指出:“有效地数学学习活动不能单纯地依靠模仿和记忆。动手实践、自主探索与合作交流是学生学习数学的重要方式。”因此在进行《找次品》的教学时,我主要是通过学生动手实践、自主探索、合作学习等方式,来凸显数学建模和优化思想。

教材的编排是先分析从5瓶钙片中找一瓶次品的方法和次数,初步认识找次品的基本方法,然后再来分析在9个零件中找一个次品的方法和次数,这时进行优化,并且延伸10、11个零件怎么分?有效地数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,因此,我通过从3瓶木糖醇中找一瓶次品——5瓶木糖醇中找一瓶次品——9瓶木糖醇中找一瓶次品——8个玻璃球中找一个次品这样的教学过程。使学生在3瓶中建立利用天平找次品的根,在5瓶中对找次品的方法进行建模,在9瓶中感受方法的多样性,及时进行优化:这种平均分成3份称的方法,所称次数最少,最后在8个玻璃球中进一步优化方法:在利用天平找次品时,首先要把物品分成3份,能平均分时就平均分,不能平均分时就尽量平均分,这样,所称次数最少。通过这样的课堂教学,既符合学生的认知规律,又能优化教学过程,从而提高课堂教学的有效性。

用天平实物进行试验,可能会出现诸多问题:学生看不太清楚,实验效果不明显;每一次称时,都需要对天平进行调节与处理,麻烦且费时。但在本节课中,又必须要借助直观演示,帮助学生建模和推理。因此,在教学中,我让学生利用天平模型来直观演示和操作,这样不仅可以节约课堂教学时间,同时又训练学生的逻辑推理,提升学生的数学思维能力,为后面脱离具体的实物操作,实现从具体形象思维到抽象逻辑思维的过渡奠定了良好的基础。

语言是思维的载体,简洁、准确的叙述操作和推理的过程,是本节课的一个重点。因此,在学生的实践操作中,我要求学生边摆边说,从而训练学生从具体到抽象的能力和语言表达的能力。在学生的叙述过程中要求语言尽量简洁,如:在天平的两个托盘里各放2瓶,可以说成2,2一称等。通过这样一系列的训练,学生的表述会更清楚,语言会更简洁、准确,学生的思维也会更加的完整、快捷,从而提高了整节课的教学效率。

从以往的教学中发现,本课容量大,时间紧,很不容易完成预定教学任务。因此在实际教学中,根的建立,方法建模时,要求学生要简洁、准确的叙述操作和推理过程,在后面教学中,就直接利用已经发现的结论,不再重复、累赘的叙述。例如:27(9,9,9)第一次9,9一称,然后再从9个里面找次品,就直接利用前面的结论。

“找次品”是五年级下学期数学广角里的`教学内容,属于一节思维训练课,主要培养学生的优化意识和逻辑推理能力,同时掌握找次品的最优方法。这节课我在认真分析教材的基础上,并根据学生的认识规律和思维方式进行了设计,反思整节课。

接到期末考试的时间,确实有点紧,在请教有经验的老师怎样讲的前提下,直接让学生讨论找次品的最优方法。学生说:“分组法最省时间。”我直接说:“好!下面讨论怎样分组最优方案。”

“我总结出来了,分成三份。”

“当待测物品的数量是3的倍数时,把待测物品平均分成三份,能保证用最少的次数找出次品。要平均分成三份哦!”

“说的很到位,谁还有补充。”

“当待测物品的数量不是3的倍数时,也把待测物品分成3份,每份个数尽可能接近,使多的一份与少的1份只相差1。”

“补充的很全面,把樊静祎与刘懿贤的加起来就是找次品的规律。”

“好,下面咱们来实战一下!”

让学生把小状元拿出来,开始做!由于刚才讲的快,所以让学生说答案的时候必须说思路。

没有想到,孩子们掌握的这么好!心里窃喜。

【本文地址:http://www.pourbars.com/zuowen/1485475.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map