大数据与互联网开云官网app下载安装手机版 范文(21篇)

格式:DOC 上传日期:2023-11-26 03:15:54
大数据与互联网开云官网app下载安装手机版 范文(21篇)
时间:2023-11-26 03:15:54     小编:笔尘

开云官网app下载安装手机版 是在经历一段时间的学习、工作或生活后,对所获得的收获、感悟和经验进行总结和归纳的一种方式,它能够帮助我们发现自己的不足和进步,进而提高个人的综合素质和能力。开云官网app下载安装手机版 是一种宝贵的资源,可以让我们不断成长和进步,让我们更好地应对未来面临的挑战和困境。开云官网app下载安装手机版 的写作对于个人的成长和发展至关重要,也是一种对自己的认知和思考的方式。要写一篇好的开云官网app下载安装手机版 ,需要有适当的语言表达和思维深度。以下是一些学者学术开云官网app下载安装手机版 的范例,或许能帮助你更好地理解学术研究和学习的重要性。

大数据与互联网开云官网app下载安装手机版 篇一

随着互联网的迅速发展,大数据已经成为各行各业的重要工具,为企业和组织带来了前所未有的机会和挑战。下面我将从四个方面,分享我对于互联网催生大数据的开云官网app下载安装手机版 。

首先,互联网催生大数据为企业带来了更多的商机。随着电子商务的兴起,企业可以通过大数据分析来挖掘市场信息,了解消费者的需求,优化产品设计和营销策略。通过收集和分析用户数据,企业可以更好地了解用户的偏好和习惯,从而提供更个性化的产品和服务。例如,国内知名电商平台利用大数据分析购物者的浏览和点击记录,将推送精准的广告和优惠券,有效提升了购买转化率。

其次,大数据让决策更科学、更准确。随着互联网技术的发展,企业和组织可以收集和分析更多的数据,从而更好地评估和预测市场动态。大数据分析可以揭示潜在规律,发现数据之间的关联性,并根据这些关联性制定决策。例如,一家银行可以通过大数据分析评估借款人的信用风险,提高贷款审批的准确性和效率。而传统的决策往往基于经验和主观判断,容易受到局限和误导。

第三,大数据分析为人们的生活带来更多便利。互联网的普及使得人们可以方便地获得各种信息和服务。通过大数据分析,人们可以根据自身需求得到个性化的推荐和建议。例如,社交媒体平台通过分析用户的兴趣和行为,为用户推荐感兴趣的内容和好友。此外,大数据分析还可以为人们提供智能化的生活服务。例如,智能家居系统可以通过大数据分析用户的生活习惯,自动调节室内温度、照明和电器等设备,提升生活的舒适度和便利性。

最后,大数据也带来了一系列的隐忧和挑战。首先,隐私问题一直是大数据的一个热点和争议点。大数据分析需要收集和处理大量的用户数据,这可能涉及个人隐私的泄露和滥用。因此,互联网企业和组织应该加强数据安全和隐私保护,建立规范和监管机制,保护用户的数据安全和隐私权。此外,大数据分析还需要专业的技术和人才支持,投入大量的时间和资金。企业和组织应该加强对大数据分析的人员培养和技术创新,提高大数据分析的能力和水平。

综上所述,互联网催生大数据为企业和个人带来了广阔的商机和便利,同时也带来了一系列的挑战和隐忧。我们应该善于利用大数据分析来改善生活和工作,也要关注数据安全和隐私保护的问题。只有充分发挥大数据的优势,解决相关问题和挑战,才能更好地利用互联网催生的大数据,促进经济和社会的可持续发展。

大数据与互联网开云官网app下载安装手机版 篇二

第一段:引言(120字)。

大数据已经成为当今社会的热点话题之一,其应用正在深入我们生活的各个领域。作为一名大数据专业的学生,我非常幸运能够参加大数据上课,并有机会深入了解和学习有关大数据的知识和技能。在这篇文章中,我将分享我在上课过程中得到的开云官网app下载安装手机版 。

第二段:认识大数据(240字)。

在上课之初,我对大数据的概念只是模糊的了解,大数据上课的第一堂课为我揭开了神秘的面纱。我们学习了大数据的定义、特点以及在各个行业中的应用。通过实例的引导,我更加清晰地理解了大数据是如何通过收集、处理和分析海量数据来产生洞察力和商业价值的。

第三段:深入学习与实践(360字)。

在接下来的大数据上课中,我们学习了大数据的处理技术和工具。我们了解了Hadoop、Spark和NoSQL等重要的大数据处理平台和数据库,并学会了使用这些工具来处理和分析真实的大数据集。通过实践和项目,我深入理解了数据的预处理、清洗、可视化和建模技术,以及如何对大数据进行机器学习和深度学习。

第四段:挑战与收获(360字)。

大数据上课并不是一帆风顺的,其中也存在着一些挑战。我们需要面对庞大的数据集、复杂的分析算法和高要求的计算能力。但正是这些挑战让我更加坚定了对大数据的热爱和学习的动力。通过努力和团队合作,我成功地完成了多个大数据项目,并从中收获了巨大的成就感和学习上的进步。

第五段:展望未来(120字)。

大数据技术的应用正在深入各个领域,对人才的需求也逐渐增长。在大数据上课的学习中,我不仅仅掌握了专业知识和技能,更培养了数据思维和解决问题的能力。因此,我对未来充满信心,期待将来能够利用所学的知识和技术,参与到大数据相关的工作中,为推动社会的发展和进步做出贡献。

总结(120字)。

通过大数据上课的学习,我对大数据有着更全面和深入的了解。这门课不仅帮助我掌握了大数据的概念、技术和工具,更重要的是让我培养了数据思维和解决问题的能力。我相信这些宝贵的学习和经验将成为我未来发展的强大动力。

大数据与互联网开云官网app下载安装手机版 篇三

如今说起新媒体和互联网,必提大数据,似乎不这样说就out了。而且人云亦云的居多,不少谈论者甚至还没有认真读过这方面的经典著作——舍恩佰格的《大数据时代》。维克托·迈尔——舍恩伯格何许人也?他现任牛津大学网络学院互联网研究所治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人。他的咨询客户包括微软、惠普和ibm等全球顶级企业,他是欧盟互联网官方政策背后真正的制定者和参与者,他还先后担任多国政府高层的智囊。这位被誉为:大数据时代的预言家“的牛津教授真牛!那么,这位大师说的都是金科玉律吗?并不一定,读大师的作品一定要做些功课才好读懂,如果能做足功课又具备相应的理论功底,就能与之进行一场思想上的对话。

一读。

舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。在第一部分“大数据时代的思维变革”中,舍恩伯格旗帜鲜明的亮出他的三个观点:一、更多:不是随机样本,而是全体数据;二、更杂:不是精确性,而是混杂性;三、更好:不是因果关系,而是相关关系。对于第一个观点,我不敢苟同。一方面是对全体数据进行处理,在技术和设备上有相当高的难度。另一方面是不是都有此必要,对于简单事实进行判断的数据分析难道也要采集全体数据吗?我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的方法和范围要加以拓展。

我同意舍恩伯格的第二观点,我认为这是对他第一个观点很好的补充,这也是对精准传播和精准营销的一种反思。“大数据的简单算法比小数据的复杂算法更有效。”更具有宏观视野和东方哲学思维。对于舍恩伯格的第三个观点,我也不能完全赞同。“不是因果关系,而是相关关系。”不需要知道“为什么”,只需要知道“是什么”。传播即数据,数据即关系。在小数据时代人们只关心因果关系,对相关关系认识不足,大数据时代相关关系举足轻重,如何强调都不为过,但不应该完全排斥它。大数据从何而来?为何而用?如果我们完全忽略因果关系,不知道大数据产生的前因后果,也就消解了大数据的人文价值。如今不少学者为了阐述和传播其观点往往语出惊人,对旧有观念进行彻底的否定。

世间万物的复杂性多样化并非非此即彼那么简单,舍恩伯格也是这种二元对立的幼稚思维吗?其实不然,读者在阅读时一定要看清楚他是在什么语境下说的,不要因囫囵吞枣的浅读而陷入断章取义的误读。比如说舍恩伯格在提出“不是因果关系,而是相关关系。”这一论断时,他在书中还说道:“在大多数情况下,一旦我们完成了对大数据的相关关系分析,而又不再满足于仅仅知道‘是什么’时,我们就会继续向更深层次研究的因果关系,找出背后的‘为什么’。”[i]由此可见,他说的全体数据和相关关系都在特定语境下的,是在数据挖掘中的选项。

大数据研究的一大驱动力就是商用,舍恩伯格在第二部分里讨论了大数据时代的商业变革。舍恩伯格认为数据化就是一切皆可“量化”,大数据的定量分析有力地回答“是什么”这一问题,但仍然无法完全回答“为什么”。因此,我认为并不能排除定性分析和质化研究。数据创新可以创造价值,这是毫无疑问的。舍恩伯格在讨论大数据的角色定位时仍把它置于数据应用的商业系统中,而没有把它置于整个社会系统里,但他在第二部分大数据时代的管理变革中讨论了这个问题。在风险社会中信息安全问题日趋凸显,数据独裁与隐私保护成为一对矛盾。如何摆脱大数据的困境?舍恩伯格在最后一节“掌控”中试图回答,但基本上属于老生常谈。我想,或许凯文·凯利的《失控》可以帮助我们解答这个问题?至少可以提供更多的思考维度。正如舍恩伯格在结语中所道:“大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的未来。”谢谢舍恩伯格!让大数据讨论从自然科学回到人文社科。由此推断,《大数据时代》不是最终答案,也不是标准答案,只是参考答案。

此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。

再读。

概念是研究的逻辑起点,“大数据”到底是什么?在百度上搜索到的解释是,“大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。”大数据的4v特点:数量(volume)、速度(velocity)、品种(variety)和真实性(veracity)。但舍恩伯格认为大数据并非一个确切的概念。他在书中的一段诠释更具人文色彩和社会意义:“大数据是人们获得新的认知、创造新的价值的源泉;大数据还是改变市场、组织机构,以及政府与公民关系的方法。”[ii]其实,概念的界定要看研究者从哪个角度来研究它而定。

科学家的治学态度是严谨的,而人文学家更具有想象力。一些对大数据不甚了然的人往往夸大了它的作用,甚至把它神化。舍恩伯格认为大数据的核心是预测。“大数据不是要教机器像人一样思考。相反,把数学算法运用到海量的数据上来预期事情发生的可能性。”[iii]舍恩伯格甚至不回避大数据所产生的负面影响,他在第七章里谈到让数据主宰一切的隐忧。我觉得这是实事求是的科学态度。在量子力学里有一个测不准原理:一个微观粒子的某些物理量(如位置和动量,或方位角与动量矩,还有时间和能量等),不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。它是解释微观世界的物理现象,信息社会中的大数据会不会也有类似情况呢?如果我们再把凯文·凯利的《失控》对比来读的话就更有意思了,这样我们对整个物质世界及至人类社会就有了更全面更深刻的洞察,从物理王国到生物世界,再到信息社会。从公共卫生到商业应用,从个人隐私到政府管理,大数据无处不在。与此同时,从哪个角度探讨用什么方法研究,舍恩伯格都不会忘记大数据服务人类造福人类的终极目的和价值所在。“大数据并不是一个充斥着运算法则和机器的冰冷世界,其中仍需要人类扮演重要角色。人类独有的弱点、错觉、错误都是十分必要的,因为这些特性的另一头牵着的是人类的创造力、直觉和天赋。偶尔也会带来屈辱或固执的同样混乱的大脑运作,也能带来成功,或在偶然间促成我们的伟大。这提示我们应该乐于接受类似的不准确,因为不准确正是我们之所以为人的特征之一。”[iv]用中国话来说就是“人无完人”,人类在收获大数据带来的红利的同时也要承受它带来的危害。这不是对立统一的辩证唯物主义?我把它看作带着欧洲批判学派色彩的科学发展观。

问题是研究的价值基点,“大数据”不是舍恩伯格研究的问题,而是研究对象,他研究的是数据处理和信息管理问题,同时也讨论信息安全和网络伦理问题,还引发哲学上的思考,哲学史上争论不休的世界可知论和不可知论转变为实证科学中的具体问题。可知性是绝对的,不可知性是相对的。“大数据”之所以为大是因它引发人类生活、工作和思维的大变革,从这个意义上来看,《大数据时代》的意义不仅在于它讨论了若干重大问题,而且对研究者开出了一个问题清单,从而引发更多人来探讨这些有趣的问题。

《大数据时代》实际上主要是一本讨论数据挖掘的书,数据挖掘与数据分析是不同的概念,数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性的信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。而数据分析的目的是把隐没在一大批看来杂乱无章的数据中的信息集中、萃取和提炼出来,以找出所研究对象的内在规律。数据挖掘主要运用计算机来进行处理,而数据分析既要用计算机也要人工分析,是计算机科学与人文价值判断的统一结合。换言之,《大数据时代》并不是一本讨论大数据所有问题的书。

《大数据时代》也是一本讨论互联网发展的书,从数字化到数据化,同时有浓厚的未来学色彩。当文字变成数据,我们进入了互联网;当方位变成数据,我们进入了物联网;当沟通变成数据,我们进入了下一代互联网。一切可量化,万物皆数据,正是当今互联网世界的真实写照。面对于这样的世界及世界的未来,在《大数据时代》出现最多的词是“思维”和“方法”,因此也可以把这本书视为思维科学应用研究的书。

此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。

三读。

今年国庆节前一天,中共中央政治局们来到中关村搞集体学习,调研、讲解、讨论创新驱动发展战略。包括、在内的七位全部出动来到中关村,这是历史上没有过的,百度、联想和小米的负责人,有了一次直面最高层汇报工作的机会。雷军和柳传志,讲解的都是本公司的各种情况,李彦宏则没有讲百度的广告业务发展得如何好,而是讲起了大数据。在讲解中,李彦宏认为大数据有两个重要价值,一是促进信息消费,加快经济转型升级;二是关注社会民生,带动社会管理创新。这些价值也是目前党和国家领导人最为重视的,可见《大数据时代》既有理论价值也有现实意义。

当今大数据正在影响着新闻传媒业,大数据新闻、大数据营销、舆情分析、受众(用户)研究……数据分析师变身新闻编辑,大数据正改变新闻生产流程、大数据在创造传媒新业态。“不妨想象一下,随着数据的进一步增加,坐拥用户资源的新媒体们完全有能力通过数据挖掘,分析用户癖好,向电视台定制一部电视剧甚至向好莱坞定制一部电影。到那个时候,电视台一如那些家电厂商们,曾经产业链的上游‘王者’,将彻底成为一个产业链最低端的内容代工厂。”[v]然而,情形也远没有人们想象的那么乐观,李彦宏指出目前多数所谓的大数据公司其实还是空壳子,因为数据还没有完全开放。他认为必须在政府层面上推动才能真正实现大数据的开发与利用。我在讨论大数据时代的舆情监测与预警时说道:“经典自由主义传播学说对媒体的定位:秉持公正、客观立场的媒体被称为代表公众监督政府行为的‘看门狗’。其实,媒体既是公众利益也是国家利益的‘看门狗’。要看好门就要瞭望、洞察社情民意,传统媒体信息反馈渠道单一,视野、人力十分有限。而开放互动的新媒体平台却大有可为。作为公共信息发布平台的微博可以成为政府及时了解社情民意,从而选择正确治理路径的‘导盲犬’。”[vi]遗憾的是目前我国的数据平台还没有完全开放,真正的大数据时代还没有到来。

与国内不少教科书写法的专著相比,国外的书写得更有趣,尤其是大学者写的,不仅视野开阔,而且能够深入浅出。《大数据时代》不到22万字,却有上百个学术和商业的实例,丰富翔实的例子让读者感到通俗易懂,深奥的理论看起来也不费劲。这恐怕与舍恩伯格既是学者也是专家,既有理论又有实践有关。反观我们些学者故弄玄虚而示高明,实际上是把读者拒之门外。我觉得优秀的科学家也应该是一个科普作家,优秀的学者也应该是一个不错的传播者。当然国外学术著作也有一个翻译问题,这本书译得还不错。此外,《大数据时代》还附有不少it界名流的推荐意见,虽是出版商的发行所为,对解读此书也不无益处。

除了《大数据时代》,舍恩伯格还有一本《删除》也值得一读。要研究大数据不能只读一本书,该书译者周涛教授还推荐了三部国内出版的大数据方面的专著:《证析》、《大数据》、《个性化:商业的未来》。相比《大数据时代》的宏大视野,这些书就大数据某一局部问题给出深刻的介绍和洞见。我也推荐读一读中国工程院李国杰院士和中科院计算所副总工程学旗合写的文章《大数据研究:未来科技及经济社会发展的重大战略领域——大数据的研究现状与科学思考》。

虽说开卷有益,但是由于每个人的时间精力有限,对于一个研究者来说,不读什么书甚至比读什么书更重要。我认为书有三种:有用的书,主要是应用类的专业书;无用的书,主要是形而上的思想类;无字的书,人间百态,社会现实。可偏重但不应偏废。对于学生来讲这三类“书”都该读一些,对于研究者则要读哪些解决关键问题的书,《大数据时代》就是这样一部书。当然,并非第一个读者都是研究大数据的,但进入大数据时代,还有什么东西与数据完全没有关系呢?麦肯锡全球研究机构认为,未来十年里有12项对经济发展产生重大影响的技术,其中包括三项新媒体技术:移动互联网、物联网和云计算。这三项新媒体技术都与大数据密切相关,而这些新媒体新技术的发展都影响着当今的新闻传播业。阅读此书至少给我们研究新闻传播学带来一些启迪。我觉得一本书的价值不在于让你顶礼膜拜,而是引发广泛而深入的讨论。

“凡是过去,皆为序曲。”读完此书,我们对大数据的认识才刚刚开始。

大数据与互联网开云官网app下载安装手机版 篇四

根据中国汽车流通协会公布的数据显示,在经销商销量和收入均同比增加的情况下,连续两年入围百强的84家汽车经销商毛利与相比大幅下滑至25.79%。20,汽车经销商盈利面继续缩小,据统计,48.5%的经销商盈利状况持平,只有21.8%的经销商盈利,剩余的经销商处于亏损状态。当前,汽车产品已远远超出市场能够消化的程度,库存在不断地增加,目前全国共有0多家经销商,按照当前的产销规模和经销商数量,经销商的压力可想而知。大面积的亏损,严重打击了经销商的信心,很多经销商纷纷退出汽车行业,转而寻找新的盈利机会,这种局面对于厂家来说也是无能为力,以“4s”店为主的营销渠道遇到了前所未有的危机。

二、“互联网+”时代下的渠道“短板”

一直以来,以“4s”店为主体的汽车品牌专营模式一直是汽车营销渠道的主流模式。不过随着互联网技术的发展,网络购物成为时下流行的生活方式,网络购物的商品也从小件商品延伸到了汽车产品领域。据j.d.power调查,有80%的经销商认为在线购车将成为未来趋势,并且认为这将影响到传统汽车销售业务。这样一来,传统“4s”店作为目前较大的营销渠道而言就遇到了前所未有的挑战。相比新兴互联网汽车业务来说,传统“4s”店营销模式的“短板”很突出。

(一)消费者满意度差。

“4s”店的背后是相对独立的经销商,作为经销商而言,追逐利润是第一位的。在市场火爆的情况下,会出现某款车型“加价提车”的现象,消费者甚至加价都提不到车的现象也时有发生,消费者对这种违背市场规律的行为已见怪不怪。虽心有怨言却也是无奈接受。在市场遇冷的情况下,经销商常常会以低于厂家指导价很多的促销价来博得销量,以得到厂家的年终返点,但是在这个促销价格中,包含着强制购买店内装饰和强制购买保险的捆绑销售行为,很让消费者反感。

(二)售后维修价格虚高。

“4s”店总是着眼于销售业绩,对售后服务的管理和如何提高客户满意度、怎样加强售后服务、提高技术水平的动力不足,“前店后厂”式的售后服务体系并未健全。在具体的售后服务中,由于技术水平高低不一、人员素质参差不齐、经济利益诱导等现实因素,“4s”店习惯在工时费、零配件价格上做手脚,售后维修价格虚高。这也是“4s”店遭到消费者普遍诟病的重要原因之一。

(三)运营成本过高一家。

“4s”店要达到标准化。

经营需要经历选址、征地(租地)、建店、招聘店员、培训、试运营等诸多环节,期间发生的征地或租地费用、建店工程款、各种税费、人员工资等所有费用都要摊薄到利润里面,这样一来,“4s”店的初始经营就要面临巨大的压力。小规模的“4s”店一般占地几千平方米,大规模的则达到上万平方米,每年的租地成本就要几百万元。如果土地不是租用的,“4s”店第一年购买土地的成本投入还会高出更多。一家“4s”店平均有大约100名员工,每年的人工支出通常要400万至500万元。仅就人员工资来说,对“4s”店而言就是一笔不小的负担。如果再加上其他开销,一家“4s”店的年运营成本往往接近千万元人民币。

三、“互联网+”时代下如何实现营销渠道变革。

据统计,目前全国近40家汽车经销商已签署了汽车经销商电商平台战略合作协议,依托现有的经销商线下渠道与线上资源相结合运营,40家经销商几乎涉及中国过半数经销商集团,规模可覆盖全国成千上万家汽车“4s”店及上亿汽车用户。同时,二手车业务以及汽车租赁业务的扩大,都将成为经销商利润提升的主要途径。在这种趋势下,传统“4s”店必须要做出变革。

(一)提升自身竞争力。

商务部于1月发布了《汽车销售管理办法(征求意见稿)》,并将在今年内正式实施。新《办法》鼓励汽车销售模式多样化。新《办法》明确提到推动汽车流通模式创新,积极发展电子商务。这意味着“4s”店模式作为唯一授权销售渠道的时代彻底结束,新兴销售渠道和传统销售体系的共生融合成为趋势。在这种情况下,“4s”店一方面要做好接受市场的冲击,不能再固步自封,必须提升服务水平,注重差异化服务,降低运营成本,从自身挖掘盈利点,另一方面,要及时跟上市场步伐,要提高对市场的信息灵敏度,在实体店的基础上大力发展互联网业务。只有逐步提高自身竞争力,才能在互联网时代下生存。

(二)注重“线上线下”业务融合。

对于未来的互联网汽车营销,将不再是“4s”店来全部承担满足客户需求的重任,配套的有大量的城市展厅、体验中心甚至提供定制化服务的互联网平台。我们要建立一个在线上有智能终端,在线下以“4s”店为载体,能够实现线上和线下服务一体化的互联网销售体系,让用户能够在线上和线下之间自由选择。最终呈现给客户的是以汽车消费为主的“一站式”服务体验场景。汽车销售渠道的互联网化,一开始就是一个整体性的变化,不仅仅是新车、二手车,还包括后汽车市场,都在互联网化。未来有可能汽车电商和线下营销渠道是平行的,来让用户选择。目前来说,消费者最担心的是线上产品的质量和线下服务的承接能力,这就涉及到线上线下业务的融合。可以说,只有实现线上营销与实体经济的深度业务融合,汽车营销渠道“互联网+”的时代才算真正来临。

(三)重点打造智能终端app软件。

目前来看,在国内只有两种app营销方式,一是利用现有社交媒体app,比如微信、qq等,另一种是自己开发app。利用现有的社交媒体app的好处是能够迅速将营销内容推广给客户,传播效率高;缺点是目标客户群不明确,客户体验感差,缺乏互动。而企业自己开发的app的优势是能够独立掌控app资源,拥有自主运营权,内容灵活,客户体验感强;缺点是开发成本高,推广率低,下载安装注册认证程序繁琐,一般需要从企业官方的网站下载,而且无附加功能,客户粘性差。如果我们将社交媒体app和企业自己开发的app的优点相结合,打造基于社交媒体app的,这样一来用户的体验感更强,互动效果更好,客户粘度会更高。

四、结语。

互联网正悄悄改变着人们的消费习惯。在汽车消费领域,用户对整车电商的接受程度也变得越来越高。据尼尔森近期数据显示,有92%的客户在购买汽车时,都希望通过互联网来了解产品及相关信息。该机构数据显示,在中国,有86%的客户愿意通过互联网来购买汽车。互联网已经成为用户获取信息的重要渠道和购买终端。与以往不同,如今的消费者对决定购买的车型已越来越熟悉,汽车销售顾问已不用费劲介绍车型信息。此外,消费者在购车之前都会在汽车网站上对各款车的配置、优缺点、和各地区的成交价格进行反复对比。现阶段,越来越多的企业已开展了对互联网汽车业务的探索,无论是汽车企业、综合类传统电商还是汽车媒体,都纷纷开始布局汽车电商平台。总之,对于传统的汽车经销商而言,互联网时代危险与机遇并存。现阶段传统“4s”店只有加快用互联网的思维武装自己、改造自己,才能在互联网时代的渠道竞争中立于不败之地,真正成为“渠道之王”。

大数据与互联网开云官网app下载安装手机版 篇五

我主要读了第一部分和第三部分。

第一部分是大数据的思维变革,作者舍恩伯格提出了三个观点,一是"不是随机样本,而是全体数据",二是"不是精确性,而是混杂性",三是"不是因果关系,而是相关关系",作者被誉为"大数据时代的预言家",抛出的观点是掷地有声的,下面我将谈谈我对这三点的理解。

是省时省力省钱的,而且判断结果是相对高精准的,如人口普查这一案例,如果采用全体数据进行统计分析的话,工作难度是相当大的,最后的结果也不会很满意,这是得不偿失的。但是随着数据处理技术的飞速发展,我们已经具备了处理大量数据的能力,如果在数据分析过程中采用全体数据,就能避免抽样数据可能由于选取偏见带来的非随机性,处理全体数据也必将成为一种趋势。用在国防生管理工作中,就是管理层要对每个个体都给予充分的关心与互动,对于优秀的固然要偏爱,但是对于较差的也要保持"不抛弃不放弃"的态度,让每一个个体都找到自己的定位与价值。

暂时牺牲精确性,关注更多容易被忽略的细节,来做更多的事,得到更多的结果,也就是说我们要有一定的包容错误的能力。我们在收集数据时,要主动获取更多的数据,少加一些限制性条件,然后应用我们处理大数据的能力,或许会获得意想不到的结果。作者举了一个谷歌翻译系统的例子,通过英语作为中转,进行各语言之间的转换。此处的启发就是用我们最擅长的途径,不拘泥于特定规则,来达到我们的目的,也就是说我们要先认清自己,不去刻意的模仿,找出最适合自己的一套方法。

乍一看这个观点觉得有点无脑,但是结合第二点就合理了,降低对精确性及原因结果的要求,通过对相关数据的广泛分析,进而得到更丰富更多元的结果。如购物时,系统的购物推荐,并不是肯定你会购买,仅仅是你感兴趣进而可能会买就足够了。其实作者对"相关关系"的强调,主要是大数据强大的预测能力,而且这种预测性能还是相当精确的。以上只是我用作者的观点佐证他自己的观点,证明其一定的合理性,但是我是不完全认同的,在航天领域,我们对成功率的要求是极高的,尤其是载人航天领域,我们必须做到万无一失,我们对每一个结果都会深究其根,找出原因。对于国防生体能成绩的分析也是如此,结果只是我们的一个评价机制,而最重要的还是产生这一结果的原因及过程。

第三部分是大数据的管理变革,本来以为作者会讲点如何通过大数据来改革管理机制和提高管理效率,没想到作者只是讲了大数据其实就是我们的隐私的暴露,提出了要让数据采集管理公司对数据的使用负起责任的解决途径。个人感觉,一是我们在平时要意识到个人隐私的保护,而是相关法律政策的完善,真正的让大数据服务我们的工作生活,而不是一种变相的威胁。

大数据与互联网开云官网app下载安装手机版 篇六

随着互联网的普及,我们生活的方方面面都被大数据所影响。大数据以其强大的分析能力和预测能力,在商业、科技、医疗等各个领域产生深远影响。在我个人的学习和实践中,我积累了一些关于互联网催生大数据的开云官网app下载安装手机版 。

首先,互联网使数据的获取变得容易。过去,人们要获取大量的数据需要耗费大量的时间和人力物力。但是如今,随着网络技术的发展和互联网智能设备的普及,人们只需用手机、电脑等设备,便可以轻松地获得大量的数据,无论是公开数据还是个人数据。这为大数据的产生提供了可靠的数据来源,使分析和挖掘数据变得更加容易。

其次,互联网为大数据的存储和处理提供了便捷的平台。过去,人们存储和处理大量数据通常需要计算机等庞大的设备。而互联网的发展,使得人们可以将数据存储在云端服务器,通过互联网进行访问和处理。这种云计算的模式极大地简化了数据存储和处理的成本,使得大数据的存储和处理变得更加便捷和高效。

再者,互联网连接了人与人、人与物的关系。因为互联网的普及,人们可以通过网络和社交媒体平台与他人保持联系,交流思想和观点。这使得人们可以通过社交媒体数据了解他人的需求、兴趣和行为,进而进行更准确的市场调研和预测。同时,通过互联网,物与物的连接也变得更加紧密。各种智能设备和传感器可以通过互联网实时收集数据,并进行交互和共享。这些数据的汇集和分析可以帮助人们更好地理解物与物之间的关系,从而提高工作和生活的效率。

此外,互联网催生了大数据的价值创新。通过对大数据的分析和挖掘,企业可以获得更深入的市场了解,从中发现潜在的商机。大数据还可以帮助企业精确推测市场趋势和用户需求,为产品开发和营销提供科学依据。对于科研和医疗领域而言,大数据可以帮助科学家更好地了解各种现象和疾病的原因和规律,为人类健康做出更精确的预测和干预。

最后,互联网催生大数据也带来了一些挑战和问题。随着大数据的应用越来越广泛,人们要保护个人信息的安全和隐私变得更重要。同时,大量的数据也给存储和处理带来了巨大的压力,特别是对技术和硬件的要求也越来越高。

综上所述,互联网的普及催生了大数据的快速发展。通过便捷的数据获取、高效的数据存储和处理、人与人、人与物之间的连接以及大数据的价值创新,互联网催生的大数据正深刻地改变着我们的生活和工作方式。然而,我们也要正视互联网和大数据所带来的挑战和问题,并积极进行保护和解决。只有在合理、安全和有序的前提下,我们才能更好地利用互联网催生的大数据,为社会进步和人民幸福做出贡献。

大数据与互联网开云官网app下载安装手机版 篇七

描述小组在完成平台安装时候遇到的问题以及如何解决这些问题的,要求截图加文字描述。

问题一:在决定选择网站绑定时,当时未找到网站绑定的地方。解决办法:之后小组讨论后,最终找到网站绑定的地方,点击后解决了这个问题。

问题二:当时未找到tcp/ip属性这一栏。

解决办法:当时未找到tcp/ip属性这一栏,通过老师的帮助和指导,顺利的点击找到了该属性途径,启用了这一属性,完成了这一步的安装步骤。

问题三:在数据库这一栏中,当时未找到“foodmartsaledw”这个文件。

解决办法:在数据库这一栏中,当时未找到“foodmartsaledw”这个文件,后来询问老师后,得知该文件在第三周的文件里,所以很快的找到了该文件,顺利的进行了下一步。

问题四:在此处的sqlserver的导入和导出向导,这个过程非常的长。

解决办法:在此处的sqlserver的导入和导出向导,这个过程非常的长,当时一直延迟到了下课的时间,小组成员经讨论,怀疑是否是电脑不兼容或其他问题,后来经问老师,老师说此处的加载这样长的时间是正常的,直到下课后,我们将电脑一直开着到寝室直到软件安装完为止。

问题五:问题二:.不知道维度等概念,不知道怎么设置表间关系的数据源。关系方向不对。

解决办法:百度维度概念,设置好维度表和事实表之间的关系,关系有时候是反的——点击反向,最后成功得到设置好表间关系后的数据源视图。

这个大图当时完全不知道怎么做,后来问的老师,老师边讲边帮我们操作完成的。

大数据与互联网开云官网app下载安装手机版 篇八

互联网数据分析员个人简历模板就在下面,互联网运营数据分析的一个很重要的'基础是网站分析,想要面试这一工作的求职者,在写简历的时候你们是怎么写的?今天的app分析、流量分析等等都是在网站分析的基础之上发展起来的,下面我们一起看看吧!

大数据与互联网开云官网app下载安装手机版 篇九

随着互联网技术的不断发展,大数据已经成为了各个领域的热点话题。互联网的普及和大数据的崛起之间存在着密不可分的关系。作为信息时代的产物,互联网的崛起为大数据的收集、存储和分析提供了庞大的数据源,而大数据的应用又极大地推动了互联网的发展。经过长期的研究和实践,我对互联网催生大数据能力的开云官网app下载安装手机版 总结如下。

首先,互联网催生大数据能力的显著特点是数据的海量性和多样性。过去,大数据的收集和处理主要依靠人工,耗费大量的时间和人力,而且往往只能获取有限的数据样本。但互联网的出现改变了这一局面,人们可以通过互联网进行数据的收集和处理,实现大数据的快速分析和挖掘。互联网上的信息源丰富多样,包括各类网站、社交媒体、移动应用等,这些信息的采集和分析为大数据的应用提供了更广阔的空间。

其次,互联网催生大数据能力的另一个重要特点是数据的实时性和即时性。互联网的快速发展使得信息的传播速度大大加快,人们可以实时获取到各种信息,这就为大数据的实时分析和决策提供了先决条件。比如,在金融领域,通过互联网即时获取股票、外汇等市场数据,可以实时分析市场趋势,进行投资决策。同样,在公共安全领域,通过互联网获取公众对突发事件的实时反馈,可以帮助相关部门快速反应,提高应对处置能力。

再次,互联网催生大数据能力的另一个重要特点是数据的精准性和个性化。互联网技术的应用可以准确获取到用户的行为轨迹、兴趣爱好等信息,通过大数据的分析和挖掘,可以精确预测用户的需求和行为。这就为企业提供了个性化的产品和服务,提高了用户体验。例如,电子商务企业可以通过分析用户的购物记录和浏览行为,为用户推荐符合其个性化需求的商品,提高销售转化率。

此外,互联网催生大数据能力也带来了隐私与安全的问题。随着互联网的普及,个人的隐私面临着前所未有的威胁。大数据的收集和分析使得个人的敏感信息容易被泄露和滥用。为了解决这个问题,加强个人信息的保护措施成为了互联网治理的重要任务。同时,网络安全问题也变得更加突出。大数据的存储和传输过程中,需要加强信息安全的保护,防止信息被黑客攻击和恶意利用。这就要求互联网和大数据技术的发展必须与网络安全技术的研究和应用相结合。

综上所述,互联网催生大数据能力对于社会的发展产生了积极的影响。它使得大数据的收集和分析成为可能,为各个行业提供了数据支持和决策依据。互联网催生的大数据能力带来了数据海量性、实时性和精准性等特点,同时也带来了隐私和安全的问题。因此,在充分利用大数据的优势的同时,我们也应该重视隐私和安全的保护,推动互联网技术和大数据应用的健康发展。只有合理利用互联网催生大数据能力,才能更好地推动社会的创新和发展。

大数据与互联网开云官网app下载安装手机版 篇十

营销离不开传播,传播离不开媒体。以前,企业传递信息一般是通过外部渠道,如杂志、电视、收音机等。互联网时代,企业有很多自有的渠道来传播信息,如论坛、微博、qq空间、微信公众账号等。这些可以称作自媒体,企业可以用自己的渠道来发表自己的意见,跟传统的媒体形态紧密结合,企业表达自己意见最重要的价值在于传播品牌理念,而最终目的是卖产品。

1.2企业的消费者思维。

互联网时代,产品是不是消费者喜欢的,这个十分重要。在目前物资非常丰富的时代,产品本身已经不重要,打造产品已经变得越来越容易,而拥有客户才是最重要的。如今,因为有了移动端,客户的各种行为更容易被记录,这样有了更多的数据对这种关系进行科学的分析。用户使用产品感觉好,企业才能真正得到这个客户。如果用户感觉不好,将会失去这个客户,因此,企业必须站在消费者立场去开展产品设计、营销推广。

1.3企业的服务思维。

服务就是一种增加产品本身价值的体验,通过体验提升产品价值。这种服务的形成,在移动互联网时代会变得更加多样化。移动终端让企业了解到客户不同的喜好,然后,设计出更吸引客户的场景,即用户个体喜好与移动中的场景等于满足用户需求的个性化服务。

2.1提升传统行业企业的互联网化水平。

对于传统的金融、批发零售、媒体、租赁/服务、制造等行业,应着力于推动三个方面的互联网化。

一是,营销互联网化(线上、线下融合)。线上、线下融合是解决实体产品和线上产品融合的问题,一方面,要加强物流基础设施建设和信息技术的深度融合;另一方面,要及时改善产品网点分布,提供便捷的服务,并提高服务的质量。

二是,产品互联网化(产品数字化、互联网交付)。产品互联网化,是基于跟互联网上的消费者充分、适度的交流,因此,要通过互联网实现与消费者的交流,及时吸收消费者的参与,同时,借助互联网支付平台,提高产品的销售便捷性。

三是,服务互联网化(在线交互、客户服务)。要想搞好互联网营销,线下要重质量,线上要重速度。线下和线上目前还是不可孤立的,否则,企业发展不会太大,利用线下的活动和服务可以赢得良好的口碑,打下坚实的群众基础,然后,线上注意实效,注意同步配合,可以取得更好的效果。四是,运营互联网化(信息、资金、物流的互联网承载和支持)。整合线上线下渠道,避免冲突,合理优化信息、资金、物流各环节的配合,发挥出线上、线下各渠道的优势并进行互补,以达到最优化的整合。

2.2借助互联网多途径优化企业的营销效率。

一是,替换(对传统商业流程中某些环节的直接取代)。一方面,在产品介绍方面,可以通过互联网将企业的各种信息充分展示,如运用声像工具、图片、文字介绍等,从而让产品介绍更加完整、全面、系统。另一方面,在产品交易方面,实现在线支付,降低产品交易成本,同时,在物流配送方面,可以利用与物流公司的配合,实现生产、销售、物流一体化,提高营销的响应速度。二是,优化(再造商业流程本身,简化、优化、重构)。传统的营销环节较多,尤其是涉及大宗商品买卖方面,需要走很多流程,而互联网营销时代,流程可以大大压缩,借助互联网平台,可以建立面向生产和消费的交流平台,不论身处何处,都能掌握企业的营销动态,及时了解需求,及时和客户沟通,避免了实体销售在及时性上的一些不足,同时,也简化了一些手续,使得整个营销流程变得顺畅。三是,创新(创造新的商业流程)。传统的营销,商业流程受到限制,尤其体现在渠道推广上,而借助互联网平台,可以创造一些新的商业模式,扩展营销的影响面,提高营销的效率。

2.3抓好互联网时代的营销重点策略。

对于互联网时代的营销策略要把握两个重点:第一个,企业营销的核心是属于什么行业,然后,要充分了解这个行业的性质,以此类推定位企业营销的内容。比如,企业如果是医药行业,对于这个行业往往专业度比较高,如果水平较差往往会被同行嘲笑,就算是营销成功也往往成了负面的参照物。所以,在营销前,一定要对这个行业以及企业营销的内容有一个亮点分析,并找到企业的推广点,再定位目标用户进行营销,方能提升营销效果。

第二,充分了解企业的用户,比如,营销的对象是谁,目标对象是哪类用户群体,用户的需求就是企业的营销重点,企业在满足用户需求的前提下进行营销,往往更容易获得用户的信任,从而将企业的产品或者服务推出去。第三个,要做好定位,包括产品市场定位、渠道定位、价格定位、促销定位等。必须明白自己的产品如何与互联网相结合,然后通过什么方式去接触用户。第四,营销的核心内容是什么,推广手段要怎么选择,比如,通过短信、二维码或手机网站等。

大数据与互联网开云官网app下载安装手机版 篇十一

随着云计算和物联网的日渐普及,大数据逐渐成为各行各业的核心资源。然而,海量的数据需要采取一些有效措施来处理和分析,以便提高数据质量和精度。由此,数据预处理成为数据挖掘中必不可少的环节。在这篇文章中,我将分享一些在大数据预处理方面的开云官网app下载安装手机版 ,希望能够帮助读者更好地应对这一挑战。

作为数据挖掘的第一步,预处理的作用不能被忽视。一方面,在真实世界中采集的数据往往不够完整和准确,需要通过数据预处理来清理和过滤;另一方面,数据预处理还可以通过特征选取、数据变换和数据采样等方式,将原始数据转化为更符合建模需求的格式,从而提高建模的精度和效率。

数据预处理的方法有很多,要根据不同的数据情况和建模目的来选择适当的方法。在我实际工作中,用到比较多的包括数据清理、数据变换和离散化等方法。其中,数据清理主要包括异常值处理、缺失值填充和重复值删除等;数据变换主要包括归一化、标准化和主成分分析等;而离散化则可以将连续值离散化为有限个数的区间值,方便后续分类和聚类等操作。

第四段:实践中的应用。

虽然看起来理论很简单,但在实践中往往遇到各种各样的问题。比如,有时候需要自己编写一些脚本来自动化数据预处理的过程。而这需要我们对数据的文件格式、数据类型和编程技巧都非常熟悉。此外,在实际数据处理中,还需要经常性地检查和验证处理结果,确保数据质量达到预期。

第五段:总结。

综上所述,数据预处理是数据挖掘中非常重要的一步,它可以提高数据质量、加快建模速度和提升建模效果。在实际应用中,我们需要结合具体业务情况和数据特征来选择适当的预处理方法,同时也需要不断总结经验,提高处理效率和精度。总之,数据预处理是数据挖掘中的一道不可或缺的工序,只有通过正确的方式和方法,才能获得可靠和准确的数据信息。

大数据与互联网开云官网app下载安装手机版 篇十二

近年来,金融大数据的兴起引发了全球金融业的巨大变革。作为一名金融界的从业者,我深切感受到了金融大数据在业务决策、风险管理等方面的重要性。在实践中,我逐渐总结出了一些关于金融大数据的开云官网app下载安装手机版 。

首先,金融大数据的应用为业务决策提供了全新的视角。在过去,金融业的决策常常基于经验和直觉,而缺乏数据支持的决策往往容易产生风险。然而,金融大数据的引入彻底改变了这种状况。通过对大量的金融数据进行分析,我们可以发现市场的规律和变化趋势,从而制定出更加科学合理的决策方案。例如,通过分析历史市场数据,我们可以找到股票价格之间的相关性,并进一步构建股票组合,从而实现风险的分散和收益的最大化。

其次,金融大数据的应用极大地提升了风险管理的能力。在金融领域,风险控制一直是至关重要的。过去,风险管理主要依赖于人工的经验和直觉,容易受到主观因素的影响。但现在,金融大数据能够帮助我们更加全面、准确地评估风险。通过对大数据的深入分析,我们能够获取更加全面、准确、及时的市场信息,从而为风险管理提供了更加有力的支持。例如,我们可以通过对市场数据的分析,预测可能发生的波动情况,及时提前采取相应的对策,从而降低风险的发生概率。

然而,金融大数据应用也存在一些挑战和风险。首先,金融大数据的处理和分析需要庞大的计算能力和专业的技术支持,这对金融机构提出了更高的要求。其次,金融大数据的应用还涉及到隐私和安全的问题。金融数据往往包含着大量的客户账户信息和交易数据,如果处理不当,可能会导致客户隐私泄露和财务安全的风险。因此,金融机构在使用金融大数据时必须加强数据安全措施,以确保数据的保密性和完整性。

最后,在应用金融大数据的过程中,我们需要保持数据的客观性和准确性。金融数据的处理和分析过程中,可能存在人为的操作和干扰,这可能会导致分析结果出现偏差。因此,金融机构在使用金融大数据时必须加强数据的把控和审查,确保数据的客观性和准确性。同时,也需要建立完善的数据管理系统,确保数据的存储和传输的安全和可靠。

总之,金融大数据的应用为金融业带来了巨大的变革和机遇。通过合理、科学地利用金融大数据,我们可以更好地做出业务决策和管理风险,提升金融机构的竞争力和盈利能力。然而,在应用金融大数据的过程中,我们也需要面对一系列挑战和风险,这需要我们加强技术支持、提升数据安全能力,并严格把控数据的客观性和准确性。只有这样,我们才能更好地利用金融大数据,推动金融业的发展和创新。

大数据与互联网开云官网app下载安装手机版 篇十三

近年来,随着互联网和信息技术的快速发展,大数据已经成为现代社会的新命脉。税务领域作为一个信息交汇的重要领域,税务大数据的利用已成为提高税收管理效能和质量的必然选择。本文将从税务大数据的概念、价值、挑战、应用以及展望等方面进行探讨和总结,以期为相关领域提供一些有益的借鉴和经验。

首先,我们来看税务大数据的概念和价值。税务大数据是指税务机关在执行税法时,积累和处理的大规模、多元化的信息数据。税务大数据的价值主要体现在三个方面:一是提高税收征管效能,通过对大数据的分析,税务机关可以识别出涉税风险,开展精准执法,提高税收征管水平;二是优化税收服务,税务机关可以根据大数据分析结果,为纳税人提供个性化、高效的税收服务,增强纳税人对税务机关的满意度;三是优化税收政策,通过对大数据的挖掘,税务机关可以了解税收人群的行为特征,进而指导税收政策的制定和优化。

然而,税务大数据的利用也面临着一些挑战。首先是数据资源的整合与共享问题。税务大数据涉及多个部门和多个层级的数据,要想实现数据资源的整合和共享,需要解决数据隐私保护、数据格式不统一、数据共享机制不完善等问题;其次是数据分析能力的提升问题。税务机关需要提升大数据分析的能力,招纳更多的数据分析师,并培养数据分析的专业团队;最后是信息安全问题。税务大数据涉及大量的纳税人和涉税信息,如何保障数据的安全和隐私是一个亟待解决的问题。

然而,税务大数据在实际应用中已经取得了显著的成效。税务机关通过大数据分析,成功发现了大量的涉税风险,大幅提升了税收管理效能;通过数据挖掘,税务机关了解了不同行业和区域的纳税人行为特征,为税收政策的制定和优化提供了重要参考依据;通过数据分析,税务机关可以对纳税人提供个性化的优质服务,建立起了良好的纳税人关系。

最后,我们来展望税务大数据的未来。未来税务大数据将充分发挥其优势,实现与其他数据资源的深度融合,从而提供更加精准的税收服务;未来税务大数据将进一步加强与其他部门和企业的合作,实现跨部门、跨领域的数据共享,形成更加全面、立体的税收治理体系;未来税务大数据将进一步应用先进的技术和手段,如人工智能、区块链等,提高数据分析和处理的速度和精确度。

综上所述,税务大数据作为税收治理的新手段和新工具,已经展现出巨大的潜力和价值。然而,税务大数据的利用依然面临诸多挑战,如数据整合共享、数据分析能力、信息安全等问题。未来税务大数据将进一步发展壮大,实现与其他数据资源的深度融合,进一步提升税收治理效能。我们期待税务大数据在税收治理中发挥更大的作用,为实现税收现代化提供有力支撑。

大数据与互联网开云官网app下载安装手机版 篇十四

描述小组在完成平台安装时候遇到的问题以及如何解决这些问题的,要求截图加文字描述。

问题一:在决定选择网站绑定时,当时未找到网站绑定的地方。解决办法:之后小组讨论后,最终找到网站绑定的地方,点击后解决了这个问题。

问题二:当时未找到tcp/ip属性这一栏。

解决办法:当时未找到tcp/ip属性这一栏,通过老师的帮助和指导,顺利的点击找到了该属性途径,启用了这一属性,完成了这一步的安装步骤。

问题三:在数据库这一栏中,当时未找到“foodmartsaledw”这个文件。

问题四:在此处的sqlserver的导入和导出向导,这个过程非常的长。

解决办法:在此处的sqlserver的导入和导出向导,这个过程非常的长,当时一直延迟到了下课的时间,小组成员经讨论,怀疑是否是电脑不兼容或其他问题,后来经问老师,老师说此处的加载这样长的时间是正常的,直到下课后,我们将电脑一直开着到寝室直到软件安装完为止。

问题五:问题二:.不知道维度等概念,不知道怎么设置表间关系的数据源。关系方向不对。

解决办法:百度维度概念,设置好维度表和事实表之间的关系,关系有时候是反的——点击反向,最后成功得到设置好表间关系后的数据源视图。(如图所示)。

这个大图当时完全不知道怎么做,后来问的老师,老师边讲边帮我们操作完成的。

问题六:由于发生以下连接问题,无法将项目部署到“localhost”服务器:无法建立连接。请确保该服务器正在运行。若要验证或更新目标服务器的名称,请在解决方案资源管理器中右键单击相应的项目、选择“项目属性”、单击“部署”选项卡,然后输入服务器的名称。”因为我在配置数据源的时候就无法识别“localhost”,所以我就打开数据库属性页面:图1-图2图一:

图二:

解决办法:解决办法:图2步骤1:从图1到图2后,将目标下的“服务器”成自己的sqlserver服务器名称行sqlservermanagementstudio可以)步骤2:点确定后,选择“处理”,就可以成功部署了。

问题七:无法登陆界面如图:

解决方法:尝试了其他用户登陆,就好了。

(1)在几周的学习中,通过老师课堂上耐心细致的讲解,耐心的指导我们如何一步一步的安装软件,以及老师那些简单清晰明了的课件,是我了解了sql的基础知识,学会了如何创建数据库,以及一些基本的数据应用。陌生到熟悉的过程,从中经历了也体会到了很多感受,面临不同的知识组织,我们也遇到不同困难。

理大数据的规模。大数据进修学习内容模板:

linux安装,文件系统,系统性能分析hadoop学习原理。

大数据飞速发展时代,做一个合格的大数据开发工程师,只有不断完善自己,不断提高自己技术水平,这是一门神奇的课程。

2、在学习sql的过程中,让我们明白了原来自己的电脑可以成为一个数据库,也可以做很多意想不到的事。以及在学习的过程中让我的动手能力增强了,也让我更加懂得了原来电脑的世界是如此的博大精深,如此的神秘。通过这次的学习锻炼了我们的动手能力,上网查阅的能力。改善了我只会用电脑上网的尴尬处境,是电脑的用处更大。让我们的小组更加的团结,每个人对自己的分工更加的明确,也锻炼了我们的团结协作,互帮互助的能力。

3、如果再有机会进行平台搭建,会比这一次的安装更加顺手。而在导入数据库和报表等方面也可以避免再犯相同的错误,在安装lls时可以做的更好。相信报表分析也会做的更加简单明了有条理。

总结。

大数据时代是信息化社会发展必然趋势在大学的最后一学期里学习了这门课程是我们受益匪浅。让我们知道了大数据大量的存在于现代社会生活中随着新兴技术的发展与互联网底层技术的革新数据正在呈指数级增长所有数据的产生形式都是数字化。如何收集、管理和分析海量数据对于企业从事的一切商业活动都显得尤为重要。

大数据时代是信息化社会发展必然趋势,我们只有紧紧跟随时代的发展才能在以后的工作生活中中获得更多的知识和经验。

三、

结语。

大数据与互联网开云官网app下载安装手机版 篇十五

Hadoop作为大数据领域中的重要工具,其开源的特性和高效的数据处理能力越来越得到广泛的应用。在实际应用中,我们对Hadoop的使用也逐步深入,从中汲取了许多经验和教训。在此,我会从搭建Hadoop集群、数据清洗、分析处理、性能优化和可视化展示五个方面分享一下我的开云官网app下载安装手机版 。

一、搭建Hadoop集群。

搭建Hadoop集群是整个数据处理的第一步,也是最为关键的一步。在这一过程中,我们需要考虑到硬件选择、网络环境、安全管理等方面。过程中的任何一个小错误都可能会导致整个集群的崩溃。基于这些考虑,我们需要进行详细的规划和准备,进行逐步的测试和验证,确保能够成功地搭建起集群。

二、数据清洗。

Hadoop的数据处理能力是其最大的亮点,但在实际应用中,数据的质量也是决定分析结果的关键因素。在进行数据处理之前,我们需要对数据进行初步的清洗和预处理。这包括在数据中发现问题和错误,并将其纠正,以及对数据中的异常值进行排除。通过对数据的清洗和预处理,我们可以提高数据的质量,确保更加准确的分析结果。

三、分析处理。

Hadoop的大数据处理能力在这一阶段得到了最大的展示。在进行分析处理时,我们首先需要确定分析目标,并对数据进行针对性的处理。数据处理的方式包括数据切分、聚合、过滤等。我们还可以利用MapReduce、Hive、Pig等工具进行分析计算。在处理过程中,我们还需要注意对数据的去重、筛选、转换等方面,从而得到更为准确的结果。

四、性能优化。

在使用Hadoop进行数据处理的过程中,内存的使用是其中重要的方面。我们需要在数据处理时对内存使用进行优化,提高算法的效率。在数据读写和网络传输等方面,我们也需要尽可能地提高其效率,来增强Hadoop的处理能力。这一方面需要的是合理的调度策略、良好的算法实现、有效的系统测试等方面的支持。

五、可视化展示。

通过对数据的处理和分析,我们需要对获得的结果进行展示。在这一方面,我们可以使用Hadoop提供的一系列Web界面进行展示,同时还可以利用一些可视化工具将数据进行图像化处理。通过这些方式,我们可以更加直观地观察到数据分析的结果,从而更好地应用到实际业务场景中。

总之,Hadoop的应用已逐渐地从科技领域异军突起,成为处于大数据领域变革前沿的重要工具。在实际应用中,我从搭建Hadoop集群、数据清洗、分析处理、性能优化和可视化展示五个方面体会到了很多经验和教训,不断地挑战和改进我们的技术与思路,才能更好地推动Hadoop的应用发展。

大数据与互联网开云官网app下载安装手机版 篇十六

随着互联网、物联网、人工智能等技术的不断发展,大数据时代已经来临。大数据可以帮助我们获取并分析海量的数据,从而提高决策的准确性和效率,优化工作流程,改进产品和服务,提升用户体验等。大数据的智能化应用是迈向智能化未来必不可少的一步,因此我们需要不断探索和实践大数据智能化应用的方法和技巧。

要实现大数据的智能化应用,必须建立在良好的基础之上。首先,数据准确性和完整性是保证大数据应用有效性的基础;其次,要构建完善的数据平台和工具,包括数据仓库、分析工具、可视化工具等;还需要建立全面的数据安全保障体系,保护数据的隐私和安全。

大数据智能化的应用领域非常广泛,例如金融、医疗、电商、社交媒体等等。利用大数据技术,可以实现对消费者的行为分析,预测市场趋势,优化产品设计,提高用户满意度。同时,利用大数据还可以预测疾病流行趋势,制定有效的医疗政策,提高医疗效率和服务质量。

以阿里巴巴为例,其淘宝电商平台依赖于大数据技术来收集和分析海量用户数据,从而能够针对用户的喜好、购买行为等进行个性化推荐,提高网站转化率和用户满意度。此外,阿里巴巴还推出了“ETCityBrain”项目,利用大数据技术和人工智能实现城市交通智能化管理,为城市治理和居民出行提供便利。这些具体的案例展示了大数据智能化应用的实际效果和潜力。

第四段:总结大数据智能化应用所带来的好处和面临的挑战。

大数据智能化应用给我们带来了很多好处,例如提高决策效率和准确性、优化业务流程、提升用户体验和满意度。同时,这也带来了另一个问题,就是数据隐私和安全问题。在大数据智能化应用的过程中,我们需要建立完善的数据安全保障机制,保护用户数据的隐私和安全。

此外,大数据智能化应用还需要解决数据质量问题,确保数据的准确性和完整性,避免因为数据误差导致错误决策。另外,大数据智能化应用还需要更人性化的设计,更直观的可视化数据分析工具,来满足用户的需求,增强用户体验。

学习大数据智能化应用需要掌握基础知识和技能,例如数据采集、处理、分析、建模等。同时,还需要了解大数据技术应用于不同行业的案例和经验,并且要不断尝试和实践,从实践中积累经验和心得。

在学习过程中,需要注重团队合作和沟通,与同行一起探讨和共享经验,互相学习和借鉴。同时,还需要积极参与行业会议和研讨会,了解行业最新的发展趋势和技术变革,不断更新自己的知识和技能,保持领先优势。

大数据与互联网开云官网app下载安装手机版 篇十七

信息时代的到来,我们感受到的是技术变化日新月异,随之而来的是生活方式的转变,我们这样评论着的信息时代已经变为曾经。如今,大数据时代成为炙手可热的话题。

信息和数据的定义。维基百科解释:信息,又称资讯,是一个高度概括抽象概念,是一个发展中的动态范畴,是进行互相交换的内容和名称,信息的界定没有统一的定义,但是信息具备客观、动态、传递、共享、经济等特性却是大家的共识。数据:或称资料,指描述事物的符号记录,是可定义为意义的实体,它涉及到事物的存在形式。它是关于事件之一组离散且客观的事实描述,是构成信息和知识的原始材料。数据可分为模拟数据和数字数据两大类。数据指计算机加工的“原料”,如图形、声音、文字、数、字符和符号等。从定义看来,数据是原始的处女地,需要耕耘。信息则是已经处理过的可以传播的资讯。信息时代依赖于数据的爆发,只是当数据爆发到无法驾驭的状态,大数据时代应运而生。

在大数据时代,大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理。小数据停留在说明过去,大数据用驱动过去来预测未来。数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。大数据是在互联网背景下数据从量变到质变的过程。小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。

数据未来的故事。数据的发展,给我们带来什么预期和启示?金融业业天然有大数据的潜质。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的学习空间、可以有更精准的决策判断能力这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。因此,建设“数据仓库”,培养“数据思维”,养成“数据治理”,创造“数据融合”,实现“数据应用”才能拥抱“大数据”时代,从数据中攫取价值,笑看风云变换,稳健赢取未来。

一部似乎还没有写完的书。

——读《大数据时代》有感及所思。

读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。

有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。

当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。

可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!

更何况还有两个更可怕的事情。

其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。

都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。

所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。

合纤部车民。

2013年11月10日。

一、学习总结。

采用某些技术,从技术中获得洞察力,也就是bi或者分析,通过分析和优化实现。

对企业未来运营的预测。

在如此快速的到来的大数据革命时代,我们还有很多知识需要学习,许多思维需要转变,许多技术需要研究。职业规划中,也需充分考虑到大数据对于自身职业的未来发展所带来的机遇和挑战。当我们掌握大量数据,需要考虑有多少数字化的数据,又有哪些可以通过大数据的分析处理而带来有价值的用途?在大数据时代制胜的良药也许是创新的点子,也许可以利用外部的数据,通过多维化、多层面的分析给我们日后创业带来价值。借力,顺势,合作共赢。

大数据与互联网开云官网app下载安装手机版 篇十八

随着信息技术的快速发展,大数据已经成为了当代社会最为炙手可热的话题之一。作为信息时代的产物,大数据给我们的生活带来了巨大的改变。最近,我读了一本名为《大数据》的书,在阅读过程中,让我对大数据有了更深的认识。下面我将与大家分享一下我的体会。

首先,大数据让我们的生活更加便利。现如今,大数据技术得到了广泛的应用,人们可以通过各种技术手段轻松地获取所需的信息。无论是购物、出行还是旅游,我们都能够通过大数据获取到最新的产品信息、路线规划以及景点推荐,从而为我们的生活提供了诸多便利。比如,每当我需要购买产品时,只需在电子商务平台上输入关键词,便可获得大量的搜索结果,同时还能通过查看其他用户的评价来进行筛选,这使得我们能够更加轻松地做出购买决策。

其次,大数据为商业发展提供了新的机遇。随着大数据技术的不断改进,越来越多的企业开始使用大数据分析手段来处理海量的数据,从而找到市场的空白点,为企业创造更多商机。例如,通过对大数据的分析,电商平台能够通过用户的购买行为了解用户的兴趣爱好,并根据这些数据进行精确的产品定位和个性化推荐,从而提高销售额。大数据的出现,使得商业发展更加精准和高效,企业可以更加了解消费者的需求,提供更好的产品和服务。

再次,大数据为决策提供了科学依据。无论是政府还是企事业单位,在制订政策和规划发展战略时,都需要基于大量的数据进行决策。大数据的出现让决策者可以更加客观地了解社会经济现状,分析各种数据之间的关系以及相关因素对决策结果的影响,从而做出更加明智的决策。比如,在交通规划方面,利用大数据可以实时监测交通拥堵情况,分析交通流量以及不同道路之间的关系,从而优化交通路线,提高交通效率。大数据的运用,为决策者提供了更准确的信息,帮助他们做出科学合理的决策。

最后,大数据也带来了一系列的挑战和问题。首先,数据安全问题成为了一个亟待解决的难题。大数据的存储和传输需要庞大的计算资源,但与此同时,也给数据安全带来了巨大的挑战。随着黑客技术的不断发展,数据泄露和隐私侵犯的风险也在逐渐增加。其次,大数据的过滤和分析需要高度专业的技术和人才。大量的数据对于普通人来说是一种负担和困扰,如果没有足够的专业人才来进行数据的处理和分析,那将影响到大数据的应用和发展。

总而言之,大数据给我们的生活和社会带来了诸多的变化和好处,但也面临着一些挑战和问题。我认为,我们应该在充分利用大数据的优势的同时,加强数据安全的保护和专业人才的培养。只有这样,我们才能更好地应对大数据时代的挑战和机遇,并为我们的生活和社会发展创造更加美好的未来。

大数据与互联网开云官网app下载安装手机版 篇十九

在过去十几年里,数据已经成为我们生活中无处不在的一部分。从社交媒体到通信应用程序,我们的行为留下了大量可挖掘的数据。而这些数据可以帮助企业和政府机构以一种无以伦比的方式进行分析,以实现效率和决策的优化。自己也在参加了一些大数据考察活动后,我对大数据的观念有了新的认识,也掌握了更多的技能。

首先,对数据的转化和呈现有了更深入的理解。通过参加数据考察活动,我理解了数据趋势和数据可视化的概念。这让我明白了如何将大量数据转化成更可读的形式。即便是在巨量数据的情况下,我们完全可以在不失精度情况下挖掘更多信息。这些数据可视化的技巧也使得我可以在不使用复杂软件的情况下,更简单地制作和展示数据。

其次,大数据考察也让我更深入地理解了机器学习和AI深度神经网络的原理。在机器学习的过程中,我们可以将模型训练成对数据进行更精细的预测。这些预测只需要使用算法和预处理数据即可实现。这种预测能够帮我们挖掘出数据中的趋势,利用这些信息可以提高企业的效益和优化决策。而深度神经网络设计的算法可以使我们更好地模拟人类大脑的学习机制,从而提高人工智能的性能和鲁棒性。

此外,数据考察活动还让我明白了数据隐私和安全的意义和重要性。随着数据的采集和处理越来越普遍,我们也面临着数据泄露和滥用的风险。因此,在这个时代,我们需要主动保护我们的个人数据和隐私。政府和企业也应该做出足够的保障,保障公民和客户的数据安全和隐私性。

最后,数据考察活动也让我体验到了团队协作真正的力量。在处理复杂的数据时,一种比较省时和成本效益的方式是组织一个有能力和资格的团队进行工作。团队协助,调动每个人的聪明才智,才能获得最好的结果。因此,关键的一点往往就是团队协作,这也是数据考察活动带给我的最大感受。

总之,数据和大数据已经成为我们社会不可或缺的一部分。只有掌握了大数据的核心技能,我们才能在这个时代立足。而大数据考察活动,不仅仅让我们学会了如何存储,处理和展示大量的数据,也让我们尝试着用数据解决复杂实际问题的过程中懂得了更多。

大数据与互联网开云官网app下载安装手机版 篇二十

大数据时代的到来,给人们的学习和生活带来了巨大的变革。近期,我读完了一本关于大数据的书籍《大数据》,在书中我了解到了大数据的定义、特点、应用和对社会产生的影响。通过这本书的学习,我深刻认识到了大数据对于现代社会的重要性,并从中汲取了一些启示和体会。

首先,我的第一个体会是对大数据的新认识。在书中,大数据被定义为指数据量巨大、处理难度大,无法通过传统的数据处理工具和方法进行处理和分析的数据。大数据的特点主要包括“四V”,即数据量大(Volume)、处理速度快(Velocity)、数据种类繁多(Variety)和价值密度低(Value)。通过学习这些概念,我意识到了大数据处理的复杂性和重要性。在现代社会中,随着互联网技术的快速发展,海量的数据正在不断产生,而利用这些数据寻找规律、洞察趋势对于企业和科学研究等领域都具有重要意义。

其次,我通过阅读《大数据》这本书,对大数据应用的广泛性有了更深入的了解。大数据不仅可以被用于商业领域的市场调研和用户行为分析,还可以被运用于医疗、金融、政府等各个领域。例如,在医疗领域,大数据分析可以帮助医生更准确地诊断疾病,提高治疗效果;在金融领域,大数据可以用于风险评估和投资策略制定。这些例子让我认识到大数据不仅仅是一个概念,它已经深入到我们的生活和工作中,并对各个领域产生了重要的影响。

第三,大数据在社会中的影响力也让我深受触动。通过大数据的分析,科学家们可以预测自然灾害的发生和规模,帮助人们采取相应的措施减少灾害造成的损失;政府们可以利用大数据分析来改进公共服务和决策,提高社会治理效能。大数据还可以通过对人群行为的分析,为企业提供精准的广告定位和销售策略,帮助企业提高竞争力。大数据的应用正引领着社会的进步和发展,让我感到对于大数据的学习和掌握变得格外重要。

第四,在书中我还学到了大数据的应对方法和技术。大数据处理的复杂性要求我们运用先进的技术和工具。例如,云计算能够提供强大的计算和存储能力,帮助我们处理海量的数据;机器学习和人工智能则能够帮助我们从复杂的数据中提取有价值的信息。了解到这些技术后,我决定在大数据领域继续深入学习,提高自己的技术水平。

最后,通过读完《大数据》,我深刻体会到大数据的革命性和不可逆转性。大数据已经成为了当今社会的一个重要标志,影响着我们生活的各个方面。不仅是企业和科研机构,普通人也需要掌握一定的大数据分析和处理能力,才能适应这个快速变化的时代。因此,在日常生活中,我们要提高自己对于大数据的认识和运用,并不断学习相关的知识和技能。

总之,通过阅读《大数据》,我对大数据有了全新的认识,了解到了其广泛的应用领域和对社会的重要影响。同时,我也学到了一些大数据的应对方法和技术。大数据已经成为一个时代的产物,对于每个人来说,掌握大数据的知识和技能变得愈发重要。我希望通过自己的努力,能够在大数据时代中不断学习和成长,为社会的发展贡献自己的力量。

大数据与互联网开云官网app下载安装手机版 篇二十一

随着大数据时代的到来,数据成为企业和个人获取信息和分析趋势的主要手段。然而,数据的数量和质量对数据分析的影响不能忽视。因此,在数据分析之前,数据预处理是必须的。数据预处理的目的是为了清理,转换,集成和规范数据,以便数据分析师可以准确地分析和解释数据并做出有效的决策。

二、数据清理。

数据清理是数据预处理的第一个步骤,它主要是为了去除数据中的异常,重复,缺失或错误的数据。一方面,这可以帮助分析师得到更干净和准确的数据,另一方面,也可以提高数据分析的效率和可靠性。在我的工作中,我通常使用数据可视化工具和数据分析软件帮助我清理数据。这些工具非常强大,可以自动检测错误和异常数据,同时还提供了人工干预的选项。

三、数据转换。

数据转换是数据预处理的第二个步骤,其主要目的是将不规则或不兼容的数据转换为标准的格式。例如,数据集中的日期格式可能不同,需要将它们转换为统一的日期格式。这里,我使用了Python的pandas库来处理更复杂的数据集。此外,我还经常使用Excel公式和宏来转换数据,这些工具非常灵活,可以快速有效地完成工作。

四、数据集成和规范化。

数据集成是将多个不同来源的数据集合并成一个整体,以便进行更全面的数据分析。但要注意,数据的集成需要保证数据的一致性和完整性。因此,数据集成时需要规范化数据,消除数据之间的差异。在工作中,我通常使用SQL来集成和规范化数据,这使得数据处理更加高效和精确。

五、总结。

数据预处理是数据分析过程中不可或缺的一步。只有经过数据预处理的数据才能够为我们提供准确和可靠的分析结果。数据预处理需要细心和耐心,同时,数据分析师也需要具备丰富的经验和技能。在我的实践中,我发现,学习数据预处理的过程是很有趣和有价值的,我相信随着数据分析的不断发展和应用,数据预处理的作用将越来越受到重视。

【本文地址:http://www.pourbars.com/zuowen/15128650.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map