圆的初步认识的教学设计(汇总19篇)

格式:DOC 上传日期:2023-11-26 22:17:21
圆的初步认识的教学设计(汇总19篇)
时间:2023-11-26 22:17:21     小编:GZ才子

深入分析注意总结的语气要积极向上,不能只看到问题和失误,要注重对成就和进步的肯定。在下面的范文中,我们可以看到一些总结的写作技巧和思路,或者可以借鉴一些表达方式和结构。

圆的初步认识的教学设计篇一

1、使学生认识圆,掌握圆的特征,理解直径与半径的关系,学会用圆规画圆。

2、使学生初步学会运用所学知识解决简单实际问题,培养学生观察、分析、抽象概括能力及初步的空间观念。

3、创设民主和谐的课堂氛围,培养学生的探索意识、合作意识及创新意识和创造能力,促进其非认知品质的健康发展。

圆规、三角板、大小不同的圆形纸片、多媒体教学软件、正方形纸片。

学生回答后,揭示课题:圆的认识。

1、结合实例,感知特点。

生:硬币表面是平的,乒乓球的表面是弯的。硬币只有正面看才是圆的,乒乓球不管从哪个方向看都是圆的。

师:说得好!足球、乒乓球这一类物体,我们把它叫做球形物体,硬币是圆形物体,它的正面的圆形是平面图形。

请同学们摸一摸你们手中的书和圆形学具的边缘,看有什么不同的感觉?

生:长方形的边是直的,圆的边是弯的。

2、巧设疑问,激发兴趣。

师:有同学举例说车轮是圆的,那么车轮不做成圆的会怎么样呢?动画演示:车轮为椭圆的轿车上下颠簸着驶入画面。(生哄笑)。

师:车轮做成圆的为什么就会平稳行驶呢?——这节课我们就来探索一下圆的奥秘。

3、操作讨论,发现特点。

师:现在四人一组,用发下的圆形纸片来研究圆的特点。

屏幕显示:“折一折、量一量、议一议,看有什么发现?”

生操作,讨论。教师巡视。

4、汇报讨论结果。

师:说一说你们有什么发现?

生1:我们发现多次对折后,折痕都通过同一个交点,这个交点在圆的中心。

师:真聪明!我们把圆中心的这一点叫做圆心,用字母o表示。(在黑板上贴出圆,画出圆心并标出字母o。)。

生2:我通过测量还发现了对折后的折痕长度都相等,每条都是10厘米。

生3:我这个圆的每条折痕都是8厘米,我共测量了4条。

……。

师:(板书:都相等)可以折出多少条折痕?(学生回答后板书:有无数条)我们把对折后的折痕叫做直径,用字母d表示。(在黑板上的圆中画出直径并标上字母)请同学们在自己的圆上画出直径。

屏幕显示图形:下面圆中的线段是直径吗?说出理由。

在此基础上引导学生概括出直径的意义。

生4:通过测量,我还发现直径的一半也相等。

师:很好!我们把这条线段叫做半径,用字母r表示。(在黑板上的圆中标出半径及字母。)请大家在圆形纸片上画出半径。

屏幕显示图形:下面的线段是半径吗?(回答后引导学生概括半径的意义。)。

师:“所有的半径都相等,所有的直径都相等。”这句话对不对?(学生回答后板书:在同圆或等圆中)。

6、小结。

今天我们学习了圆的什么知识?

圆的初步认识的教学设计篇二

1.结合生活实际,通过观察、操作等活动,认识圆及圆的特征;认识半径、直径,理解同一圆中直径与半径的关系。

2.初步学会用圆规画圆,培养学生的作图能力。

3.结合具体情境,体验数学与日常生活的密切联系,能用圆的知识来解释生活中的简单现象,解决一些简单的实际问题。

认识圆的圆心、半径和直径,学会用圆规画圆的方法。

归纳同一圆内直径和半径的特征。

圆规、直尺、多媒体课件等。

各种圆形实物、圆规、直尺、圆形纸片等。

教学过程。

一、导入新课。

老师提问:同学们,你们知道八月十五是什么节日,这一天我们都做些什么?

老师引出:十五的月亮和月饼都是圆形。

老师提问:生活中还有哪些物体是圆形的?

幻灯片展示生活中其他的圆形物体。

二、探索新知。

1、教师让学生拿出课前准备的圆形纸片,说说你是怎么做到的。

2、认识圆的各部分名称。

幻灯片放映折的过程。

学生发现:折痕都相交于一点。

幻灯片给出圆心:这些折痕相交于圆中心的一点,这一点叫做圆心,用字母o表示。

老师引导:请大家选择一条折痕,沿折痕画下里,分析这条线段有什么特点?

学生发现:过圆心,两个端点在圆上。

幻灯片给出直径:通过圆心并且两端都在圆上的线段叫做直径,用字母d表示。

老师引导:从圆心向圆上任一点画一条线段,这是直径吗?它有什么特点?

学生发现:不是,它的一个端点是圆心,另一个在圆上。

幻灯片给出半径:连接圆心和圆上任意一点的线段叫做半径,用字母r表示。

巩固练习:在一个圆中找出它的直径和半径。

3、探索同一个圆内直径、半径的特征及它们之间的长度关系。

幻灯片给出:

在同一个圆里,你能画多少条半径?量一量这些半径都相等吗?

在同一个圆里,你能画多少条直径?量一量这些直径都相等吗?

在同一个圆里,直径和半径的长度有什么关系?

学生探索,给出:

无数条半径,都相等;

无数条直径,都相等;

直径是半径的两倍。

老师归纳推到:d=2r即r=d/2。

4、圆规和直尺画圆。

幻灯片给出“不以规矩,不成方圆”。

学生齐读,回答规“矩指”的是什么?

老师引导:认识圆规。

学生自学:课本57页怎样才能既准确又方便地画出一个圆?分组完成幻灯片展示的尝试题!

老师巡查,指导学生完成任务。

学生指出:画圆的基本步骤,这个过程中需要注意的地方。

老师总结圆的画法:1、定半径;2、定圆心;3、旋转一周。

幻灯片动画展示如何画一个半径是2cm的圆!

三、课堂练习。

幻灯片给出:

1.判断:

(1)在同一个圆内只可以画100条直径。()。

(2)所有的圆的直径都相等。()。

(3)两端都在圆上的线段叫做直径。()。

(4)等圆的半径都相等。()。

2.选择题:

(1)画圆时,圆规两脚间的距离是()。

a.半径长度b.直径长度。

(2)从圆心到()任意一点的线段,叫半径。

a.圆心b.圆外c.圆上。

(3)通过圆心并且两端都在圆上的()叫直径。

a.直径b.线段c.射线。

学生依次回答,能够进行改错。

四、学有所用。

用今天学习的圆的知识去解释一些生活现象。

幻灯片给出:

1.车轮为什么做成圆形的,车轴应安装在哪里?

2.如果车轮做成正方形的、三角形的,我们坐上去会是什么感觉呢?

学生讨论回答。

五、课堂小结。

学生总结本节课所学得知识。

圆的初步认识的教学设计篇三

圆是一种常见的平面图形,在我们的日常生活中有着广泛的应用。它是在学生掌握了直线图形的周长和面积计算,并且对圆已有初步认识的基础上进行教学的。教材通过对圆的研究,使学生初步认识到研究曲线图形的基本方法。同时,也渗透了曲线图形与直线图形的关系。这样不仅扩展了知识面,而且从空间观念上来说,也进入了新的领域。因此,通过对圆的认识,不仅能提高解决问题的能力,而且也为学习圆的周长、面积、圆柱和圆锥的学习打下良好的基础。

二、学习者分析。

六年级学生有着丰富的生活体验和知识积累,但空间观念比较薄弱,动手操作能力较低,学生学习水平差距较大,小组合作意识不强。以前学习的长方形、正方形等是直线平面图形,而圆则是曲线平面图形,估计学生在动手操作、合作探究方面会存在一些困难。

三、教学目标。

1、认识圆,知道圆的各部分名称,知道同一圆内半径、直径的特征,初步学会用圆规画圆。

2、使学生掌握圆的特征,理解在同一个圆里直径与半径的关系,能根据这种关系求圆的直径或半径。

3、培养学生的观察、分析、抽象、概括等思维能力和初步的空间观念,使学生初步学会用数学知识解释、解决生活中的实际问题。

教学重难点:掌握圆的特征,理解在同一个圆里直径和半径的关系,能根据这种关系求圆的直径或半径。

教学准备。

多媒体一套。学生准备硬币等圆形物体若干;圆规一把、直尺一把、三角尺一副;小剪刀一把;红色、蓝色彩笔各一支。

教学过程与方法。

(1)经历动手操作的活动过程,培养学生作图能力。

(2)通过分组学习,动手操作,主动探索等活动培养学生的创新意识,及抽象概括等能力,进一步发展学生的空间观念。

(3)在学习过程中,培养学生能与人合作、交流思维过程和结果的能力。

一、导入新课。

1、圆是什么样子的?你见过圆吗?

2、生活中你在哪儿见过?能说说吗?一直说下去能说完吗?的确圆是无处不在的。(打开有关生活中圆的课件)。

问:同学们你们从中又看到了圆了吗?你会画圆吗?今天我们一起来学习圆的认识(板书课题),相信通过今天的学习大家一定会明白其中的方法。

3、动手试一试,看谁想的方法多?

1、说说怎样用圆规画圆,强调画圆时圆规两脚间的距离不能改变,有针尖的一角不能移动,移动旋转时要把重心放在有针尖的一脚上,(教师在黑板上演示)学生自己练习画圆。

2、请大家用这个方法再画一个圆,并很快把它剪下来。

二、探究新知。

(一)认识圆心。

1、圆形画好了。

2、指出圆心。

说明:圆的中心叫“圆心”,就是画圆时针固定的一点,用字母o表示。(师板书:圆心o)。

(二)认识半径。

1、在你的圆的边缘上任意找一点,连接圆心和这一点得到一条线段,你还能画出这样的线段吗?再画几条,用尺子量一量这些线段,你发现了什么?(长度都相等)。

师小结:像这样的线段我们把它叫做半径。

2、什么叫半径?学生回答后出示概念及关键词。半径一般用字母r表示。

3、你能画出几条半径?

4、认识特点:在同一个圆里,有()条半径,它们的长度()。

(三)认识直径。

1、拿出你的学具圆,用尺子沿着一条折痕画出一条线段,再画几条,用尺子量一量这些线段,你发现了什么?(长度都相等)。

师小结:像这样的线段我们把它叫做直径。

什么叫做直径?学生回答后出示概念及关键词。直径一般用字母d表示。

2、要站在圆上,随便哪一点都可以吗?为什么?怎样证明?(引导学生画一画、量一量)。

说明:象这样,连接圆心到圆上任意一点的线段,叫做圆的半径,用字母r来表示。

(四)认识直径及直径与半径的关系。

1、刚才我们用折纸的方法确定圆心时,发现圆上有许多折痕。这些折痕叫什么?有什么特点?与半径有什么关系?请大家看看书、动动手画一画,看看能画几条?并在小组中说一说。

2、组织学生交流,教师画直径时有意两端不在圆上,让学生判断。

3、想一想:(1)画圆时,圆规两脚间的距离其实就是圆的什么?针尖固定的一点呢?

教师板书:(1)直径:d(2)d=2r或r=1/2d追问:直径肯定是半径的2倍吗?你是怎么知道的?看一下你手中圆的直径,会不会是黑板上圆的半径的2倍?你认为应该怎么说?(板书:同圆或者等圆中)。

3、口答:画一个直径是5厘米的圆,圆规两脚间的距离应是()。

4、完成课本的做一做。

三、全课总结。

四、延伸拓展。

1、同学们想一起到篮球场玩套圈游戏,你会怎么安排?说说你的想法。

3、利用发现的规律你能测出硬币等圆形物体的直径吗?

4、生活中哪些物体必须做成圆形的,为什么?

(课件出示两辆跑车)让学生展开讨论:车轮为什么是圆的?讲述:同学们,其实何尝是大自然对圆情有独钟?在我们人类生活中的每一个角落里,圆都扮演着重要角色,都成了美的使者和化身。(显示生活中圆的魅力)。

圆心(o)——定位置。

半径(r)——定大小——无数条——相等。

直径(d)——无数条——相等。

d=2rr=1/2d(同圆或等圆中)。

圆的初步认识的教学设计篇四

汕尾市陆河县河田镇河东小学。

丘友茜。

二0一三年八月。

汕尾市陆河县河田镇河东小学丘友茜教材:人教版数学六年级上册第四单元第一课时教学对象:小学六年级学生教材分析:

《认识圆》是在学生学过直线图形的认识和面积计算,以及圆的初步认识的基础上进行教学的。这是学习圆的周长和面积的基础,也是学生研究曲线图形的开始。教材通过对圆的研究,使学生初步认识研究曲线图形的基本方法。同时,也渗透了曲线图形与直线图形的关系,拓展了知识面。掌握圆的特征,不仅加深学生对周围事物的理解,提高解决简单实际问题的能力,也为以后学习圆柱、圆锥等知识打好坚实的基础。学情分析:

圆是一种常见的、简单的曲线圆形,在学习《认识圆》以前,六年级学生已经具备一定的生活经验,对圆有了初步的大概的感性认识,但是由于我们农村学校的小学生知识面较窄,视野不够开阔,特别是一些留守生,在缺乏父母督促学习的情况下,很难将圆的认识与生活中的数学问题联系起来,对圆的理性认识也有一定的难度。因此,在教学本课时,必须加强与实际生活的联系,加强实践操作,让学生通过折、量、画、议等手段,在动手操作中获得知识的体验,得到成功愉悦,增强学习兴趣,达到顺利完成本节课的教学内容。教学目标:

1、使学生认识圆,知道圆的各部分名称。

2、使学生掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系。

3、通过观察、操作、想象等活动,培养学生自主探究的意识,进一步发展学生的空间观念。

4、让学生体验到圆在日常生活中的应用并感受到圆的美。教学重点:理解和掌握圆的特征。教学难点、关键:

理解和掌握同圆或等圆中直径与半径的关系是本节课的难点,而理解圆的特征则是本节课的关键所在。教学方法:

以问题为主轴,以自学为主线,以探究、归纳、交流为主要学习方式。

教具准备:课件、两个大小不同的圆形纸片、尺子。教学过程设计:

一、评价游戏导入新课,板书课题。

课件出示三种“夺红旗”方阵(长方形、正方形、圆形)让学生选择一种公平站立的方案。(设计意图:让学生初步感受圆与其他平面图形的不同,同时激发学生学习的兴趣。)。

二、探索新知。

1、感受生活中的圆形物体无处不在。(设计意图:让学生体验到圆在日常生活中的应用并感受到圆的美。)。

2、探索圆的概念。

(1)复习以前学过的直线平面图形。

长方形正方形三角形平行四边形梯形。

(2)教师指出:圆也是平面图形,以上图形是由直线围成的平面图形,而圆是由曲线围成的平面图形。

(设计意图:轻松的谈话氛围,引领学生步入圆的世界。通过生活情景感受圆的美丽,激起探索圆的学习欲望。)。

3、认识圆的各部分名称和圆的特征:

a.教师提问:折过若干次后,你发现了什么?(学生说:折痕相交于圆中心的一点。)。

b.教师指出:我们把圆中心的这一点叫做圆心.用字母o表示.c.让学生找出各自圆中的交点并标上圆心o,教师在黑板圆中板书:圆心od.拿出另一个圆,让学生自己想办法找到圆心,并标出圆心o。再把找圆心的方法分享给其他同学。

(2)探索直径:请同学们观察折痕的特点:刚才把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?a.围绕以上问题学生合作交流讨论后教师指出:我们把通过圆心并且两端都在圆上的这一条线段叫做直径,直径用字母d来表示。b.教师提问:根据直径的概念想一想:圆的直径应具备什么条件?(让学生感受直径的两个条件:1.过圆心,2.两端都在圆上。)c.让学生试着在自己的圆内画出一条直径,老师板书:直径d。d.问题:试试看在你们手上的这个圆里可画多少条直径?再量一量,看看它们的长度怎样?学生动手操作,讨论交流后总结:在同一个圆里有无数条直径,所有直径的长度都相等。

(3)感受、探索半径:让学生伸出大拇指和食指,大拇指顶住圆心,食指对着圆的边缘转一圈,用心感受圆心到圆上的距离。再让学生在圆中画出一条半径。

从画半径引出半径的概念:连接圆心和圆上任意一点的线段叫做半径,半径用字母r来表示。板书:半径r(4)学生大胆设想:

在同一个圆里可以画多少条半径?所有半径的长度都相等吗?

课件演示后总结:在同一个圆里有无数条半径,所有半径的长度都相等。

(设计意图:自主探究,合作交流是新课改所倡导的重要学习方式,因此,要给学生创设一个宽松的学习氛围,让他们自主去探究。这样的设计更突出了对学的过程的重视,留给学生自主学习的空间。通过小组合作,让学生自己动手折一折、画一画、量一量,相互交流、讨论、补充、启发,得到圆的特征,不仅使学生的认识从直观具体上升到抽象,而且使学生感悟了研究数学问题的基本方法。学生在动手操作中去发现、总结圆的特征,使学生感到自己是发现者、研究者、探寻者,感受到成功的喜悦。)。

(4)总结圆心,半径,直径的概念及特征。(设计意图:《新课标》指出,数学应该是从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。通过学生自己探索发现,说说什么是圆心、半径、直径,这样的设计使他们对数学产生浓厚的兴趣和亲切感,同时能引发学生的学习动机。)。

(5)探讨:在同一个圆里,直径的长度与半径的长度又有什么关系呢?让学生从自己圆中所画的半径和直径的数据中得出结论。

教师板书并强调:在同一个园里:d=2rr=d/2。(设计意图:通过自主探究、合作交流、共同分享,理解同圆或等圆半径与直径的关系。)。

三、反馈练习,内化提高。

1、对口令:求半径或直径,同桌出题互考。

2、基础练习:让学生领悟到两端都在圆上的线段有无数条,并且长短不一,但直径是最长的。

3、判断题6道,巩固圆的特征。

4、讨论引题时的“夺红旗”游戏应用了圆的什么知识?

5、思考:车轮为什么要做成圆形的?车轴应装在哪里?如果车轮制成正方形的、椭圆形的,我们坐上去会是什么感觉呢?(设计意图:学习数学的最终目的在于应用数学解决实际问题。通过各种形式不同的练习较直观地向学生渗透圆心是定点,半径是定长的特性,使学生对刚刚形成的知识做到活学活用,帮助学生对知识的深层理解,从而培养了学生综合运用知识探索解决实际问题的能力;同时练习又注重与生活的联系,这样的练习学生乐于参与,也有实效。)。

四、全课总结,布置作业。板书:

认识圆。

圆是由曲线围成的平面图形。

圆心o直径d半径r在同一个圆里。

d=2rr=d/2。

教后反思:

圆是生活中最常见的平面图形,也是比较简单的曲线图形。在教学中充分联系学生生活实际,让学生感受日常生活中圆形的物体,并通过观察、动手操作、合作探讨等方式,使学生认识圆的特征及半径与直径的关系,整节课的设计让学生能够积极主动探究,发现问题并互相交流。

一、谈话的方式引入,让学生感受圆在生活中的应用,唤起学生已有经验的认识。告诉学生圆在一切平面图形中是最美的,激起学习圆的兴趣,让学生在轻松愉快中获得新知。

二、在教学中,引导学生用多种感官参与到知识的生成过程中。本节课在认识圆的各部分名称,理解圆的特征时,安排了让学生折一折、画一画、量一量等动手实践活动,引导学生用眼观察,动脑思考,合作探究,收到了较好的教学效果。

三、重视学生自主探究。

教学一个圆里直径、半径的特征以及两者间关系时,让学生自己画一画、量一量,发现规律,给学生充分的自主探究和交流的时间,培养学生自主学习的意识。

从总体上看,认识圆这一课,虽然知识看起来比较简单,但学生容易在概念理解上不到位产生错误。如:半径是从圆心到圆上任意一点的距离,圆上、圆内、圆外到底是哪儿必须搞清楚。每一次的反思对自己来讲,都是一次收获,当然,随着对《圆的认识》一课的进一步思考,以后对它设计会有更多的改进,但不管怎样,“让学生学有价值的数学”是我们数学教师必须天天去思考和追求的。在今后的教学中我将一如既往地不断努力,不断创新,不断反思。

圆的初步认识的教学设计篇五

教学目的:1.使学生了解圆是一种曲线图形。

2.使学生理解和掌握圆的各部分名称及圆的特征。

3.会用圆规画园。

4.培养学生的观察比较、分析推理,抽象概括等能力。

教学重点:圆的各部分名称及圆的特征。

教学难点:圆的特征。

教具准备:多媒体课件一套、圆规等。

学具准备:圆形纸片、圆规、直尺等。

教学过程:

1.复习。

(课件显示由平面图形构成的自行车示意图,根据学生的回答,同步闪亮)。

2.设疑。

你们知道自行车架为什么要做成三角形?

(根据学生回答:三角形具有稳定性,课件闪亮自行车三角形的框架部分。)。

而自行车的轮胎为什么要做成圆形的呢?

(课件闪动自行车的轮胎后圆跳出,师在黑板上贴上圆形纸片,然后学生试回答)。

3.揭题。

大家现在知道的只是其中的一些表面原因,其实这里面具有一定的科学知识,你们想知道吗?学完了这节课,我们就会知道的。(板书课题)。

4.量标。

同学们,看到课题你想知道些什么呢?

(根据生答,师概括板书:图形、名称、特征、画圆)。

(一)直观比较、了解概念。(圆)。

圆跟我们已学过的平面图形有什么不一样呢?

(课件出示,先闪动围成三角形和四边形的线段,再将围成圆的曲线用红线走了一圈。根据学生的回答,师板书:圆是曲线图形)。

你能举出日常生活中哪些物体上有圆吗?(生举例)。

(二)操作引路,感知概念(名称、特征)。

1.折圆。

请同学们拿出你们课前准备好的圆形纸片,象老师这样对折。打开,再换个方向对折、再打开,反复折几次,你可以发现什么?(有许多痕交于中间一点)。

2.量折痕。

再请同学们用直尺量一量刚才折的每一条痕的长度,你又发现了什么?(折痕长度相等)。

3.量点到圆上距离。

最后请同学们再用直尺量一量,中间这个点到圆任意一点的距离,你还可以发现什么?(距离也都相等)。

(三)自学交流,理解名称。

1.自学课本,初知名称。

同学们通过刚才动手发现圆里的知识还真不少,数学家们把这些知识都规定为不同的名称,你们想知道吗?请同学们自学课本的第4-9小节。

2.交流消化,理解名称。

(1)圆里各部分的名称有哪些?

(根据学生的回答师板书:圆心、直径、半径)。

(2)什么叫圆心?圆心就是我们刚才折圆时所发现的什么?

(3)数学家又是如何规定圆的直径的呢?

(随生答,媒体同步动画直径的过程,先后出示直径d及直径概念)。

那么,直径就是我们刚才折圆时的什么?(折痕)。

(4)什么叫半径?圆上任意一点是什么意思?(随生答,课件闪烁圆周上的许多点再动画出半径。)。

半径就是我们在量圆时所发现的什么?

(5)(课件显示出圆的圆心、直径、半径的整体图及概念,学生齐读概念一遍)。

3.练习。下面哪些是圆的半径或直径?为什么?

(四)猜想验证,概括特征。

1.分组讨论,进行猜想。

同学们,你能根据我们刚才折圆、量圆时所发现的,以及我们已学习的什么叫直径、半径来想一想、猜一猜,圆可能会有哪些特征呢?(学生分小组讨论)。

2.交流讨论,提出猜想。

请各小组把讨论情况在全班交流一下。

(根据交流情况,师板书猜想内容)。

3.各自验证,全班交流。

同学们真爱动脑筋,猜想了圆有这么多的特征。但是你们的猜想都对吗?你自己能不能想一个办法来验证一下,试试看。

(全班学生各自想法验证:有的折圆,有的量折痕,有的在圆中画直径、半径,有的量直径、半径,有的列表记录量的数据,有的嘴里在不停地唠叨着概念……)。

请同学们把你验证的方法和得出的结果告诉大家。

4.媒体演示,加深理解。

(多媒体将学生验证的圆的特征运用了旋转、重合等声像并茂的手段,进行了动态演示)。

5.学生概括,总结特征。

谁能把圆的特征用自己的语言来归纳概括一下。

(随生答,师板书:所有直径都相等,所有半径都相等,d=2,t=d/2)。

这就是我们验证出来的圆的特征,同学们同意吗?

(异口同声:同意。一生提反对意见:这些特征必须在同一个圆里才能成立。)。

哎呀,你真聪明,把大家容易疏忽的问题给提出来了,真了不起。(师边说边板书:在同一个圆里)。

6.对照验证,完善猜想。那么,你们的猜想有问题吗?(生:有,必须强调在同一个圆里)其实,你们刚才的猜想与验证,都是在自己手中同一个圆里进行折圆,量圆的,那么你们猜想对所说的圆里,就是指自己手中的同一个圆里。(师在猜想内容的"圆里"前补上"同一个")。

这样,你们的猜想内容与验证结果意思就怎么样?

(随生答,师在"猜想"与"验证"之间连线同时板书:正确)。

7.练习,填空。

(五)自我实践,学会画圆。

1.自学画法,实践画圆。

(学生结合课本108页圆的画法,边看边学会用圆规画圆)。

2.学生自己介绍画圆步骤。

(随生介绍,师分步板书:定距、定点、旋转)。

怎样定距?(学生边介绍边演示)这个圆规两脚之间的距离就是什么?(生:圆的半径)。

在画圆时,你发现固定的一点与旋转一周各是圆的什么?

3.(师揭下贴在黑板上的圆形纸片,在贴纸片的地方示范画圆,小结画圆步骤)。

1.填空。

(1)圆是平面上的一种()。

(2)左图圆内固定的一点o是这个圆的();线段ob是这个圆的(),用字母()表示;线段ac叫做圆的(),用字母()表示。

(3)在同一个圆里,直径与半径的比是()。

(4)把一个圆规的两脚张开4厘米,画一个圆,它的直径是()。

2.判断。

(1)两端都在圆上的线段叫做直径。()。

(2)圆里有无数条半径,无数条直径。()。

(3)所有的半径都相等,所有的直径都相等。()。

(4)半径决定着圆的大小,圆心决定着圆的位置。()。

(5)画直径5厘米的圆,圆规两脚间的距离是2.5厘米。()。

(6)直径6厘米的圆比半径4厘米的圆大。()。

3.操作。

学会量没有圆心的圆的直径。(课本练习二十五第1题)。

1.现在,大家一定能运用这节课所学的知识,解释一下"为什么车轮都要做成圆形,车轴应装在哪里?"。

(多媒体放完车轮分别是正方形、椭圆形、圆形的行进动画后,给学生直观给予提示,学生各抒己见,直对中心。)。

2.学了"圆的认识"这节课,你还想知道些什么?

(生甲:圆也有周长和面积吗?生乙:怎样在操场上画一个很大的圆?……)。

圆的周长和面积以后会学到的。谁见过怎样在操场上画一个很大的圆?(学生互相释疑)。

这节课你自己运用了哪些学习方法,学到了哪些知识?

1.课堂作业:练习二十五第3.4题。

2.课后实践:量自行车轮胎外直径。

圆的初步认识的教学设计篇六

《义务教育课程标准实验教科书数学(人教版)》六年级上册第56、57页。

1、通过观察思考,动手操作等活动,学生能认识圆,掌握圆的特征,理解在同圆中直径与半径的关系,并且学会用圆规正确画圆。

2、通过直观教学和动手操作,学生在充分感知的基础上,理解并形成圆的概念,培养学生的动手操作能力,观察能力,空间想象能力以及抽象概括能力,并能把所学知识运用与生活实际中。

3、通过本课,学生再一次感受到数学是与生活息息相关的。并能用圆的知识来解释生活中的简单现象。

圆的认识是小学数学第11册第四单元圆中较为重要的内容。它是学生在学过了平面直线图形的认识和圆的初步认识的基础上进行教学的,是研究曲线图形的开始,也是学生认识发展的又一次飞跃。本课内容是进一步学习圆的周长和面积的重要基础,同时对发展学生的空间观念也很重要。

注数学在学生的学习和生活中的应用,是他们感觉到数学就在自己的身边,而且学数学是有用的、必要的,从而愿意并且想学数学。对于本节课教学的圆学生在生活中有大量的接触,有了一定的知识、经验基础,同时学生具备了很强的动手操作能力,有较强的交流与表达的愿望,使课堂教学引导学生主动探究,开展小组合作学习,培养创新意识和实践能力成为可能。

1、感知并了解圆的特征和用圆规画圆。

2、掌握圆的特征,能熟练地画圆。

课件、圆规、圆形纸片、三角板。

一、创设生活情景,引入新课。

1、学生欣赏图片。

师:老师给大家带来了许多漂亮的图片,想不想看一看?(出示课件,学生边看边说)这些图片的上面有一个共同的特点你发现了吗?(上面都有圆)。

2、感受生活中的圆。

那么你能找出生活中有圆的例子吗?(生举例)。

老师也用课件出示几个生活中有圆的例子,让学生体会到生活中到处都有圆以及圆很美。

【评析:充分关注学生的经验,从贴近学生生活的情境入手,唤起学。

3、设出疑问揭示课题。

选中汽车和自行车这张幻灯片问:你知道车轮为什么设计成圆形的、而不是正方形和圆形的吗?(生答)。

关于圆的知识有很多,这节课咱们就走进圆的王国去看一看。(板书课题)。

二、认识圆及各部分名称。

1、曲线图形。

(课件出示一个圆)圆是平面图形还是立体图形?以前还学过哪些平面图形?

你能把这些平面图形分类吗?(圆是曲线图形)。

2、初步画圆。

老师徒手画圆,画的不是真正的圆,怎么才能画出真正的圆?(学生开动脑筋,想出各种方法)。

圆规是画圆的专用工具,请学生观察圆规并向同学介绍圆规各部分名称及作用。

尝试用圆规画圆,边画边思考用圆规画圆要注意什么。

老师在黑板上示范画圆。

3、认识半径和直径。

(指黑板上的圆)固定的一点在圆的中心,这个点叫做圆的圆心,圆心一般用字母o来表示。(出示课件上的圆)认识圆内的点,圆外的点,圆上的点。

师:如果把圆心和圆上的点连起来就成了一条线段,这条线段就是圆的半径。想一想半径什么样子,是连接那两个点的线段?圆上有多少个这样的点?连接圆心和圆上任意一点的线段有几条?也就是说圆的半径有无数条。

谁能用自己的话说说什么是半径?(生说,然后出示半径的定义并读一读)半径一般用字母r来表示。

现在继续画线段,这次经过圆心画一条线段,并且线段的两个端点在圆上,这样的线段叫圆的直径。想一想,直径什么样子?(过圆心,两端在圆上)这样的线段能画几条?(无数条)也就是说圆的直径有无数条。谁能用自己的话说一说什么叫直径。(生答,接着课件出示直径的定义,生齐读)直径一般用字母d来表示。

4、小练习。

知道了什么是直径和半径,下面找一找直径和半径。(课件出示)。

(1)那些线段是直径?为什么?

(2)那些是半径,哪些是直径?

你能在这个圆上(指黑板上画的圆)画出一条直径和半径吗?(一生上台画)其余学生在刚才画的圆上也画出直经和半径,并用字母标出来。

三、动手操作探究圆的特征。

圆的半径决定圆的大小,圆心决定圆的位置。

圆的初步认识的教学设计篇七

单元教材分析:

这一单元的内容是圆,在这个单元中,教材安排了“圆的认识”、“圆的周长和面积”三个具体的内容,这三个内容由易到难,层层深入。

本单元内容是在学生学过了直线图形的认识和面积计算,以及圆的初步认识的基础上进行教学的。学生从学习直线图形的知识,到学习曲线图形的知识,不论是内容本身,还是研究问题的方法,都有所变化。教材通过对圆的研究,使学生初步认识到研究曲线图形的基本方法。同时,也渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念方面来说,进入了一个新的领域。因此,通过对圆的有关知识的学习,不仅加深学生对周围事物的理解,提高解决简单实际问题的能力,也为以后学习圆柱、圆锥等知识和绘制简单统计图打好基础。

学生将在这个单元中,结合动手操作、比较、测量等多种数学活动,更深入的理解、掌握圆的特点,进一步发展空间观念。

单元教学目标:

1.学生认识圆,掌握圆的特征;理解直径半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。

2.探索圆的周长与面积的计算方法中,获得探索问题成功的体验。

3.亲历动手操作、实验观察等方法,探索圆的周长、面积的计算方法,并能运用计算方法解决生活中的一些实际问题。

4.通过以上一系列的学习活动,激发学生的学习兴趣,培养主动探索的欲望和创新精神。

5.培养学生观察、比较、想象等能力,进一步发展学生的空间观念。

单元教学重点:

1.学生认识圆,知道圆的各部分名称。

2.掌握圆的特征及在同一个圆里半径和直径的关系。

3.初步学会用圆规画圆,培养学生的作图能力。

4.亲历动手操作、实验观察等方法,探索圆的周长、面积的计算方法,并能运用计算方法解决生活中的一些实际问题。

教学目标:

1.使学生认识圆,掌握圆的各部分名称。

2.通过动手操作、实验观察探索出圆的特征及同一个圆里半径和直径的关系。

3.初步学会用圆规画圆,培养学生的作图能力。

4.培养学生观察、分析、抽象、概括等思维能力。

教学重点:

在动手操作中掌握圆的特征,学会用圆规画圆的方法。

教学难点:

理解圆上的概念,归纳圆的特征。

教材分析:

教材首先说明什么是圆,并结合周围物体说一说,这样调动了学生已有的生活经验,再通过画圆、折圆、测量等活动,展现圆的特征,其目的在于让学生通过观察、操作理解圆中的各部分关系,从而掌握圆的特征并解释生活中相关问题。

学情分析:

圆是在学生学过了直线图形以及圆的初步认识的基础上进行教学的。圆这一平面上的曲线图形,学生在生活中经常看到,它到底有什么特征呢?是本节课学生学习的重点,在学习圆的认识时,学生通过观察、操作,自己获取一些有关圆的特征的知识,这样回大大提高学生的学习兴趣,发挥学生的主体性。

教学过程:

活动一:演示操作,揭示课题。

师:一个小球,小球上还系着一段绳子,老师用手拽着绳子的一端,将小球甩起来。

1.教师提问:你们看小球画出了一个什么图形?(小球画出了一个圆)。

2.小结引入:(出示铁丝围成的圆)这就是一个圆.圆也是一种平面图形,这节课我们就来学习圆的认识。(板书课题:圆的认识)。

活动二、动手操作,探究新知。

(一)教师让学生举例说明周围哪些物体上有圆。

(二)认识圆的各部分名称和圆的特征。

1.学生拿出圆的学具。

2.教师:你们摸一摸圆的边缘,是直的还是弯的?(弯曲的)。

教师说明:圆是平面上的一种曲线图形。

3.通过具体操作,来认识一下圆的各部分名称和圆的特征。

(1)先把圆对折、打开,换个方向,再对折,再打开??这样反复折几次。教师提问:折过若干次后,你发现了什么?(在圆内出现了许多折痕)。

仔细观察一下,这些折痕总在圆的什么地方相交?(圆的中心一点)。

教师指出:我们把圆中心的这一点叫做圆心。圆心一般用字母o表示。

教师板书:圆心。

(2)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?(圆心到圆上任意一点的距离都相等)。

教师指出:我们把连接圆心和圆上任意一点的线段叫做半径,半径一般用字母r表示。(教师在圆内画出一条半径,并板书:半径)。

教师提问:根据半径的概念同学们想一想,半径应具备哪些条件?

在同一个圆里可以画多少条半径?

所有半径的长度都相等吗?

教师板书:在同一个圆里有无数条半径,所有半径的长度都相等。

教师指出:我们把通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d来表示。(教师在圆内画出一条直径,并板书:直径)。

教师提问:根据直径的概念同学们想一想,直径应具备什么条件?

在同一个圆里可以画出多少条直径?

自己用尺子量一量同一。

个圆里的几条直径,看一看,所有直径的长度都相等吗?教师板书:在同一个圆里有无数条直径,所有直径的长度都相等。

(4)教师小结:通过刚才的学习我们知道,在同一个圆里有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等。

(5)讨论:在同一个圆里,直径的长度与半径的长度又有什么关系呢?

如何用字母表示这种关系?

反过来,在同一个圆里,半径的长度是直径的几分之几?

教师板书:在同一个圆里,直径的长度是半径的2倍。

(三)反馈练习。

1.p581。

2.填表。

(四)圆的画法。

1.学生自学,看书57页。

2.学生试画。

3.学生通过试画小结用圆规画圆的方法,注意的问题。

4.教师归纳板书:1.定半径;2.定圆心;3.旋转一周。

教师强调:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚。

5.学生练习。

(五)教师提问。

为什么同学们画的圆不一样呢?什么决定圆的大小?什么决定圆的位置?教师板书:半径决定圆的大小,圆心决定圆的位置。

(六)思考:体育课上,老师想在操场画一个大圆圈做游戏,没有这么大的圆规怎么办?

活动三、实践与应用。

(一)判断。

1.画圆时,圆规两脚间的距离是半径的长度。()。

2.两端都在圆上的线段,叫做直径。()。

3.圆心到圆上任意一点的距离都相等。()。

4.半径2厘米的圆比直径3厘米的圆大。()。

5.所有圆的半径都相等。()。

6.在同一个圆里,半径是直径的。()。

7.在同一个圆里,所有直径的长度都相等。()。

8.两条半径可以组成一条直径。()。

(二)按下面的要求,用圆规画圆。

1.半径2厘米。

2.半径2.5厘米。

3.直径8厘米。

(三)怎样测量没有圆心的圆的直径?

活动四、全课小结。

这节课我们学习了什么?通过这节课的学习你有什么收获?

板书设计。

在同一个圆里有无数条半径,所有半径的长度都相等。

在同一个圆里,直径的长度是半径的2倍。半径决定圆的大小,圆心决定圆的位置。

圆的初步认识的教学设计篇八

教学目标:

1.使学生认识圆,掌握圆的各部分名称。

2.通过动手操作、实验观察探索出圆的特征及同一个圆里半径和直径的关系。

3.初步学会用圆规画圆,培养学生的作图能力。

4.培养学生观察、分析、抽象、概括等思维能力。

教学重点:

在动手操作中掌握圆的特征,学会用圆规画圆的方法。

教学难点:

理解圆上的概念,归纳圆的特征。

教材分析:

教材首先说明什么是圆,并结合周围物体说一说,这样调动了学生已有的生活经验,再通过画圆、折圆、测量等活动,展现圆的特征,其目的在于让学生通过观察、操作理解圆中的各部分关系,从而掌握圆的特征并解释生活中相关问题。

学情分析:

圆是在学生学过了直线图形以及圆的初步认识的基础上进行教学的。圆这一平面上的曲线图形,学生在生活中经常看到,它到底有什么特征呢?是本节课学生学习的重点,在学习圆的认识时,学生通过观察、操作,自己获取一些有关圆的特征的知识,这样回大大提高学生的学习兴趣,发挥学生的主体性。

教学过程:

活动一:演示操作,揭示课题。

师:一个小球,小球上还系着一段绳子,老师用手拽着绳子的一端,将小球甩起来。

1.教师提问:你们看小球画出了一个什么图形?(小球画出了一个圆)。

2.小结引入:(出示铁丝围成的圆)这就是一个圆.圆也是一种平面图形,这节课我们就来学习圆的认识。(板书课题:圆的认识)。

活动二、动手操作,探究新知。

(一)教师让学生举例说明周围哪些物体上有圆。

(二)认识圆的各部分名称和圆的特征。

1.学生拿出圆的学具。

2.教师:你们摸一摸圆的边缘,是直的还是弯的?(弯曲的)。

教师说明:圆是平面上的一种曲线图形。

3.通过具体操作,来认识一下圆的各部分名称和圆的特征。

(1)先把圆对折、打开,换个方向,再对折,再打开??这样反复折几次。教师提问:折过若干次后,你发现了什么?(在圆内出现了许多折痕)。

仔细观察一下,这些折痕总在圆的什么地方相交?(圆的中心一点)。

教师指出:我们把圆中心的这一点叫做圆心。圆心一般用字母o表示。

教师板书:圆心。

(2)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?(圆心到圆上任意一点的距离都相等)。

教师指出:我们把连接圆心和圆上任意一点的线段叫做半径,半径一般用字母r表示。(教师在圆内画出一条半径,并板书:半径)。

教师提问:根据半径的概念同学们想一想,半径应具备哪些条件?

在同一个圆里可以画多少条半径?

所有半径的长度都相等吗?

教师板书:在同一个圆里有无数条半径,所有半径的长度都相等。

教师指出:我们把通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d来表示。(教师在圆内画出一条直径,并板书:直径)。

教师提问:根据直径的概念同学们想一想,直径应具备什么条件?

在同一个圆里可以画出多少条直径?

自己用尺子量一量同一。

个圆里的几条直径,看一看,所有直径的长度都相等吗?

教师板书:在同一个圆里有无数条直径,所有直径的长度都相等。

(4)教师小结:通过刚才的`学习我们知道,在同一个圆里有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等。

(5)讨论:在同一个圆里,直径的长度与半径的长度又有什么关系呢?

如何用字母表示这种关系?

反过来,在同一个圆里,半径的长度是直径的几分之几?

教师板书:在同一个圆里,直径的长度是半径的2倍。

(三)反馈练习。

1.p581。

2.填表。

(四)圆的画法。

1.学生自学,看书57页。

2.学生试画。

3.学生通过试画小结用圆规画圆的方法,注意的问题。

4.教师归纳板书:1.定半径;2.定圆心;3.旋转一周。

教师强调:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚。

5.学生练习。

(五)教师提问。

为什么同学们画的圆不一样呢?什么决定圆的大小?什么决定圆的位置?

教师板书:半径决定圆的大小,圆心决定圆的位置。

(六)思考:体育课上,老师想在操场画一个大圆圈做游戏,没有这么大的圆规怎么办?

活动三、实践与应用。

(一)判断。

1.画圆时,圆规两脚间的距离是半径的长度。()。

2.两端都在圆上的线段,叫做直径。()。

3.圆心到圆上任意一点的距离都相等。()。

4.半径2厘米的圆比直径3厘米的圆大。()。

5.所有圆的半径都相等。()。

6.在同一个圆里,半径是直径的。()。

7.在同一个圆里,所有直径的长度都相等。()。

8.两条半径可以组成一条直径。()。

(二)按下面的要求,用圆规画圆。

1.半径2厘米。

2.半径2.5厘米。

3.直径8厘米。

(三)怎样测量没有圆心的圆的直径?

活动四、全课小结。

这节课我们学习了什么?通过这节课的学习你有什么收获?

在同一个圆里有无数条半径,所有半径的长度都相等。

在同一个圆里,直径的长度是半径的2倍。半径决定圆的大小,圆心决定圆的位置。

圆的初步认识的教学设计篇九

1、使学生在观察、操作、画图等活动中感受并发现圆的有关特征,知道什么是圆的圆心、半径和直径;能借助工具画图,能用圆规画指定大小的圆。

2、让学生经历从猜想到验证的过程,在活动中进一步积累认识图形的学习经验,增强空间观念,发展数学思考。

在观察、操作、画图等活动中感受并发现圆的特征。

教学难点:

归纳圆的特征,并能准确画出指定大小的圆。

一、情景引入。

出示一组生活中物体的图片,让学生欣赏。(如太阳、圆月、汽车的车轮、呼拉圈、光盘、钟面等)。

1、刚才欣赏到的那些漂亮图片中的物体是什么形状?

2、在我们的生活中,就在我们的身边,还有那些地方能看到圆?

(学生衣服上的纽扣、身上的硬币、桌子里的杯子等等)。

请学生用手指一指这些物体上的圆,并用手摸一摸,有什么感觉?

3、看来,在我们的大自然中、生活中圆是无处不在,今天就让我们一起来了解这个虽然不熟悉但和我们处处在一起的圆。(板书:圆的认识)。

二、教学新知,初步画圆。

1、刚才看了那么多的圆,说了那么多的圆。接下来请大家用你能想到的办法自己动手画一个圆。

2、请学生交流画圆的方法。如借助圆形的物体画,还有书上讲到的方法或是用圆规画)。

3、通过刚才的看圆、说圆与画圆,你觉得圆与以前学过的平面图形有什么不同?

总结:以前学过的平面徒刑都是由线段围成的,圆是由曲线围成的,圆比较光滑,没有角。

4、大家介绍了很多画圆的方法。为了使我们能画出任意大小的圆来,勤劳、智慧的人们制成了专门用来画圆的工具――圆规。

三、认识圆规,掌握用圆规画圆的方法。

1、认识圆规。

让学生取出课前准备好的圆规,一起认识圆规的的构成并介绍圆规两脚的功能:圆规有两只脚,一只是针尖,另一只脚是用来画圆的笔,两只脚可以随意叉开。

2、尝试画圆。

1)你能试着用圆规画一个圆吗?学生独立画圆。

2)刚才老师转了转,发现有些同学要么没画好,要么画出来的不圆,下面我们一起看大屏幕,注意观察如何使用圆规画圆。(使用实物投影仪,教师示范使用圆规画圆)。

3)说说,老师刚才是如何使用圆规画圆的?学生回答,教师总结并板书:两脚叉开――固定针尖――旋转成圆。

4)学生按照这个方法再练习画一个圆,同时思考:通过两次画圆,应该注意什么?

总结:针尖要固定,不能移动;两脚间的距离保持不变;要旋转一周。

5)练习画一个两脚之间距离是2厘米的圆。

四、学习圆的各部分名称及特征。

1、认识圆心、半径、直径。

1)教学圆心:刚才我们画圆时,针尖固定的这个点,我们把它叫做圆心,用字母o来表示。找出你刚才所画的圆的圆心,并标上字母o。同桌相互检查一下,有没有标对。

2)教学半径:连接圆心和圆上一点的线段是半径,用字母r表示。指导学生画一条圆的半径,并标上字母。在我们用圆规画圆时,这个半径就是指什么?(两脚之间的距离)因此圆的大小就是由圆的半径决定的。

让学生联系画一个半径是4厘米的圆,画出一条半径,标上圆心和半径的字母。向全班展示自己的圆,看一看,自己画的、标的还有什么地方部不对。

3)教学直径。

出示一个画有一条直径的圆,让学生观察这条线段的位置有什么特点?

总结:像这样通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。

同学们你们画的圆也有直径,请你画一条圆。

4)闭好眼睛,回想标圆心、画半径与直径的方法。

2、练习,完成练一练的第1题。

说说哪些不是半径或直径,为什么?

3、研究圆的特点。

我们已经认识了圆心、半径和直径,现在我们就继续来研究圆的特点。

1)出示一张圆形的纸,你能找到它的圆心吗?(把圆对折两次)。

通过对折,你还发现圆有什么地方比较特别吗?(对折后能完全重合,是轴对称图形)。

在同一个圆里,半径的长度都相等吗?直径呢?

同一个圆的直径和半径有什么关系?

圆是轴对称图形吗?它有几条对称轴?

3)学生汇报回答上述四个问题,教师适当引导:前面三个问题为什么要强调在同一个圆里?可以画无数条半径和直径,你是怎么知道的?你能用字母来表示半径与直径之间的关系吗?(板书:d=2r)。

4)通过刚才的讨论和交流,我们掌握了圆的特征,谁来总结一下圆的特征。

五、巩固练习。

1、练习十七的第1题。

填写表格,并说一说半径与直径之间有什么关系?

2、练一练的第2题。

画一个直径是5厘米的圆,并用字母o、r、d分别表示出它的圆心、半径和直径。

教师提问:使用圆规画一个直径是5厘米的圆,先要确定什么?(求出半径,也就是两脚之间的距离)。

3、判断题。

1)圆有无数条对称轴。

2)直径是半径的2倍。

3)画一个直径为4厘米的圆,圆规两脚间的距离为4厘米。

4)圆的位置由圆心决定。

5)两脚间的距离越大,画出的圆就越大。

六、欣赏生活中的圆。

谈话:瞧,生活中,也蕴含着丰富的数学规律呢。其实,在我们人类生活的每一个角落,圆都扮演着重要的角色,并成为美的使者和化身。让我们一起来欣赏。

师:感觉怎么样?

师小结:而这,不正是圆的魅力所在吗?

七、全课总结。

谈话:其实短短的一节课,要想真正了解圆还不太容易。那么就让我们从今天起,走进历史,走进文化,走进圆的世界吧!

圆的初步认识的教学设计篇十

1.使学生认识圆,知道圆的各部分名称.

2.使学生掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系.

3.初步学会用圆规画圆,培养学生的作图能力.

4.培养学生观察、分析、抽象、概括等思维能力.

理解和掌握圆的特征,学会用圆规画圆的方法.

理解圆上的概念,归纳圆的特征.

(一)教师用投影出示下面的图形。

1.教师提问:这是我们以前学过的哪些平面图形?这些图形都是由什么围成的?

2.教师指出:我们把这样的图形叫做平面上的直线图形.

(二)教师演示。

一个小球,小球上还系着一段绳子,老师用手拽着绳子的一端,将小球甩起来.

1.教师提问:你们看小球画出了一个什么图形?(小球画出了一个圆)。

(一)教师让学生举例说明周围哪些物体上有圆.

(二)认识圆的各部分名称和圆的特征.

1.学生拿出圆的学具.

2.教师:你们摸一摸圆的边缘,是直的还是弯的?(弯曲的)。

教师说明:圆是平面上的一种曲线图形.

3.通过具体操作,来认识一下圆的各部分名称和圆的特征.

(1)先把圆对折、打开,换个方向,再对折,再打开……这样反复折几次.

教师提问:折过若干次后,你发现了什么?(在圆内出现了许多折痕)。

仔细观察一下,这些折痕总在圆的什么地方相交?(圆的中心一点)。

教师指出:我们把圆中心的这一点叫做圆心.圆心一般用字母表示.

教师板书:圆心。

(2)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?

(圆心到圆上任意一点的距离都相等)。

教师指出:我们把连接圆心和圆上任意一点的线段叫做半径,半径一般用字母表示.(教师在圆内画出一条半径,并板书:半径)。

教师提问:根据半径的概念同学们想一想,半径应具备哪些条件?

在同一个圆里可以画多少条半径?

所有半径的长度都相等吗?

教师板书:在同一个圆里有无数条半径,所有半径的长度都相等.

教师指出:我们把通过圆心并且两端都在圆上的线段叫做直径.直径一般用字母来表示.(教师在圆内画出一条直径,并板书:直径)。

教师提问:根据直径的概念同学们想一想,直径应具备什么条件?

在同一个圆里可以画出多少条直径?

自己用尺子量一量同一个圆里的几条直径,看一看,所有直径的长度都相等吗?

教师板书:在同一个圆里有无数条直径,所有直径的长度都相等.

(4)教师小结:通过刚才的学习我们知道,在同一个圆里有无数条半径,所有半径的。

长度都相等;有无数条直径,所有直径的长度也都相等.

(5)讨论:在同一个圆里,直径的长度与半径的长度又有什么关系呢?

如何用字母表示这种关系?

反过来,在同一个圆里,半径的长度是直径的几分之几?

教师板书:在同一个圆里,直径的长度是半径的2倍.

(三)反馈练习.

1.用彩色笔标出下面各圆的半径和直径.

2.填表.

r(米)。

0.241.422.6。

d(米)。

0.861.04。

(四)圆的画法.

根据圆心到圆上任意一点的距离都相等这一特征,我们可以用圆规来画圆.

1.学生自学。

2.教师示范画圆.

3.教师归纳板书:1.定半径;2.定圆心;3.旋转一周.

教师强调:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚.

4.学生练习。

(五)教师提问。

为什么同学们画的圆不一样呢?什么决定圆的大小?什么决定圆的位置?

教师板书:半径决定圆的大小,圆心决定圆的位置.

(六)思考:体育课上,老师想在操场画一个大圆圈做游戏,没有这么大的圆规怎么办?

这节课我们学习了什么?通过这节课的学习你有什么收获?

(一)判断。

1.画圆时,圆规两脚间的距离是半径的长度.()。

2.两端都在圆上的线段,叫做直径.()。

3.圆心到圆上任意一点的距离都相等.()。

4.半径2厘米的圆比直径3厘米的圆大.()。

5.所有圆的半径都相等.()。

6.在同一个圆里,半径是直径的.()。

7.在同一个圆里,所有直径的长度都相等.()。

8.两条半径可以组成一条直径.()。

(一)按下面的要求,用圆规画圆.

1.半径2厘米.

2.半径2.5厘米.

3.直径8厘米.

(二)怎样测量没有圆心的圆的直径?

圆的初步认识的教学设计篇十一

理解和掌握圆的特征。

纸、剪刀、圆规、课件。

(一)、创设情景,激发兴趣。

1、(大屏幕展示高年级同学课间投篮比赛情境图)。

2、师质疑:你们认为安排这样的队形公平吗?大家有什么好的建议?

3、生自由回答,师相机点拨。

4、师:今天我们就来学习有关圆的知识。(板书:圆的认识)。

(二)、恰当引导,自主学习。

1、师:你们认为圆和我们以前学过的平面图形有什么区别?

2、(师板书:圆是一种由曲线围成的封闭图形)。

3、生齐读三遍。理解意思。

(三)、师生交流,感受新知。

1、找身边的圆。

2、师:(出示教具圆规)这是什么?它表面上有圆吗?(生边看边答。)。

3、在你的纸上画一圆。

4、师抽生在黑板上画圆。

(1)没成功:他为什么没画成功?(1是没有固定好有针的那个脚;2是没固定好圆规两脚间的距离;3是可能不太好旋转;4是黑板比较滑,不太好固定)。

5、师示范画圆。

师:刚才同学们总结得很好,看来,用一只手固定住圆规的针尖很关键。看老师画。

师:我们把……统称为圆上【板书:圆上】。

师:只能画这一条吗?生:还能再画!

师:再画一条。还能再画吗?再画一条。还能画吗?到底能画多少条?

师:所画出来的表示圆规两脚间距离的这几条线段,一个端点都在哪?另一个端点呢?

生:一个端点都在圆心,另一个端点都在圆上。

师:我们给这样的线段起个名字吧!

师:【板书:半径(r)】半径一般用字母r表示,在你的圆上标上r。谁能用自己的话说一说什么叫半径。(一个端点在圆心,另一个端点在圆上的线段就叫半径。)。

师:在同一个圆里,半径有多少条?长度怎样?

生:在一个圆里,半径有无数条,长度都相等。

师:既然半径有无数条,那么在围成圆的这条曲线上,像这样的端点能找出多少个?

生:能找出很多(无数)个。

师:(在三个点的旁边紧密地多点几个点)这行吗?

师:正是这无数个点紧紧地手拉手,靠在一起,连接成一条完美的曲线,围成了圆。

师:请同学们拿出剪刀,剪下你所画的圆。

生:一条折痕。【痕迹、印子、折痕】。

师:我们把对折产生的这条线段、这条痕迹统称为折痕。

师:原本平展的圆上,多了很多很多的折痕,在这些折痕里藏着许多许多关于圆的奥秘,同学们想发现吧?请同学们在4人小组里围绕折痕,展开讨论,充分发表自己的见解,然后由组长记下“我们的发现”。汇报发现的`时候,由组长上来发言,组员可以补充。但每一组只能用一句话汇报一个自己认为最精彩的发现,别的组发表过的观点,其他组便不再重复,开始讨论。

1、(小组合作,讨论问题)。

2、各小组汇报讨论结果。

(四)、巩固练习,问题解决。

1、判断直径、半径。

2、[媒体]填一填:

3、[媒体]再请你辩一辩:下面各句话对吗?

4、画圆。

请你画一个半径为4厘米的圆。

师:下面我们还将面临3个实际问题的挑战,同学们敢接受挑战吗?

问题1、你能测量出1圆硬币的直径吗?(参考用工具:直尺,一副三角板)。

问题2、你能在地面上画一个半径1米的圆吗?(参考用工具:绳子、粉笔)。

问题3、车轮都做成圆的,车轴装在哪里?为什么?(参考用工具:自行车)。

师:我已经发现,很多同学都笑了,这说明他心里有底了。每个同学选择一个自己最感兴趣的课题来研究。

(五)、课堂小结,课外延伸。

发挥想象,灵巧操作。

1、给你两枚钉子和一条一定长度的绳子,你有办法画出圆来吗?

〈2〉、任意画出一个圆,再标出圆心、半径、直径。(字母表示。

师:学完这节课,同学们还有什么想法吗?圆里面藏着无穷无尽的奥秘,等待着同学们去研究和发现!愿我们的学习和生活都像圆那样完美!

圆的初步认识的教学设计篇十二

地位学情:人教版小学数学第十一册圆的认识是在学生认识了长方形、正方形、三角形等平面图形后所要认识的小学阶段的最后一种图形。学生认识圆应把握它的特点,借助多媒体使学生体会到圆所蕴涵的美学特征与文化积淀。本课教学针对的是六年级学生,他们已初步具有处理信息和网络上自主学习的能力,特别是结合远程多媒体教学使这成为现实。信息技术与课程整合,学生是学习过程的主体,远程多媒体教育网络成为学生学习的重要平台。

理念设想:学生不是一张白纸,有着丰富的生活体验和知识积累。数学教学应适合学生认知水平,建立在学生主观愿望及知识经验上。提供充分活动和交流机会,引导学生自主探索,理解掌握基本的数学知识技能思想及方法经验,加强数学与生活的联系,彰显美学价值,让学生感受到圆与人们的生活、建筑、人文艺术和实际应用等息息相关。

(二)、目标设置。

根据数学课程标准与本课教材特点以及学生学情和设计理念,结合学生实际情况制定以下教学目标。

1、知识目标:认识圆各部分名称,掌握圆的特征和画圆的方法。

2、技能目标:在已有知识经验基础上,熟练掌握用圆规画圆,培养学生实际操作能力。

3、情感目标:通过生动画面、图像、演示让学生感受生活中圆的存在与作用,感受其神奇与蕴含的美学价值。

根据本课的设计理念和目标设置确定本课的`教学重点即通过多媒体认识圆各部分名称,掌握圆的特征。

教学难点在于掌握圆的特征,能熟练地画圆。

(三)、教法、学法。

根据本课的目标设置和重难点特制定。

1、教法:以学定教、合作探究如情景陶冶法等。

2、学法:顺学而导、互助学习如师生互动学习法等。

二、教学流程。

(一)、情景导入。

通过多媒体、课件演示,创设情景,展现大自然中随时都有圆的存在。让学生感受到圆的神奇进而激发学生的学习兴趣,顺利地导入到新课之中。(课件展示,宇宙星际、其它星球、地球、月亮和生活中的日落等美景以及大自然中的物体如鲜花等)。

(二)、探究新知。

1、创作圆:

学生在准备好的纸上作圆,方法工具不限。同时教师课件演示一两种作圆的过程方法,以启迪学生。)。

2、学生完成后我会提问:

r表示。通过圆心且两端都在圆上的线段叫做直径,用字母d表示。(课件圆的画面及各部分的名称展示)。

(2)同时根据课件图片请学生分析圆上、圆内、圆外和圆心各指什么?我再适时讲解加深学生的理解。

3、学生探索。

(1)此时我会播放课件--以半径旋转并标有直径的圆,请学生观察分析并且提问你发现了什么?学生会发现直径是半径的两倍等。

给答对的学生给予奖励、以激励学生的积极性。(同时课件展示两个分别以半径和直径旋转的圆)。

4、知识延伸。

(1)我会向学生提问:刚才同学们画圆时都用到了些什么工具和方法啊?和大家交流借鉴一下经验好吗?学生:学生会说出不同的方法和工具我再课件播放(可能会用到的工具如硬币、线、笔、圆规等)。

(2)此时我会装作很着急的样子向学生问:老师想画一个直径8厘米的圆可不可以用一块钱的硬币哦?为什么啊?生:学生会从大小不符合等方面来说明不行。此时我又会说那我要是想画一个半径6厘米的圆又该怎么办呢?为什么啊?生:可能会比较为难(我再适时从大小符合以及方便等方面慢慢导出学生说出用圆规画)。

(3)接下来我再小结得出画大小不同的圆我们通常用圆规来画并播放课件圆规确定半径的方法以及圆规画圆的方法的重复过程(并得出结论用圆规画圆可以画出大小不同的圆、也可以得到我们想要的圆,再次论证得出半径越大,圆就越大。半径越小、圆就越小)。

(三)、知识反馈。

1、请同学们用圆规画出一个半径5厘米的圆并用字母标出圆心、半径和直径,画好之后相互检查以巩固刚才所学的方法。

2、测试、学生举手回答并说出理由(课件展示)。

a、

图(1)中直径是()。

(图1)半径是()。

b.圆规两脚分开距离是4厘米,画出的圆直径是()(图2)。

c.图(2)中长方形的长是(),宽是()。

3、解释生活中的圆的相关运用如:

(1)车轮为什么是圆的?

(2)飞标标靶的靶圈为什么是圆的?我会适时引导加以巩固。

(四)、知识拓展。

1、史料连接:有关圆的知识、名言、名句以及网页链接等,通过课件展示使学生体会到圆所蕴涵的历史与文化积淀、激发学生学数学、用数学的激情以及在以后的数学学习中更加用心。(课件展示)。

2、圆与生活:(课件展示圆与人们的生活如鲜花、日落、小桥流水、雄壮美丽的建筑物以及日常生活中常见的一些体现有圆的应用的物体等等,使本课知识得以拓展,学以致用,体现数学来源于生活而又返回到生活中去,使学生感受到学数学、用数学,数学无处不在。)。

三、板书设计。

无数条r=d/2d=2r。

直径半径。

圆的初步认识的教学设计篇十三

出示一组生活中物体的图片,让学生欣赏。(如太阳、圆月、汽车的车轮、呼拉圈、光盘、钟面等)。

1、刚才欣赏到的那些漂亮图片中的物体是什么形状?

2、在我们的生活中,就在我们的身边,还有那些地方能看到圆?

(学生衣服上的纽扣、身上的硬币、桌子里的杯子等等)。

请学生用手指一指这些物体上的圆,并用手摸一摸,有什么感觉?

3、看来,在我们的大自然中、生活中圆是无处不在,今天就让我们一起来了解这个虽然不熟悉但和我们处处在一起的圆。(板书:圆的认识)。

1、刚才看了那么多的圆,说了那么多的圆。接下来请大家用你能想到的办法自己动手画一个圆。

2、请学生交流画圆的方法。如借助圆形的物体画,还有书上讲到的方法或是用圆规画)。

3、通过刚才的看圆、说圆与画圆,你觉得圆与以前学过的平面图形有什么不同?

总结:以前学过的平面徒刑都是由线段围成的,圆是由曲线围成的,圆比较光滑,没有角。

4、大家介绍了很多画圆的方法。为了使我们能画出任意大小的圆来,勤劳、智慧的人们制成了专门用来画圆的工具――圆规。

1、认识圆规。

让学生取出课前准备好的圆规,一起认识圆规的的构成并介绍圆规两脚的功能:圆规有两只脚,一只是针尖,另一只脚是用来画圆的笔,两只脚可以随意叉开。

2、尝试画圆。

1)你能试着用圆规画一个圆吗?学生独立画圆。

2)刚才老师转了转,发现有些同学要么没画好,要么画出来的不圆,下面我们一起看大屏幕,注意观察如何使用圆规画圆。(使用实物投影仪,教师示范使用圆规画圆)。

3)说说,老师刚才是如何使用圆规画圆的?学生回答,教师总结并板书:两脚叉开――固定针尖――旋转成圆。

4)学生按照这个方法再练习画一个圆,同时思考:通过两次画圆,应该注意什么?

总结:针尖要固定,不能移动;两脚间的距离保持不变;要旋转一周。

5)练习画一个两脚之间距离是2厘米的圆。

1、认识圆心、半径、直径。

1)教学圆心:刚才我们画圆时,针尖固定的这个点,我们把它叫做圆心,用字母o来表示。找出你刚才所画的圆的圆心,并标上字母o。同桌相互检查一下,有没有标对。

2)教学半径:连接圆心和圆上一点的线段是半径,用字母r表示。指导学生画一条圆的半径,并标上字母。在我们用圆规画圆时,这个半径就是指什么?(两脚之间的距离)因此圆的大小就是由圆的半径决定的。

让学生联系画一个半径是4厘米的圆,画出一条半径,标上圆心和半径的字母。向全班展示自己的圆,看一看,自己画的、标的还有什么地方部不对。

3)教学直径。

出示一个画有一条直径的圆,让学生观察这条线段的位置有什么特点?

总结:像这样通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。

同学们你们画的圆也有直径,请你画一条圆。

4)闭好眼睛,回想标圆心、画半径与直径的方法。

2、练习,完成练一练的第1题。

说说哪些不是半径或直径,为什么?

3、研究圆的特点。

我们已经认识了圆心、半径和直径,现在我们就继续来研究圆的特点。

1)出示一张圆形的纸,你能找到它的圆心吗?(把圆对折两次)。

通过对折,你还发现圆有什么地方比较特别吗?(对折后能完全重合,是轴对称图形)。

在同一个圆里,半径的长度都相等吗?直径呢?

同一个圆的直径和半径有什么关系?

圆是轴对称图形吗?它有几条对称轴?

3)学生汇报回答上述四个问题,教师适当引导:前面三个问题为什么要强调在同一个圆里?可以画无数条半径和直径,你是怎么知道的?你能用字母来表示半径与直径之间的关系吗?(板书:d=2r)。

4)通过刚才的讨论和交流,我们掌握了圆的特征,谁来总结一下圆的特征。

1、练习十七的第1题。

填写表格,并说一说半径与直径之间有什么关系?

2、练一练的第2题。

画一个直径是5厘米的圆,并用字母o、r、d分别表示出它的圆心、半径和直径。

教师提问:使用圆规画一个直径是5厘米的圆,先要确定什么?(求出半径,也就是两脚之间的距离)。

3、判断题。

1)圆有无数条对称轴。

2)直径是半径的2倍。

3)画一个直径为4厘米的圆,圆规两脚间的距离为4厘米。

4)圆的位置由圆心决定。

5)两脚间的距离越大,画出的圆就越大。

谈话:瞧,生活中,也蕴含着丰富的数学规律呢。其实,在我们人类生活的每一个角落,圆都扮演着重要的角色,并成为美的使者和化身。让我们一起来欣赏。

师:感觉怎么样?

师小结:而这,不正是圆的魅力所在吗?

谈话:其实短短的一节课,要想真正了解圆还不太容易。那么就让我们从今天起,走进历史,走进文化,走进圆的世界吧!

圆的初步认识的教学设计篇十四

1、认识圆的特征,知道什么是圆心、半径和直径。能正确判断一个图形是不是圆,并说明理由。

2、运用不同的思想方法认识:在同一个圆(或等圆)里,半径的长度都相等;直径的长度都相等并且等于半径的两倍;知道圆是轴对称图形,有无数条对称轴,能画出加圆的对称轴。

3、能用圆规画圆,知道半径(直径)决定圆的大小,圆心决定圆的位置。

4、了解圆在生产、生活和科学技术的应用,并能用圆的特征解释。

:掌握圆的特征,会画圆。

:讲授法,探究法。学生学法:自学法、观察法,探究法。

:圆片,三角板,ppt课件,圆规,尺子,白纸,剪刀,细线等。

一、再现场景,导入新课。

圆和我们以前学过的平面图形有什么不同?

二、师生合作学习新知。

(一)试一试。

1、同学们能用手中的材料试着画一个圆吗?

2、交流反馈。

3、既然同学们能用这么多方法能画出圆,把自己的方法与别人的比较一下,能发现那种方法适用性更广一些?从而引导出用圆规画圆。介绍圆规的组成部件。

(二)说一说。

1、请用圆规画圆的同学谁能把你的方法给老师和同学们说一下。

2、生说,教师在黑板上板画。适时规范学生的语言。(先将针尖和笔尖张开一定距离;然后将针尖固定在一个点上;最后使笔尖落在纸上,将圆规旋转一周,毛尖就画出了一个圆。)。

3、其它学生用刚才那个同学的方法在纸上自由画一个圆。

(三)学一学。

1、请同学们打开课本第17页例2下面这部分内容自学一遍。把你新学到的知识勾画出来,并重点理解一下。最后在你刚才画的一个圆里标出圆心、半径和直径。

2、学生自学,教师巡视,适时收集信息为下面反馈做好准备。

3、学生交流,边说边在自己画的圆中指出相应位置。教师适时追问,刚才针尖的位置是什么,它有什么作用?针尖与笔尖的距离是什么?它决定圆的什么?教师根据学生的回答用一个绳子系上一支粉笔头甩出不同大小的圆,加深学生理解。当学生说出圆心、半径和直径的概念不够规范时要用书上的规范用语,并通过重点词语理解概念。教师在追问及学生回答时适时板书。

三、独立探究,获取新知。

1、请同学们拿出准备好的圆片独立探究。出示探究目标(课件出示):

1将自己手中的圆用不同的方式找到圆心、半径和直径并做好标识。(学生找圆心时若有困惑可适时引导:我发现有个同学真聪明,他将手中的圆对折几次后就很快地找到了圆心,学生们试试看。)。

2在同一个圆中,有多少条半径?这些半径的长度之间有什么关系?你是怎样得到的?

4圆是不是轴对称图形?若是,它有多少条对称轴?能画出其中的一条吗?目标出示后,学生一定要认真读,明确要求,然后可以选择自己喜欢的一个或几个问题进行探究。教师巡视,适时指导调控时间。

2、学生交流反馈。教师适时板书。

四、介绍圆的历史。

说起中国古代的圆,下面的这幅图案还真得介绍给大家(出示图),认识吗?

想知道这幅图是怎么构成的吗?

原来它是用一个大圆和两个同样大的小圆组合而成的(出示图)。现在,如果告诉你小圆的半径是3厘米,你又能知道什么呢?(学生说)。

师:看来,只要我们善于观察,善于联系,我们还能获得更多有用的信息。

五、解释与应用。

1、基本练习(制成课件)。

2、解释现象。

车轮是绕着轴承转动,轴承的位置在什么地方?为什么?

简单的自然现象中,有时也蕴含着丰富的数学规律呢。至于其他一些现象中又为何会出现圆,当中的原因,就留待同学们课后进一步去调查、去研究了。

其实,又何止是大自然对圆情有独钟呢,在我们人类生活的每一个角落,圆都扮演着重要的角色,并成为美的使者和化身。让我们一起来欣赏――(课件展示)。

六、总结与反思。

1、请同学们将本节课所学知识整理一下,用一两句话说说你这节课最大的收获是什么?

2、教师总结:西方数学、哲学史上历来有这么种说法,上帝是按照数学原则创造这个世界的。对此,我一直无从理解。而现在想来,石子入水后浑然天成的圆形波纹,阳光下肆意绽放的向日葵,天体运行时近似圆形的轨迹,甚至于遥远天际悬挂的那轮明月、朝阳而所有这一切,给予我们的不正是一种微妙的启示吗?至于古老的东方,圆在我们身上遗留下的印痕又何尝不是深刻而广远的呢。有的说,中国人特别重视中秋、除夕佳节;有人说,中国古典文学喜欢以大团圆作结局;有人说,中国人在表达美好祝愿时最喜欢用上的词汇常常有圆满美满而所有这些,难道就和我们今天认识的圆没有任何关联吗?那就让我们从现在起,从今天起,真正走进历史、走进文化、走进民俗、走进圆的美妙世界吧!

圆的初步认识的教学设计篇十五

1.引导学生在观察、画圆、测量等活动中感受并发现圆的有关特点,知道什么是圆心、半径和直径,能用圆规画指定大小的圆。

2.在活动中,感受圆与其它图形的区别,沟通它们的联系,获得对数学美的丰富体验,提升学生对数学文化的认同。

(一)在活动中整体感知。

1.思考:如何从各种平面图形中摸出圆?

2.操作并体会:圆与其它图形有怎样的区别?在交流中整体感知圆的特征。

(二)在操作中丰富感受。

1.交流:圆规的构造。

2.操作:学生尝试画圆,交流中归纳用圆规画圆的一般方法。

3.体会(学生第二次画圆):如果方法正确,为什么用圆规画不出其它的曲线图形?

4.引导(教师示范画圆):使学生将思维聚焦于圆规两脚之间的距离,体会到圆规两脚距离的恒等,恰是“圆之所以为圆”的内在原因。

(三)在交流中建构认识。

1.引导:引导学生将上述距离画下来,由此揭示圆心及半径,进而介绍各自的字母表示。

2.思考:半径有多少条、长度怎样,你是怎么发现的?

3.概括:介绍古代数学家的相关发现,并与学生的发现作比较。

4.类比:学生尝试猜直径,进而引导学生借助类比展开思考,发现直径的特征,并提出同一圆中直径与半径的关系。

5.沟通:圆的内部特征与外部形象之间具有怎样的有机联系?

(四)在比较中深化认识。

2.沟通:这些正多边形与圆这一曲线图形之间又有着怎样的内在联系?

(五)在练习中形成结构。

1.寻找:给定的圆中没有标出圆心,半径是多少厘米?

2.想象:半径不同,圆的大小会怎样?圆的大小与什么有关?

3.猜测:不用圆规,还可能怎样画出一个圆?在交流中进一步丰富学生对半径、直径之间关系的认识。

4.沟通:用圆规如何画出指定大小的圆?

(六)在拓展中深化体验。

1.渗透:在与直线图形的对比中,揭示圆的旋转不变性。

2.介绍:呈现直线图形旋转后的情形,再一次引导学生感受圆与直线图形的联系,体会圆与旋转的内在关联,丰富对圆这一曲线图形内在美感的认识。

圆的初步认识的教学设计篇十六

1、给合生活实际,通过观察、操作等活动认识圆,认识到同一个圆中半径都相等、直径都相等,体会圆的特征及圆心和半径的作用,会用圆规画圆。

2、通过观察、操作、想象等活动,发展空间观念。

重点:在观察、操作中体会圆的特征。知道半径和直径的概念。

难点:圆的特征的认识及空间观念的发展。

教具:教学圆规、电化教具、课件。

一、观察思考。

1、(呈现教材套圈游戏中的第一幅图)这些小朋友是怎么站的?在干什么?你对他们这种玩法有什么想法吗?(从公平性上考虑)得到:大家站成一条直线时,由于每人离目标的距离不一样导致不公平。

2、(呈现教材套圈游戏中的第二幅图)如果大家是这样站的,你觉得公平吗?为什么?得到:大家站成正方形时,由于每人离目标的距离也不一样导致也不公平。

3、为了使游戏公平,你们能不能帮他们设计出一个公平的方案?(学生思考)学生想到圆后,出示第三幅图,提问:为什么站成圆形就公平了呢?(每人离目标的距离都一样)。

4、上面我们接触了三种图形-----直线、正方形、圆。其中圆是有点特殊的,你能说说圆与正方形等图形的不同之处吗?举出生活中看到的圆的例子。

二、画圆。

1、你们谁能画出圆来吗?动手试一试。

2、谁来展示一下自己画的圆,并说说你是怎样画的?画的时候要注意什么?其他同学有想法可以补充。

3、思考:以上这些画法中有什么共同之处?注意的问题你是怎么想到的?(固定一个点和一个长度,引出圆心和半径)。

三、认一认。

1、教师边画圆边讲概念。(概念讲解一定要结合图形,并要举一些反例)强调:圆心是一个点,半径和直径是线段。

2、半径和直径的辨认。

四、画一画,想一想。

径呢?(放动画)。

2、以点a为圆心画两个大小不同的圆。

3、画两个半径都是2厘米的`圆。

五、应用提高。

讨论:圆的位置和什么有关系?圆的大小和什么有关系?

六、作业。

1、教材第5页练一练。

2、在平面上先确定两个不同的点a和b,再画一个圆,使这个圆同时经过点a和点b(就是这两个点都在所画的圆上),这样的圆能画几个?(提高题)。

圆的初步认识的教学设计篇十七

师:今天上课我们学什么?大声地说“学什么”

师:从哪里看到的?只给我看,

生指屏幕。

师:屏幕上有,还有呢?

师:说,哪有?

师:没错,圆片,还有吗?

生:圆规。

生齐:想。

师出示一个信封,摸出一个圆片,师:是圆吗?

生:是。

生齐:有。

师:好,现在看谁的反应最快?

师从信封里摸出一个长方形。

生:长方形。

师:男孩的反应快,状态也不错。

师从信封里摸出一个正方形。

生:正方形。

师:还有一个图形。

师从信封里摸出一个三角形。

生:三角形。

师:猜猜还有吗?

师从信封里摸出一个平行四边形。

生:平行四边形。

师从信封里摸出一个梯形。

生:梯形。

师:行了行了,小朋友们,都别你们猜到了。

教师课件演示各种图形,

师;同学们能不能从各种图形中把圆摸出来?你觉得有难度吗?

生齐:没有。

师:为什么?

生:因为圆是由曲线围成。

师:而其他图形呢?

生:都是由直线,哎!线段围成。

师:同意吗?

师:再仔细看看,正因为这些图形都是由线段围成的,所以他们都有什么?

生:角。

师:圆有角吗?

生:没有。

师:所以圆特别的?

生:光滑。

师:说的真好。

生齐:曲线。

师:给它一个名称。

生:曲线图形。

师:曲线图形,行了,现在让你们再直线图形中将圆这个唯一的曲线图形摸出来,难不难?

生齐:不难。

师:谁让你们聪明呢?还有难的。

师出师一个不规则图形。

师:它也是有曲线围成的吧?弯弯曲曲的。那么你们会不会把它也摸出来?

生齐:不会。

师:为什么?

生齐:丰满。

师:嘿!瞧,还有一个。

师出示一个椭圆,

生:不会,

师:为什么?

师利用学具演示,师:因为它这样看上去扁扁的,这样看上去……。

生:瘦瘦的。

师:瘦瘦的。圆呢?

教师出示圆形教具,转动。

师:怎么样?

生:一样。

师:怎么看到的一样?

师:好了小朋友们,现在从这些图形里把圆摸出来难不难?口说无凭,谁愿意上来试试?

行,就你吧,近水楼台。

师:咱们协商一下,这些图形我就不放进信封里去了,要是放进去咱们同学还看得见吗?

生:看不见了。

生:不是。

师:可以吗?

生齐:可以。

师:你闭上眼睛,你能做到吗?其他同学你们能出声吗?

生:不能。

生齐:ok!

师:好,伸出你最拿手的一只手,右边,准备好了吗?

生:准备好了。

生1:不是.

师:对不对?

生:对.

生1:不是.

师:对不对?

生:对.

生1:更不是.

师:瞧,这更字用的多好.

生1:更不是.

师:小家伙厉害.

生1:不是.

生:对.

生1:是.

生:对.

师:掌声鼓励一下.

圆是曲线图形。

画圆。

生2:我认为是圆的半径变了.

生:不能.

师:除了这个地方改变以外,还有那些地方不能动?

生3:圆心改变了.

师:在画圆的过程中,针不能改变.

生:能.

师:先别动笔,边画边考虑.

圆和什么有关系?

生:圆心和半径.

师:我知道你们说的半径是什么意思?

谁能到前面来,说说哪个距离是不变的?其他的小朋友要注意观察。

生4(到黑板前画出远的半径)。

师:对不对?

生:对.

生:圆心.

师:这点是圆心,也就是针尖留下的,那圆心可用用哪个字母表示?

生:o.

师:请在你刚才画的圆上,标出圆心,写出字母o.

继续看这条线段,圆心的另一端在哪里?

生;圆上.

生:不是.

师:那有多少个?

生:无数个.

师:数学重要的不是结论,最怕的是哪三个字,你们知道吗?

生;不知道.

师:不知道不怕,怕的是他人说这三个字:为什么?

我一旦问为什么有无数条,敢举手的人就不多了.所以仅仅依靠感觉,看起来似乎是无数条,是不够的.可为什么说无数条呢?先听听这位同学的意见,别的同学继续考虑.

生5:因为圆是一种曲线图形,它的外表非常平滑,所以半径有无数条.

师:因为平滑,所以有无数条.

生6:因为圆心到圆上的距离全部相等。

生7:因为半径是圆上任意一点的,圆上有无数个点,所以有无数条半径.

师;我最喜欢刚才她说的一个词,任意一点.什么叫任意一点?

生:随便。

师:请问,在圆上有多少个这样随便的点?

生:无数.

生:为什么?

师:现在边看我的板书,边考虑问题,既然圆有无数条半径,那么它的长度怎么半呢?

生:相等.

师:同意的请举手,我的三个字又来了.

生:为什么.

师:为什么在一个圆里半径都相等?回想一下,张老师让你们准备了什么工具?

生:圆规.

师:还有尺寸,尺寸让你们用来干什么的?

生:量.

师:现在就动手量一量.

生8:从画圆的时候,我就注意到,画圆的时候,两角的距离没有发生变化.

师:既然两角的距离没有变,那么两角的距离其实就是半径的距离.两角的距离不变,也就以为着半径的距离不变.小朋友们,画一画量一量是研究问题的方法,看一看想一想,对画圆的方法进行推理,同样是一种方法.我们现在简单回忆一下刚才的学习过程,认识了是很么是圆心,什么是半径,大家知道半径很有特点.

生:半径有无数条,长度都相等,都一样.

生:得出来了.

师:而且他们得出的结论和同学们得出的几乎相同.不过表述不一样,就是六个字,圆,一中同长也.我们的古人很聪明,但是我觉得你们更聪明,因为你们只用了几分钟就总结出来了.不过现代人在研究这句话的时候,他们说古人说的不完全准确,因为这个同长,不只是半径同长,还有直径.因此又提出了另外一个概念:直径.连接圆心和圆上某一点的线段叫做半径.那怎样的线段叫直径呢?说不出没有关系,你能在这个圆上比画比画吗?现在我来画一画,尽管我是老师,假如画错的话,也不要客气,大声喊错.看看谁的胆子最大.

生:错.

生:也有无数条,直径都相等.

师:直径有无数条,我们就不检验了,那直径都相等,这是为什么呢?

生9:因为我们知道所有的半径都相等.

生:有.直径是半径的二倍.

生:半径和直径都相等.

生:四条.

师:正五边形,有几条?

生:五条.

师:正六边形?

生:六条.

师:正八边形?

生:八条.

师:圆形?

生:无数条.

师:难怪有人说圆是一个正无数边形.我们会发现随着三角形,正四边形,正五边形,正六边形,正八边形,更多边形的边数越来越多的时候,这个图形越来越接近圆形.有的同学说还不是很接近,给同学们两分钟考虑的时间,假如边数在增加,你猜猜看会怎么样?是否会更接近圆.我们借助一个小实验一起来验证一下我们的猜测,看一看这个正十六边形,和刚才的正八边形相比,更接近圆,但不是圆.现在看看32边形,更接近圆.但还不是圆.有时思维需要跳跃一下,现在看看100边形,更接近了,才正100边形,想象一下,假如正1000边形,正10000边形,1亿,10亿,直到无穷无尽,直线图形居然在它最的地方和曲线图形圆交融在一起.

生:不一样.

师:半径几厘米的圆比较大?

生:5厘米.

半径几厘米的圆比较小?

生:3厘米.

师:现在把所有的圆举起来,看看,考虑一个问题,圆的大小和谁有关?

生:半径.

生10:先把圆对折一下,就是一个半圆,然后再把它对折一下,这个点就是它的圆心,知道了圆心,半径也就知道了.

生11:先对折一次,然后折痕就是圆的直径,除以2就是半径.

生:不是.

师:那就奇怪了,张老师不用圆规,是哟功能什么方法画的圆呢?

生12:用一个碗扣在白纸上,描一下.

师:有可能,但不是.

生13:可能是一端是线,另一端是笔,把线一绕,圆就出来了.

师:人造圆规.

生4:先把纸对折,然后想要画多少直径,有了半圆,就可以得到一个圆了.

生15:少了宽度.

生:不是.

生:5厘米.

师:4厘米呢?

生:4厘米.

师:假如半径是3厘米,那么直径呢?

生:6厘米.

师:是不是我把圆扯开6厘米,就可以画圆了/。

生;不是.要扯开3厘米.

生:没有.

师:假如我们照这样的角度继续望下转,你会发现什么奇怪的现象?

生:近似一个圆,。

师:想一想,刚才我们旋转的是什么呀?

生:中心.

生:圆.

师:今天上课我们学什么?大声地说“学什么”

师:从哪里看到的?只给我看,

生指屏幕。

师:屏幕上有,还有呢?

师:说,哪有?

师:没错,圆片,还有吗?

生:圆规。

生齐:想。

师出示一个信封,摸出一个圆片,师:是圆吗?

生:是。

生齐:有。

师:好,现在看谁的反应最快?

师从信封里摸出一个长方形。

生:长方形。

师:男孩的反应快,状态也不错。

师从信封里摸出一个正方形。

生:正方形。

师:还有一个图形。

师从信封里摸出一个三角形。

生:三角形。

师:猜猜还有吗?

师从信封里摸出一个平行四边形。

生:平行四边形。

师从信封里摸出一个梯形。

生:梯形。

师:行了行了,小朋友们,都别你们猜到了。

教师课件演示各种图形,

师;同学们能不能从各种图形中把圆摸出来?你觉得有难度吗?

生齐:没有。

师:为什么?

生:因为圆是由曲线围成。

师:而其他图形呢?

生:都是由直线,哎!线段围成。

师:同意吗?

师:再仔细看看,正因为这些图形都是由线段围成的,所以他们都有什么?

生:角。

师:圆有角吗?

生:没有。

师:所以圆特别的?

生:光滑。

师:说的真好。

生齐:曲线。

师:给它一个名称。

生:曲线图形。

师:曲线图形,行了,现在让你们再直线图形中将圆这个唯一的曲线图形摸出来,难不难?

生齐:不难。

师:谁让你们聪明呢?还有难的。

师出师一个不规则图形。

师:它也是有曲线围成的吧?弯弯曲曲的。那么你们会不会把它也摸出来?

生齐:不会。

师:为什么?

生齐:丰满。

师:嘿!瞧,还有一个。

师出示一个椭圆,

生:不会,

师:为什么?

师利用学具演示,师:因为它这样看上去扁扁的,这样看上去……。

生:瘦瘦的。

师:瘦瘦的。圆呢?

教师出示圆形教具,转动。

师:怎么样?

生:一样。

师:怎么看到的一样?

师:好了小朋友们,现在从这些图形里把圆摸出来难不难?口说无凭,谁愿意上来试试?

行,就你吧,近水楼台。

师:咱们协商一下,这些图形我就不放进信封里去了,要是放进去咱们同学还看得见吗?

生:看不见了。

生:不是。

师:可以吗?

生齐:可以。

师:你闭上眼睛,你能做到吗?其他同学你们能出声吗?

生:不能。

生齐:ok!

师:好,伸出你最拿手的一只手,右边,准备好了吗?

生:准备好了。

生1:不是.

师:对不对?

生:对.

生1:不是.

师:对不对?

生:对.

生1:更不是.

师:瞧,这更字用的多好.

生1:更不是.

师:小家伙厉害.

生1:不是.

生:对.

生1:是.

生:对.

师:掌声鼓励一下.

圆是曲线图形。

画圆。

生2:我认为是圆的半径变了.

生:不能.

师:除了这个地方改变以外,还有那些地方不能动?

生3:圆心改变了.

师:在画圆的过程中,针不能改变.

生:能.

师:先别动笔,边画边考虑.

圆和什么有关系?

生:圆心和半径.

师:我知道你们说的半径是什么意思?

谁能到前面来,说说哪个距离是不变的?其他的小朋友要注意观察。

生4(到黑板前画出远的半径)。

师:对不对?

生:对.

生:圆心.

师:这点是圆心,也就是针尖留下的,那圆心可用用哪个字母表示?

生:o.

师:请在你刚才画的圆上,标出圆心,写出字母o.

继续看这条线段,圆心的另一端在哪里?

生;圆上.

生:不是.

师:那有多少个?

生:无数个.

师:数学重要的不是结论,最怕的是哪三个字,你们知道吗?

生;不知道.

师:不知道不怕,怕的是他人说这三个字:为什么?

我一旦问为什么有无数条,敢举手的人就不多了.所以仅仅依靠感觉,看起来似乎是无数条,是不够的.可为什么说无数条呢?先听听这位同学的意见,别的同学继续考虑.

生5:因为圆是一种曲线图形,它的外表非常平滑,所以半径有无数条.

师:因为平滑,所以有无数条.

生6:因为圆心到圆上的距离全部相等。

生7:因为半径是圆上任意一点的,圆上有无数个点,所以有无数条半径.

师;我最喜欢刚才她说的一个词,任意一点.什么叫任意一点?

生:随便。

师:请问,在圆上有多少个这样随便的点?

生:无数.

生:为什么?

师:现在边看我的板书,边考虑问题,既然圆有无数条半径,那么它的长度怎么半呢?

生:相等.

师:同意的请举手,我的三个字又来了.

生:为什么.

师:为什么在一个圆里半径都相等?回想一下,张老师让你们准备了什么工具?

生:圆规.

师:还有尺寸,尺寸让你们用来干什么的?

生:量.

师:现在就动手量一量.

生8:从画圆的时候,我就注意到,画圆的时候,两角的距离没有发生变化.

师:既然两角的距离没有变,那么两角的距离其实就是半径的距离.两角的距离不变,也就以为着半径的距离不变.小朋友们,画一画量一量是研究问题的方法,看一看想一想,对画圆的方法进行推理,同样是一种方法.我们现在简单回忆一下刚才的学习过程,认识了是很么是圆心,什么是半径,大家知道半径很有特点.

生:半径有无数条,长度都相等,都一样.

生:得出来了.

师:而且他们得出的结论和同学们得出的几乎相同.不过表述不一样,就是六个字,圆,一中同长也.我们的古人很聪明,但是我觉得你们更聪明,因为你们只用了几分钟就总结出来了.不过现代人在研究这句话的时候,他们说古人说的不完全准确,因为这个同长,不只是半径同长,还有直径.因此又提出了另外一个概念:直径.连接圆心和圆上某一点的线段叫做半径.那怎样的线段叫直径呢?说不出没有关系,你能在这个圆上比画比画吗?现在我来画一画,尽管我是老师,假如画错的话,也不要客气,大声喊错.看看谁的胆子最大.

生:错.

生:也有无数条,直径都相等.

师:直径有无数条,我们就不检验了,那直径都相等,这是为什么呢?

生9:因为我们知道所有的半径都相等.

生:有.直径是半径的二倍.

生:半径和直径都相等.

生:四条.

师:正五边形,有几条?

生:五条.

师:正六边形?

生:六条.

师:正八边形?

生:八条.

师:圆形?

生:无数条.

师:难怪有人说圆是一个正无数边形.我们会发现随着三角形,正四边形,正五边形,正六边形,正八边形,更多边形的边数越来越多的时候,这个图形越来越接近圆形.有的同学说还不是很接近,给同学们两分钟考虑的时间,假如边数在增加,你猜猜看会怎么样?是否会更接近圆.我们借助一个小实验一起来验证一下我们的猜测,看一看这个正十六边形,和刚才的正八边形相比,更接近圆,但不是圆.现在看看32边形,更接近圆.但还不是圆.有时思维需要跳跃一下,现在看看100边形,更接近了,才正100边形,想象一下,假如正1000边形,正10000边形,1亿,10亿,直到无穷无尽,直线图形居然在它最的地方和曲线图形圆交融在一起.

生:不一样.

师:半径几厘米的圆比较大?

生:5厘米.

半径几厘米的圆比较小?

生:3厘米.

师:现在把所有的圆举起来,看看,考虑一个问题,圆的大小和谁有关?

生:半径.

生10:先把圆对折一下,就是一个半圆,然后再把它对折一下,这个点就是它的圆心,知道了圆心,半径也就知道了.

生11:先对折一次,然后折痕就是圆的直径,除以2就是半径.

生:不是.

师:那就奇怪了,张老师不用圆规,是哟功能什么方法画的圆呢?

生12:用一个碗扣在白纸上,描一下.

师:有可能,但不是.

生13:可能是一端是线,另一端是笔,把线一绕,圆就出来了.

师:人造圆规.

生4:先把纸对折,然后想要画多少直径,有了半圆,就可以得到一个圆了.

生15:少了宽度.

生:不是.

生:5厘米.

师:4厘米呢?

生:4厘米.

师:假如半径是3厘米,那么直径呢?

生:6厘米.

师:是不是我把圆扯开6厘米,就可以画圆了/。

生;不是.要扯开3厘米.

生:没有.

师:假如我们照这样的角度继续望下转,你会发现什么奇怪的现象?

生:近似一个圆,。

师:想一想,刚才我们旋转的是什么呀?

生:中心.

生:圆.

圆的初步认识的教学设计篇十八

1、认识圆,知道圆的各部分名称,知道同一圆内半径、直径的特征,初步学会用圆规画圆。

2、使学生掌握圆的特征,理解在同一个圆里直径与半径的关系,能根据这种关系求圆的直径或半径。

3、培养学生的观察、分析、抽象、概括等思维能力和初步的空间观念,使学生初步学会用数学知识解释、解决生活中的实际问题。

掌握圆的特征,理解在同一个圆里直径和半径的关系,能根据这种关系求圆的直径或半径。

多媒体一套。学生准备硬币等圆形物体若干;圆规一把、直尺一把、三角尺一副;小剪刀一把;红色、蓝色彩笔各一支。

一、导入新课。

2、你见过圆吗?生活中你在哪儿见过?能说说吗?一直说下去能说完吗?的确圆是无处不在的。(打开有关生活中圆的`课件)问:同学们你们从中又看到了圆了吗?你会画圆吗?动手试一试,看谁想的方法多。

3、怎样可以画出一个圆?还有其它方法吗?

师根据学生口答边画圆边归纳方法:

(1)定长(2)定点(3)旋转。

请大家用这个方法再画一个圆,并很快把它剪下来。

要进行套圈比赛的圆肯定比较大,用圆规画行吗?怎么办?

4、揭题:为什么站成圆形大家会觉得比较公平呢?

今天我们一起来学习圆的认识(板书课题),相信通过今天的学习大家一定会明白其中的道理。

二、探究新知。

(一)认识圆心。

1、圆形画好了,游戏可以开始了吗?套圈用的瓶子要放在哪儿呢?

2、你能很快找出圆的中心吗?试一试,找出刚才剪下的圆的中心。谁先发现,谁就先上来介绍。

说明:圆的中心叫“圆心”,就是画圆时针固定的一点,用字母o表示。(师板书:圆心o)。

(二)认识半径。

2、要站在圆上,随便哪一点都可以吗?为什么?怎样证明?(引导学生画一画、量一量)。

说明:象这样,连接圆心到圆上任意一点的线段,叫做圆的半径,用字母r来表示。

3、你能画出几条半径?

4、认识特点:在同一个圆里,有()条半径,它们的长度()。

(三)认识直径及直径与半径的关系。

1、刚才我们用折纸的方法确定圆心时,发现圆上有许多折痕。这些折痕叫什么?有什么特点?与半径有什么关系?请大家看看书、动动手画一画,看看能画几条?并在小组中说一说。

2、组织学生交流,教师画直径时有意两端不在圆上,让学生判断。

教师板书:(1)直径:d。

(2)d=2r或r=1/2d。

追问:直径肯定是半径的2倍吗?你是怎么知道的?看一下你手中圆的直径,会不会是黑板上圆的半径的2倍?你认为应该怎么说?(板书:在同一个圆里)。

3、口答:画一个直径是5厘米的圆,圆规两脚间的距离应是()。

4、完成课本的做一做。

三、全课总结。

四、延伸拓展。

1、同学们想一起到篮球场玩套圈游戏,你会怎么安排?说说你的想法。

2、在篮球场上要画一个直径6米的大圆,至少要准备一根多少米长的绳子?

站在这个圆上的同学中,离得最远的两个同学最多相距多少米?

追问:依据是什么?怎样证明“两端在圆上的线段中,直径最长?

3、利用发现的规律你能测出硬币等圆形物体的直径吗?

4、生活中哪些物体必须做成圆形的,为什么?

(课件出示两辆跑车)让学生展开讨论:车轮为什么是圆的?

讲述:同学们,其实何尝是大自然对圆情有独钟?在我们人类生活中的每一个角落里,圆都扮演着重要角色,都成了美的使者和化身。(显示生活中圆的魅力)。

圆的初步认识的教学设计篇十九

1.例1。

例1是让学生想办法在纸上画圆,直观感受圆的曲线特征,同时为后面探究圆的基本性质做好准备。教材共呈现了3名学生用不同的实物来描摹画圆的方法,这种方法简单,且学生以前有基础,但因受实物所限,画出的圆大小是固定的,不能随意变化,从而为后面教学用圆规画圆做了铺垫。

教学时,教师应在课前备好相应的学具,如茶杯盖、圆柱等用来画圆的物品,以便于学生活动。实际教学中,学生也可能会提出用圆规画圆的方法,教师不用回避,说明这种方法将在后面学习。

2.例2及“做一做”。

圆的认识主要是认识圆的各部分名称及特征。分三个层次编排:首先让学生将画好的圆反复对折,发现折痕相交于一点,引出圆心的概念。然后由圆心出发,定义半径和直径,并让学生探索出在同一个圆内,半径和直径都有无数条。最后通过测量比较,让学生认识到同一圆内所有的半径都相等,所有的直径也都相等,并且半径的长度是直径的1/2。

教材对用圆规画圆的编排是先让学生自主探索,然后小组交流,最后由教师归纳总结出画圆的基本方法。

“做一做”的第1题主要是巩固学生对半径和直径的认识。第2题重点在于画出一个确定大小的圆;第3题让学生找出圆的圆心和直径,由于这两个圆都是画在纸上的,无法通过折叠的方法来确定,所以较难。可以引导学生借助正方形的对称性来找圆心,只要连接正方形的对角线即可。第4题主要说明圆形物体具有易滚动这一特性,故车轮常做成圆形的,而车轴之所以装在圆心的位置,则是因为圆心到圆上任意一点的距离都相等,故只有把车轴装在圆心处,当车轮滚动时方可使行进的车辆保持平稳状态。

教材注重学生动手操作来探究圆的基本特征,故教学时应放手让学生活动,通过折、画、量等方式来寻找规律。在学生活动中,教师可适时用问题引导探究的内容。如“同一个圆里,有多少条半径呢?”“半径和直径的长度有什么关系?”……最后,教师应在学生探究的基础上,对圆的有关概念和基本特征进行归纳和整理,以使学生形成系统、科学的认识。

教学用圆规画圆时,应先让学生自己在纸上画一画,然后小组交流画法。在此基础上,教师可归纳总结出画圆的基本步骤和方法,主要应说明两点:一是圆的位置和大小分别是由圆心和半径决定的,故画圆时应先确定圆心,然后按照指定的长度为半径来画圆;二是圆的大小取决于半径的长短,与圆心的位置无关。然后再让学生按照要求画几个圆,逐步掌握用圆规画圆的方法。

3.例3及“做一做”。

例3在前面所学的成轴对称的平面图形的基础上,教学认识圆的对称性。使学生认识到圆是轴对称图形,且对称轴有无数条。

教学时可分两个层次:一是让学生回顾以前学过的轴对称图形,复习对称特点及明确对称轴,然后说明以前学过的长方形、正方形等都有对称轴,这些图形都是轴对称图形;二是引导学生认识到圆也是轴对称图形,并且每条直径所在的直线都是圆的对称轴。这部分内容应让学生动手画一画,折一折,在实际操作中联系直径的含义来体会圆的对称轴有无数条这一特性。

“做一做”的第1题是总结性题目,在学过的轴对称图形中,等腰三角形和等腰梯形只有1条对称轴,长方形有2条对称轴,等边三角形有3条对称轴,正方形有4条对称轴,圆有无数条对称轴;第2题是根据对称轴画出轴对称图形的另一半,教学时应引导学生利用方格纸先描出对应点,再连线构成图形。

4.关于练习十四中一些习题的说明和教学建议。

第2题,第3幅图是一个圆内切于一个正方形,则正方形的边长就是圆的直径,故r=5cm;第4幅图以梯形的上底为直径作出的半圆内切于梯形的下底,则梯形的高即为半圆的半径,故d=7cm。

第3题,使学生知道两端都在圆上的线段,直径是最长的一条。

第4题,这两种方法都是利用第3题的结论,通过移动尺子或用两个三角板同时夹住圆并垂直于刻度尺来测量出圆内“最长的线段”,也就是直径。

第6题,可先固定一点,然后以此为圆心,用长为5m的绳子绕此点旋转一周即可画出。

第8题,最本质的区别在于圆是曲线图形,而三角形和四边形是直线构成的图形。

【本文地址:http://www.pourbars.com/zuowen/15426123.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map