日常生活中的点滴细节能够积累成为学习的宝贵财富。在总结中如何突出重点,让读者一目了然?以下是一些相关数据和统计结果,可以为您做出决策提供依据。
高等数学考研心得篇一
对于大部分同学而言,由于高等数学学习的时间比较早,而且原来学习所针对的难度并不是很大,又加上遗忘,现在数学知识恐怕已经所剩无几了,所以,这一遍强调学习,要拿出重新学习的劲头亲自动手去做,去思考。
(2)复习顺序的选择问题。
我们建议先高等数学再线性代数再概率论与数理统计。高等数学是线性代数和概率论与数理统计的基础,一定要先学习。我们并不主张三门课齐头并进,毕竟三门课有所区别,要学一门就先学精了再继续推进,做成“夹生饭”会让你有种骑虎难下的感觉,到时你反而会耗费更多的时间去收拾烂摊子。同学们也可根据自己的特殊情况调整复习顺序。
(3)注意基本概念、基本方法和基本定理的复习掌握。
其他一切都是空中楼阁。
(4)加强练习,重视总结、归纳解题思路、方法和技巧。
数学考试的所有任务就是解题,而基本概念、公式、结论等也只有在反复练习中才能真正理解和巩固。试题千变万化,但其知识结构却基本相同,题型也相对固定,一般存在相应的解题规律。通过大量的训练可以切实提高数学的解题能力,做到面对任何试题都能有条不紊地分析和计算。
(5)不要依赖答案。
学习的过程中一定要力求全部理解和掌握知识点,做题的过程中先不要看答案,如果题目确实做不出来,可以先看答案,看明白之后再抛弃答案自己把题目独立地做一遍。不要以为看明白了就会了,只有自己真正做一遍,印象才能深刻。
(6)强调积极主动地亲自参与,并整理出笔记。
注意一定要在学习过程中写出自己的感受,可以在书上以题注的形式或者就是做笔记,尽量深挖例题内涵,这一点很重要,并且要贯彻前三轮的复习,如果最后一轮复习我们有了自己整理的笔记,就会很轻松。有同学说学习线性代数最好的办法就是亲自推导,这话很有道理,事实上如果我们学习什么知识都采取这种态度的话,那肯定都会学得非常好。
高等数学考研心得篇二
不是误导大家武汉大学的教科书实在是很难理解,两本加起来足是一本字典,是编者卖弄的园地,所以强烈建议不要和此书叫板,我曾试过一年完全是浪费时间,即使有同学看懂了,但仍难以对付实战。
我的建议是以战致战,就是通过做历年的考试题的方法顺利通过考试。此法花费时间极小,但可以获得很大的收益,从经济的角度讲就是效益最大化。
具体实施方法:
首先,高高兴兴的将书撕碎,优点有三:1)不给自己浪费时间的机会。2)建立此战必胜的信心。3)心情将更加愉悦。
其次:把各年试卷及答案]收集齐,网上不难找到,书店中也可买到。实在不行我给你个网址。强烈建议从1997年下半年到2002年上半年共十套试卷,这套模拟题就是葵花宝典,没事就做吧,一遍不行,至少十遍,知道答案不行,必须要知道过程。当你做到第三遍时你就会发现所有试卷的共同之处,每年的试题是等的相似。第五遍第七遍时,你就会因为找不到不会的题而痛苦万分。
最后,是考前不用动笔用脑看题非常快的看上3遍,一个框架会产生在你的大脑中。合格证对于你来说,已经成了一张名片,伸手就拿!
高等数学考研心得篇三
我们要遵循由浅入深的原则,先将书本上的知识基础打牢靠,一定要重视基础知识的学习,不要过于去追求技巧以及方法,近几年考研真题对基础知识的考察时很频繁的,像刚刚过去的_年考研数学中就有关于用导数定义来推导两个函数乘积的导数。所以,等我们把基础知识掌握牢靠后,再去学一些技巧以及方法。因此我们将基础知识的复习安排在第一阶段,希望大家给予足够重视。
第一,我们强调学习而不是复习。对于大部分同学而言,由于高等数学学习的时间比较早,而且在大学课堂上学习所针对的难度并不是很大,再加上一些知识的遗忘,现在数学知识恐怕已经所剩无几了,所以,这一遍强调学习,要拿出重新学习的劲头亲自动手去做,去思考。
第二,对于复习顺序的选择问题。我们建议先学高等数学再学线性代数,然后再学概率论与数理统计。我们知道高等数学是线性代数和概率论与数理统计的基础,一定要先学习。我们并不主张三门课一起学习,毕竟三门课是有所区别的。我们一定要学一门就先学精了再继续学其他的,倘若你不学透就开始学其他的,每一门都有好多不懂的地方,到时你反而会耗费更多的时间去补前面的知识。当然,你确实也可根据自己的特殊情况调整复习顺序。
第三,注重基本概念、定理和方法的掌握。同学们一定要结合考研辅导书和大纲,先吃透基本概念、基本方法和基本定理,只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。一些学生失分的一个重要原因就是对基本概念、基本定理理解不准确,基本解题方法没有掌握。因此,第一阶段学习必须要在数学基本概念、基本定理、重要的数学原理、重要的数学结论等方面加强学习。
第四,加强练习,多多总结、归纳解题思路以及方法和技巧。数学考试主要就是解题,而考研数学中的基本概念、公式、结论等也只有在反复练习中才能真正理解和巩固。我们通过大量的训练可以切实提高数学的解题能力,做到面对任何试题都能有条不紊地分析和计算。
第五,正确理解答案的作用。我们在学习的过程中一定要力求理解和掌握所有要考的知识点,做题的过程中一定不要先看答案,如果题目实在做不出来了,再看答案,看明白之后自己一定要把题目重新独立地做一遍。不要以为看明白了就会了,只有自己真正做一遍,印象才能深刻,才不会忘的过快,否则是无用的。
第六,每一题亲力亲为,并整理出笔记。
注意一定要在学习过程中写出自己的感受,可以在书上以题注的形式或者就是做笔记,尽量深挖例题,这一点很重要,并且要贯彻前三轮的复习,如果最后一轮复习我们有了自己整理的笔记,就会很轻松。有同学说学习线性代数最好的办法就是亲自推导,这话很有道理,事实上如果我们学习什么知识都采取这种态度的话,那肯定都会学得非常好。
在考研的路上,你肯定会遇到很多困难,我们知道身体是革命的本钱,健康的身体对于我们是很重要的,所以平时多注意饮食和作息时间,而明确的学习方法和对考研的那份坚持,是你成为赢家的第二本钱。
高等数学考研心得篇四
高等数学是考研数学必考内容之一,为帮助大家复习备考,以下是百分网小编搜索整理的关于2018考研高等数学复习指导,供参考借鉴,希望对大家有所帮助!想了解更多相关信息请持续关注我们应届毕业生考试网!
考研数学考察的是对基础知识的综合运用,所以基础知识尤为重要,很多同学在复习时存在一个误区,认为我把难题做好就行了,难题都会做了,简单的题目就更没有问题了,其实这是错误的,如果基础知识没有掌握牢固,在复习过程中会发现越复习越困难,到复习的后期会发现连简单的问题都不知道如何下手了。这就是基础知识没有掌握牢固的结果。
在这一阶段,考生们不要和其他同学比进度,也不要单纯的追求量,完完整整的看一遍,达到看过的知识都能够熟练掌握的程度,会比我们囫囵吞枣的看三四遍都有用,所以这个阶段不要比进度,争取把每一个知识点都掌握牢固,知道每个定理公式或方法的基本内容、适用条件、易错点等。
七月至九月份是强化阶段,强化阶段是对基础知识的综合运用。这个阶段考生们要提高综合解题能力,形成完整的知识体系。考生们这段时间主要是做题,熟练的掌握每个模块要考的题型类型以及每种题型的.解题方法。这个阶段考生易犯的错误是眼高手低,觉得自己解题方法掌握了就可以了,对于计算题就放过了,这是不可以的,考研数学要求考生在规定的时间内完成规定的计算量。所以如果计算题都放过那么就更加无法提高计算能力。
考生掌握了基本的基础知识和针对每个题型的解题方法,这个阶段就需要做分类的真题。分类解析是让大家短时间内获得每个模块考点、考试题型的一种快捷方式,通过做真题了解自己对每一模块和每一题型的掌握情况,对不是很清楚的部分再继续做这一部分的习题,达到每个模块都掌握牢固,每种题型都有解决的思路。
最后这个阶段就是做模拟题,模拟考试环境、考试时间和心态,这一阶段考生在做题的时候注意时间,严格按照考研的考试时间来做真题。这个阶段考生易犯的错误特别是到了十二月份,把主要精力都放在了政治和英语上,基本上会一直不看数学,认为数学也就达到上限了,再做题也不会提高很高的分数。诚然这一阶段背政治或者英语能提的分数比较高,但是,长时间不做数学题考生就会发现再做题的时候手生,很多知识点和题型都忘记了,这样我们辛辛苦苦所掌握的知识又还回去了,岂不很可惜。所以考生们一定要坚持做题,稳中求胜。
1.运用洛必达法则和等价无穷小量求极限问题,直接求极限或给出一个分段函数讨论基连续性及间断点问题。
2.运用导数求最值、极值或证明不等式。
3.微积分中值定理的运用。
4.重积分的计算,包括二重积分和三重积分的计算及其应用。
5.曲线积分和曲面积分的计算。
6.幂级数问题,计算幂级数的和函数,将一个已知函数用间接法展开为幂级数。
7.常微分方程问题。可分离变量方程、一阶线性微分方程、伯努利方程等的通解、特解及幂级数解法。
8.解线性方程组,求线性方程组的待定常数等。
9.矩阵的相似对角化,求矩阵的特征值,特征向量,相似矩阵等。
10.概率论与数理统计。求概率分布或随机变量的分布密度及一些数字特征,参数的点估计和区间估计。
高等数学考研心得篇五
考研数学中高等数学的确是一门学起来比较难的课程,高数课本上的内容多,而且学了后面易把前面的知识点忘了,有大量的定理与重要结论,需要考生们系统地对知识进行层次化的归类,微积分这个子系统非常重要,它是其它各子系统的基石,而且在概率统计中大量会用到微积分的理论与解题技巧,请大家一定要牢记。
一、有针对性复习,提高常见题型解题技巧。
但复习时间毕竟有限,在确定思考不出结果时,要及时寻求帮助。一定要避免一时性起,盯住一个题目做一个晚上的冲动。要充分借助老师、同学的帮助,将题目弄通搞懂、下次自己会做即可,不要耽误太多时间。另外无论是大题还是小题,都要细心。不能说只要考场上认真,仔细地做题就不会有“会做但做错”的情况出现,应该平时做题就态度认真。
二、真正消化知识点练就解题的内功。
如何才能真正吸收消化这些知识以成为自己的知识呢?根据自己的总结或在权威考研辅导机构的帮助下,考生可以知道常规的题型和解题方法与技巧,考生要进行相当量的综合题型的练习。因为在复习过程中,不少考生会渐渐地有能力解答一些考研的基本题目,但如果给他一道较为综合的大题,就无从下手了。所以要做一定量的综合题。
不要现看到没做过的题就犯怵,一些大题目都是可以分解为若干个小题目去分别解答的。考生要掌握的东西就显然被分为了两个大方向。一是小题目,实质上也就是基础知识点的掌握与常规题型的熟练掌握;二是要能够将大题目拆分为小题目,也就是说能够逆出题专家的思维方式来推测此大题目是想考我们什么知识点。这两个方面的知识是考生平时复习整个过程中要加以思考的问题,因为基础知识点要不断地巩固加强,平时要多多积累将大问题细分的能力是平时的日积月累而形成的能力。祝愿考生们2015考研一切顺利,取得自己理想的成绩!加油!
高等数学考研心得篇六
高等数学在考研数学中占有的比例非常的大,可以说学好了高等数学考研数学就成功了一大半,那么怎样更加有效、高效的学习高等数学这门学科呢?下文分享了部分高数的学习建议,希望通过本文的探讨给考生提供一些帮助和一些启发。
考研数学每门学科的特点不同,学习方法也不尽相同,如果形象去描述高等数学的学习,可以用盖楼来形容。高等数学的学科搭建是呈现层状上升的态势,与线性代数不同,线性代数呈现的是网状结构。层状结构的知识,要求我们首先打好基础,所谓万丈高楼平地起,就是这个道理。要了解这栋高楼,就要先了解它的作用及框架。数学学科不是空中楼阁,数学是一门随实践发展而展开并且指导实践的学科,它的`研究对象是函数,研究手段是极限,利用极限的方法消除误差,使研究结果具有指导意义也具有可行性。
位于高楼底层的是一元函数的相关理论。众所周知,高等数学又称为微积分,即由微分学和积分学两部门构成,因此首先研究的是一元函数的微分学问题和积分学问题。所谓微分学问题是指与导数相关的理论,利用导数研究函数的一系列形态;所谓积分学,是做为微分学的逆运算出现的,不定积分探讨函数的原函数问题,定积分探讨一些积分的应用。一元函数的理论学习清楚以后,往上就是第二个层次多元函数微积分了。
通过空间解析几何一章的过渡,进入多元函数的微积分部分,对于数一数二数三不同考生要求不同,需要考生根据考试大纲确认自己需要掌握的内容,大致描述一下,微分学积分学的基本理论是都要求掌握的,只是数学一的同学还需掌握一部分几何应用。比如,微分学部分,数学一的同学会考到方向导数与梯度,空间曲线的切线与法平面,空间曲面的切平面与法线;积分学部分数一的同学会考到三重积分,对弧长对坐标的曲线积分,对面积对坐标的曲面积分等内容。
微分方程和级数部分不同门类考生区别比较大,需要根据考试大纲进行学习。微分方程部分比较简单,只需认清楚方程所属类型,根据固定的方法去解题就可以了,属于记忆性的学习,难度不大,这里单独考微分方程的情况一般是小题,微分方程结合级数结合偏导数可以出大题,但难度都不高。级数部分普遍觉得比较难掌握,数二的同学这一部分是不做要求的。级数部分的学习需要首先认清级数,然后学清楚逻辑。级数分为数项级数和函数项级数,对于数项级数的考查集中在敛散性的判定上,以小题为主,数一的同学要求稍高一些,会出一些与判别法相关的大题。函数项级数里边,数三的同学主要考察幂级数,数一的同学还需考查傅里叶级数。函数项级数的考查重点在级数的求和和展开上,是要方法得当并不困难。
高等数学考研心得篇七
要对所学的知识有个整体的把握,及时总结知识体系,这样不仅可以加深对知识的理解,还会对进一步的学习有所帮助。
高等数学中包括微积分和立体解析几何,级数和常微分方程。其中尤以微积分的内容最为系统且在其他课程中有广泛的应用。微积分的理论,是由牛顿和莱布尼茨完成的。(当然在他们之前就已有微积分的应用,但不够系统)。
数学备考一定要有一个复习时间表,也就是要有一个周密可行的计划。按照计划,循序渐进,切忌搞突击,临时抱佛脚。
其实数学是基础性学科,解题能力的提高,是一个长期积累的过程,因而复习时间就应适当提前,循序渐进。大致在三、四月分开始着手进行复习,如果数学基础差可以将复习的时间适当提前。复习一定要有一个可行的计划,通过计划保证复习的进度和效果。一般可以将复习分成四个阶段,每个阶段的起止时间和所要完成的任务考生应给予明确规定,以保证计划的可行性。
第一个阶段是按照考试大纲划分复习范围,在熟悉大纲的基础上对考试必备的基础知识进行系统的复习,了解考研数学的基本内容、重点、难点和特点。这个时间段一般划定为六月前。
第二个阶段是在第一阶段的基础上,做一定数量的题,重点解决解题思路的问题。一般从七月到十月。这个阶段要注意归纳总结,即拿到题后要知道从什么角度,可以分几步去求解,每道题并不要求都要写出完整步骤,只要思路有了,运算过程会做了,可以视情况而灵活掌握,这样省出时间来看更多的题。所选试题可以是历年真题,也可以是书上的练习题,但真题一定要做,而且要严格按照实考的要求去做,把握真题的特点和解题思路及运算步骤。
第三个阶段是实战训练阶段,从十一月到十二月的中旬,这也是临考前非常重要的阶段。考生要对大纲所要求的知识点做最后的梳理,熟记公式,系统地做几套模拟试卷,进行实战训练,自测复习成果。在做模拟题前先要系统记忆掌握基本公式,做题要讲究质量,既要有速度,又要有严格的步骤、格式和计算的准确性。最后阶段是考前冲刺,从十二月下旬到考试。针对在做模拟试题过程中出现的问题作最后的补习,查缺补漏,以便以最佳的状态参加考试。
数学的学习一定要每天都有个进度,每天都要有题量,我们不应该搞题海战术,但是通过做题提高实战经验也是必须的,首先有个大的学习框架,然后计划到每天,怎么去学习,每天做那方面的题,定期的查漏补缺,这样的学习才真正的有效果。
高等数学考研心得篇八
考研数学考查的并不单是思维逻辑能力,更重要的是考察方法和技巧,下面,就以高等数学科目为例,来谈谈数学的复习方法。
首先是教材及参考书的选择。记住,教材一定要用同济版本的《高等数学》,第五版第六版均可,如果你用的是自己学校的高等数学书,也一定要换成同济的,因为这本书无论是在编排还是在内容上,都是经典版的。至于复习资料,个人推荐李永乐老师的《复习全书》、《历年真题解析》以及《数学基础过关660题》等。以上这些书目,不仅仅是笔者觉得好,而是通过许多考生口碑积累起来的,依据前人的经验,可以让你在教材选择上节省不少时间。
其次是复习方法。个人建议是:课本不是每一个知识点都看,一定要参照考试大纲,如果当年的大纲还没出,用去年的就行,内容不会发生很大的变化,等新大纲出来后再查缺补漏一下。大纲上的知识点一定要一个不漏地学习,别忘了,历年的考试都是以纲为纲的。考试大纲里有四种要求,分别是:掌握,理解,会,了解。前两项是比较重要的,所以对于“掌握”和“会”的知识点,你务必要吃透,历年大题的出题点一般都超不出这两个要求的范围。我的建议是:拿着大纲,先将标有“掌握”和“会”的知识点标出来,然后尽最大努力逐个攻破,比如09年考研的拉格朗日定理知识点,就属于“会”的范畴,如果不会用,就不会证明了。(来源:考研教育网)。
那么,课本应该怎样看?从小学到大学,老师们一定反复强调课本的重要性,考研高等数学也一样,不仅要看,还要反复地看,仔细地看。可能会有一些考研的同学来说,课本我也认真看过了,但结果依然很遭,问题出在哪儿?我想说:课本不仅仅是用来看的,更是用来研究的,你考得不好,是因为你课本学得不细致!
那怎样才叫细致呢?当你把课本研究完之后,上面会标记很多东西,会画的比较乱,而不是崭新的像没看过一样。课本上的'很多例题都是经典中的经典,一定要弄透彻。课后习题也要认真做完,哪怕只是在草纸上做,也要在书上标个答案,每当做完一章习题,对照答案发现错误后,就要快速分析出错误原因,这个习惯很重要。有些人说课后习题实在太多了,应该挑着做,但我觉得同济版的课后题都是非常经典的,远远胜过市面上的参考书,它也不像你想象得那么简单,很多习题你看似简单,做起来却又问题多多。至于书中定义、公理、定理、公式,一定做到信手拈来了,弄清楚其中有几个点,而不是死记硬背,比如说关于极大值,这个词从开云KY官方登录入口 就知道,但你知道它的定义吗?你可能会说,定义没用!这你就错了,当你感觉一道题模糊不会做时,定义才是你根本的出发点。
再次就是做练习题了。学习数学,基础很重要,但从另一方面讲,要想取得考分,还是要通过不断做题来积累的。做一本辅导书时,最好有详细的计划,当然做计划也是有技巧的,而不是像一些朋友给自己笼统的定计划,每天完成一章,因为每一章的内容、难度等都不同,不能一概而论,否则就很容易打乱你其他科目的复习计划,毕竟考研不是只考数学。我是这样做计划的:比如第一章,感觉一下这章对于你而言的难度,一共有多少页,自己计划几天完成,然后定好每天完成多少页。还有,制定计划要稍微宽裕,以防出现突然意外,不要觉得这费时间,一个良好的计划能让你在日后的复习中事半功倍。(来源:考研教育网)。
还有,一定要准备好错题本,因为很多题目你做一遍是远远不够的,这就要求你把平日练习里遇到的错误的、经典的、重点的题型抄录下来,做好不同的标记,反复看,反复研究,把自己得到的开云官网app下载安装手机版 写在旁边。我建议用一支红笔标注,因为红笔不仅醒目,更有一种视觉上的刺激效果。第二遍后,第三遍后……慢慢的,你就会发现,在不知不觉中,已经没有什么知识点能难住你了。
考研数学其实并不难,难就难在你难以克服对它的敬畏之心。记住,把它踩在脚下,你才能攀上考研的顶峰。
(来源:考研教育网)。
()。
将本文的word文档下载到电脑,方便收藏和打印。
高等数学考研心得篇九
2017年的全国研究生入学统一考试刚刚结束,大家对今年各学科的考查重点和命题人出题思路又有什么进一步的认识呢,下面我们就概率论这门学科考查重难点给大家做一个分析。
从以往的经验来说,概率论与数理统计解答题的常见考点有两个,一个是以分布函数为核心的各类随机变量以及随机变量函数的分布,另一个是参数估计。其中前者是数一、数三共同的考查重点,也是难点。后者无论从考查范围和难度上数一、数三都有明显的区别,从范围上讲,数三参数估计部分只考查点估计的两种方法,分别是矩估计和最大似然估计;数一除了点估计之外还涉及到估计量的评选标准等。从难度上讲,数一参数估计部分的难度要略高于数三,主要表现在数一增加了无偏性这一重要考点,且常常与数理统计的`相关定义结合,从而在计算能力上也提出了更高要求。
今年概率论的考查依旧延续往年的出题思路,数学三的第一个解答题考查二维随机变量一个离散、一个连续情况下的分布,考生要利用全概率公式求解概率;第二个解答题依旧是参数估计部分两种点估计方法的考查。这两种题型的解题思路都是我们的学员在课上课下反复训练过的题型,相信在考场上能够很好的发挥。
高等数学考研心得篇十
由于数学大纲一般变化不大,因此,虽然考试大纲还未出台,但可以结合近年来的大纲和试题进行初步复习。关于高数、线代、概率三个科的复习方法,考研辅导老师为大家列出基础复习时的注意事项。
准确定位吃透大纲。
结合本科教材和前一年的大纲,先吃透基本概念、基本方法和基本定理。数学是一门逻辑性极强的演绎科学,只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。对近几年数学答卷的分析表明,考生失分的一个重要原因就是对基本概念、定理记不全、记不牢,理解不准确,基本解题方法掌握不好。
尝试做题理解概念。
在掌握了相关概念和理论之后,首先应该自己试着去解题,即使做不出来,对基本概念和理论的理解也会深入一步。因为数学毕竟是个理解加运用的科目,不练习就永远无法熟练掌握。解不出来,再看书上的解题思路和指导,再想想,如果还是想不出来,最后再看书上的详细解答。看一道题怎么做出来不是最重要的东西,重要的是通过你自己的理解,能够在做题的过程中用到它。因此,在看完这本书上的那些精彩的例题之后,切莫忘记要好好在后面的习题中选两道来巩固一下。不过,要注意的是,上对第一轮复习的考生显然是要求太高。不要因这些难题贬低自己的自信心,坚信等若干月复习之后回头看这些题就是小菜一碟。
循序渐进合理安排。
数学成绩是长期积累的结果,准备时间一定要充分。要对各个知识点做深入细致的分析,注意抓考点和重点题型,在一些大的得分点上可以适当地采取题海战术。
适当拔高综合应用。
数学考试会出现一些应用到多个知识点的综合性试题和应用型试题。这类试题一般比较灵活,难度也要大一些。在数学首轮复习期间,可以不将它们作为强化重点,但也应逐步进行一些训练,积累解题思路,同时这也有利于对所学知识的消化吸收,彻底弄清楚有关知识的纵向与横向联系,转化为自己真正掌握的东西。
数学基础复习就是这样,读书,做题,思考缺一不可。读书是前提,是基础,读懂书才有可能做对题目。做题是关键,是目的`。只有会做题,做对题目,快速做题才能应付考试,达到目的。思考是为了更有效的读书和做题。
全面复习注重考点,探索思路。
尽管考题千变万化,但是题型相对固定,提炼题型的目的就是为了提高解题的针对性,形成思维定势。要取得数学考研的理想成绩,主要在于提高解题能力,除了反复训练基本功外,更重要的是在训练中不断总结题型及解题方法,探索如何着手解题的思路,使知识模块化,解题方法格式化。
大纲虽是复习的方向,但考试大纲中列出的许多内容或者从没考过,或者几乎没有被考到过。这主要是研究生入学考试除了选拔人才,还要有助于课程教学,所以必须深入剖析大纲要求,提炼出复习重点。在对概念、定理、公式进行全面复习的基础上对重点和难点部分作重点复习,但不要去做偏题、难题、怪题。
反复的基本训练,紧抓重点。
通过对历年试题的统计分析可以得出常考的内容,考试的重点,通过对近几年考题的分析可得出考试热点,抓住重点、热点可使复习针对性增强,加快复习进度并节省大量时间,提高考研竞争优势,为考场取得高分打下坚实的基础。
考研就是考“熟练”,只有把内容、方法搞熟练,才能获得最后的成功。学数学只有做大量的高质量的练习题才能把基本功练熟、练透,才能提高应试和解题的能力,总之数学需多做题,不能眼高手低。做题时要完整、认真演算,过一段时间要翻出来再看几遍。
多做模拟试题,重视真题。
充分重视历年考题,有助于把握考试重点。历年考题涵盖了各章节的典型题型,通过做历年考题不失为复习数学较好方法之一。此外,研究生入学考试每年举行一次,因此不可能每年的考题都是全新的,或者每道题都有新“花招”。事实表明最新的考题与往年考题非常雷同的占50%以上。
在认真复习完教材和复习完数学指导书后,应多做模拟题。在规定的时间内做几套模拟试卷,一是可以了解一下自己对所考的知识点究竟掌握到什么程度,同时可以了解到自己的薄弱环节从而抓紧时间补上。再者通过平时的“练兵”可以给应试时提供点临场发挥的经验。有相当一部分考生的经验证明:如果考生能够通过做题将所遇到的各种题进行延伸或将试题的变式做到融汇贯通,一定会在考试中运用自如超常发挥,取得好成绩。
独立做题,不依赖答案并善于总结。
学习的过程中一定要力求全部理解和掌握知识点,做题的过程中先不要看答案,如果题目确实做不出来,可以先看答案,看明白之后再抛弃答案自己把题目独立地做一遍。不要以为看明白了就会了,只有自己真正做一遍,印象才能深刻。
注意一定要在学习过程中写出自己的感受,可以在书上以题注的形式或者就是做笔记,尽量深挖例题内涵,这一点很重要,并且要贯彻前三轮的复习,如果最后一轮复习我们有了自己整理的笔记,就会很轻松。有同学说学习线性代数最好的办法就是亲自推导,这话很有道理,事实上如果我们学习什么知识都采取这种态度的话,那肯定都会学得非常好。
从掌握解题技巧,使其化为己有。
根据自己的总结或在权威考研辅导机构的帮助下,考生可以知道常规的题型和解题方法与技巧,但考生如何才能真正吸收消化这些知识以成为自己的知识呢?那就是要进行相当量的综合题练习。因为在复习过程中,不少考生会渐渐地有能力解答一些基本题目,但如果给他一道较为综合的大题,他就无从下手了。所以要做一定量的综合题。
首先从心理上就不要害怕这样的题目,因为大题目肯定是可以分解为若干个小题目的。这样一来,考生要掌握的东西就显然被分为了两个大方向。一是小题目,实质上也就是基础知识点的掌握与常规题型的熟练掌握;二是要能够将大题目拆分为小题目,也就是说能够出题专家的思维方式来推测此大题目是想考我们什么知识点。陷阱在哪儿?我们应该分为几个步骤来解这道题。这两个方面的知识是考生平时复习整个过程中要加以思考的问题,因为基础知识点要不断地巩固加强,将大问题细分的能力是平时的日积月累而形成的本领。
最后,提醒大家:数学复习强调的是学习,要拿出重新学习的劲头亲自动手去做、去思考。在学习数学的时候,最好培养自己的兴趣,兴趣是最好的老师,只要培养出了兴趣自然而然就找到了学习数学的乐趣。如果实在提不起兴趣就拣一些简单的知识点复习,积累一定的自信和兴趣之后再逐一攻破。带着兴趣去学习,在快乐中考研!
高等数学考研心得篇十一
随着伦敦奥运会已闭幕,2013年考研生的暑期复习也已过半,考生是否把握住了这段时光,对公共课和专业课的知识是否掌握牢固。如果还没,那么下面的暑期复习,考生要牢牢把握住时机,加强复习强度,强化知识点记忆。
常常有人说“得暑假者的天下”,可谓之暑假时光的复习重要性,很有可能决定此次考研的成败。在考研四门科目中,考研数学可称之难度最大,以其综合性强、知识点覆盖面广、难度大等特点,考生在暑期复习时,一定要合理安排好考研数学的复习。
下面我们重点说一下考研数学中最重要的分支――高等数学。高等数学是考研数学中所占内容最多的部分,在数一和数三中,高数部分占总分的.56%,在数二中,高数部分占总分的78%,可见高等数学对考研数学的成绩起着至关重要的作用。
很多考生往往对高等数学的复习不得其法,下面,由考研专家为广大考生提供几点高等数学复习建议,希望对考生们有所帮助。
第一,基础是命根,把握住基础知识才能得高分。
考生们要明确考研数学主要考查的是基础知识部分,包括基本概念、基本理论、基本运算等,只有清晰掌握概念、基本运算,才能真正把握住考研数学。
而高等数学的基础应在极限、导数、不定积分、定积分、一元微积分的应用,当然其中还应包含中值定理、多元函数微积分、线面积分等内容。而考查的另一部分则是分析综合能力。因为现在考试中高数很少以一个知识点命题的,一般都是几个知识点的综合考查。要对这几个基础知识进行针对性复习,这样才能取得高分。
第二,高等数学知识点解析,充分把握重点。
关于不定式的极限,要求考生掌握不定式极限的各种求法,比如:四则运算、洛必达法则等。在此还有两个重点知识需要掌握:1.另外两个重要的极限的知识点;2、对函数的连续性的探讨。这也是需要重点掌握的知识点。
关于导数和微分,考试重点考查的知识点是导数的定义,也就是抽象函数的可导性。另外,还需要熟练掌握各类多元函数求偏导的方法以及极值与最值的求解与应用问题。
关于积分,历年来定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重点考查对象。在求积分的过程中,特别注意积分的对称性,利用分段积分去掉绝对值把积分求出来。二重积分的计算,当然数学一里面还包括了三重积分,这里面每年都要考一个题目。另外曲线和曲面积分,这也是必考的重点内容。
关于微分方程、无穷级数以及无穷级数求和等,这几个考点是有一定难度的,需要记忆的公式、定理比较多。微分方程中需要熟练掌握变量可分离的方程、齐次微分方程和一阶线性微分方程的求解方法,以及二阶常系数线性微分方程的求解,对于这些方程要能够判断方程类型,利用对应的求解方法,求解公式,能很快的求解。对于无穷级数,要会判断级数的敛散性,重点掌握幂级数的收敛半径与收敛域的求解,以及求数项级数的和与幂级数的和函数等。最后,制定复习计划,事半功倍。
针对高等数学的复习,需要制定一个具有针对性的复习计划,这样可以有重点有针对的进行知识点复习,这样按计划执行复习,可以达到不错的效果,使复习成果有质的提高。
高等数学考研心得篇十二
随着气温一日日升高,夏日的炎热浮出水面,焦躁的情绪悄然之间也弥漫在考研自习室,但我们的考研计划却必须仍然保持步调,尤其是考研数学的复习,切忌烦躁情绪影响做题效率。当“考研一族”的你发现自己在酷暑天变得心情烦躁、大脑一片糊涂,又正好碰到一道看似简单的数学题无法解开时,你可以看看答案确认自己遗忘的知识点或者翻翻课本再重新理清头绪试做一遍。总之,切记不要惊慌、不要抱怨、稳住情绪、理清知识点,有秩序有步骤的分析问题所在。在夏日中复习考研数学,我们必须在稳重求胜!
高等数学是一门很抽象的学科,理解的时候,不要纠结于表面的概念,要在思考的时候,在脑中构建一个模型,这个很像编程时,思考内存模型。或者构建自己的复习思路,当复习到高数后面的知识点事,要结合前面的知识点,最后把学到的知识整体联系起来。数学的复习是一项长期工程,关键在于恒心和坚持,只有如此,才能取得最后的'成功,因此,希望你能严格要求自己,能够保证每天都完成相应的学习任务。在暑期结束的时候,如果你都在稳扎稳打的看书了,高等数学的复习应该已经告一段落,考研数学复习的任务也就完成了三分之一。
线性代数在考研数学中难度较高等数学来说要简单得多,但是考试题通常需要结合很多知识点才能解答出来。所以考生要抓住暑假这段时间踏踏实实看一遍线性代数的参考书,然后自己做出总结,并将各知识点串联在一起,结合少量习题理解知识点考核重点即可。
概率论与数理统计在考研数学初试中题型比较固定,一般情况下难度中等,所以,虽然酷暑难耐,同学们在复习这门课程时完全不必太过焦急。花一周左右的时间对照往年考纲,安心看参考书,做少量题型就可以对后期的复习有很大帮助。
如果你在前几个月对待考研复习的态度只是“两天打渔三天晒网”,那么暑期是你踏实打基础的最佳时机。一般来说,这两个月过去之后,九月份十月份的复习就会显得有秩序,反之,等到新的学期,一旦计划不好就会严重影响后期考研数学的复习进度。考研的同学都深知一点“得数学者,得天下”,若考研数学复习的进度不佳,会直接影响到其他三门的复习情况。因此,虽然烈日当头,我们依然要淡定的复习考研数学,一步一个脚印,踏踏实实,在稳重求得以后的胜利!
高等数学考研心得篇十三
暑假
阶段是考研学子的黄金期,大家基本已经对高数的总体有了了解,也许对很多考点还只是大致的复习,没有深入,这个不要紧,因为还有半年的时间。在这一阶段的主要目标是针对高数中的重点考点做强化复习,对一般难度和常见题型要做到熟练掌握。求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。这一部分更多的会以选择题,填空题,或者作为构成大题的一个部件来考核,复习的关键是要对这些概念有本质的理解,在此基础上找习题强化。
求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。
计算题:计算不定积分、定积分及广义积分;
关于
变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。这一部分主要以计算应用题出现,只需多加练习即可。
计算题:求向量的数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间平行、垂直的关系,求夹角;建立旋转面的方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目。这一部分的难度在考研数学中应该是相对简单的,找辅导书上的习题练习,需要做到快速正确的求解。
判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;求二元、三元函数的方向导数和梯度;求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的.综合题,应结合起来复习;多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到
其他
领域的知识,在复习时要引起注意,可以找一些题目做做,找找这类题目的感觉。二重、三重积分在各种坐标下的计算,累次积分交换次序;第一型曲线积分、曲面积分计算;第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;第二型(对坐标)曲面积分的计算,高斯公式及其应用;梯度、散度、旋度的综合计算;重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。
求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,求线性常系数齐次和非齐次方程的特解或通解;根据实际问题或给定的条件建立微分方程并求解;综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。
总之,数学要想考高分,考生必须认真系统地按照考试大纲的要求全面复习,掌握数学的基本概念、基本方法和基本定理。注意抓题型的解决方法和技巧,不断总结。而这一切的获得,都是建立在大量的做习题的基础上的,但是做习题不仅仅是追求量,还要保证质,所谓“质”,就是彻底理解所做过的每一道题,而这一点通常显的更为重要!
高等数学考研心得篇十四
大家好,今天我们来说一下极限的复习方法。我们都知道高等数学在整个考研数学中占到了56%的比例。所以复习好高等数学至关重要。而极限是高等数学的基础,所以极限学习的成败也就在一定程度上决定了高等数学的成败。
我们先看一下高等数学的整体框架:
从中我们可以看出:高等数学用极限定义的连续,可导,级数;并且导数应用中用洛必达法则求极限。而不定积分是导数的逆运算,定积分的定义也用到了极限思想。所以学好了极限就相当于为整个高等数学的学习奠定了基础。在这里,向蠢鲜将给大家分享一下极限的复习方法。
1.牢记极限的知识体系。
这一点对学习任何知识都适用。大家只有掌握了极限的知识体系,才能清楚极限包含的内容以及可能的重难点。极限这章包括了三个部分:首先是极限的概念以及无穷小和无穷大的介绍;然后是极限的基本性质;最后是极限的计算方法。大家可以把这个知识体系与考纲做个对照,就会发现极限的计算是重点。在清楚了重点后,复习极限时就可以做到详略得当,有的放矢。
2.理解极限知识点内容。
在牢记知识体系之后,大家要做的自然是理解知识点。首先是极限的概念以及无穷小和无穷大的介绍。针对极限的概念,大家没必要像定积分定义那样记的那么准。历年考研几乎没考过用定义来求极限。所以,大家要做的是理解这个概念,并能用自己的话来表述。特别是教材或者参考书上针对概念的注解是大家需要关注的。至于无穷小和无穷大,关键也是要理解内涵,并且与极限联系。然后是极限的基本性质。大家也不需要强记性质。大家需要做的还是理解。即要多问问自己这条性质怎么来的。比如说函数极限的局部有界性和数列极限的有界性。那么大家就要想想为什么函数极限是局部有界呢?再比如函数极限的局部保号性及推论是怎么来的?我想如果大家都能给出证明的话,那这些性质也就自然记住了。最后是极限的计算。这个是重点。每年的考研必考至少一道关于极限的计算大题。但是在学习极限时,很多同学都是在这里出现了瓶颈。究其原因,我想主要是两点:一,方法理解不透彻。具体就是被极限式子的形式多,因而求极限的方法多,很多同学容易混淆,张冠李戴,没理解方法的使用条件和内涵。比如求极限的常用方法:等价无穷小替代。很多同学一看到题目有已知的等价无穷小就盲目的利用等价替换。殊不知等价无穷小替代是有条件的,即一般情况下整个式子的`乘除因子才能替代。再比如洛必达法则求极限。很多同学一看到0比0或者无穷比无穷就毫不犹豫的用这个法则。但是,在使用洛必达法则前,要满足三个条件。所以,希望大家对极限的求解方法要理解透彻,要注意这些方法的使用条件,这样才不会错。二。心态。因为求极限的方法比较多,而且题目更多。很多同学为了更好的巩固知识点,做了大量的题。这种想法是好的,但是同时会出现大量不会的题。所以一些同学就开始灰心丧气,心态失衡,继续题海战术。这样的恶性循环造成了否定自己,最终会的也不会了。针对这种情况,我建议大家要学会对求极限的题目进行归类。每一类做一些题目就够了。它的目的是巩固知识点不是为了做难题。大家只有掌握了方法和类型,以后做题就能对号入座,也就不用题海战术了。
3.练习巩固。
在大家掌握了知识体系以及知识点后就需要适量的题目来巩固。在这里,我坚决反对题海战术。因为大家的时间有限并且题海战术在没理解知识点之前是没用的。现在社会做事情都讲究高效,我希望大家能够事半功倍。那么针对极限这章,我前面说了计算是重点。所以我希望大家对极限计算方法进行总结。大家可以按照以下思路来。首先,能代入,就用四则运算。然后,如果不能代入,就可以先看看能不能用等价无穷小化简。化简后,再看被极限式子类型(7种类型)。最后,根据类型以及方法的适用条件来选择合适方法。有了这个思路,大家就可以做一些题,然后自己总结归纳。
总之,希望大家经过这三个步骤能够学习好极限,为以后的高等数学的复习打好基础。祝大家考研顺利,马到成功!
将本文的word文档下载到电脑,方便收藏和打印。
高等数学考研心得篇十五
从刚刚结束的2017年的考研数学来看,其试卷结构、命题方式等依旧延续往年的出题风格,并且按照近几年命题趋势,命题人采用更加灵活多变的命题形式考查考生的对基础知识点的掌握及各种综合应用的能力。以下是百分网小编搜索整理的关于2017考研高等数学高频考点分析,供参考阅读,希望对2018年参加考研的考生们有所帮助!想了解更多相关信息请持续关注我们应届毕业生考试网!
高频考点:直接计算各种极限;极限的局部逆问题,即给定极限值或函数的连续点反过来确定式子中的'参数;无穷小量阶的比较和确定;讨论函数的连续性、判断间断点的类型;讨论函数的零点或方程根的个数。
高频考点:导数与微分的求解;隐函数求导;分段函数的可导性;方程的根;证明不等式;中值定理及其相关证明;函数极值;导数的物理和经济学应用;用导数研究函数性态和描绘函数图形,求曲线渐近线。
高频考点:不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的相关证明题;定积分的物理应用和几何应用,如计算旋转面侧面积、旋转体体积、变力做功等。
高频考点:求直线方程和平面方程;平面与直线间关系及夹角的判定;旋转曲面方程,柱面方程的求解。
高频考点:偏导数存在、可微、连续的判断;多元函数的一阶、二阶偏导数;空间曲面的切平面和法线,空间曲线的切线和法平面;多元函数无条件极值和条件极值;二元连续函数在有界平面区域上的最大值和最小值。
二重积分是数二和数三考生重点把握的考点;数学一的内容,高频考点包括三重积分的计算;第一型曲线和曲面积分计算;第二型曲线积分计算、格林公式、积分与路径无关、斯托克斯公式;第二型曲面积分计算、高斯公式。
数一数三的考生需要把握的内容,高频考点:常数项级数的收敛、发散、绝对收敛和条件收敛的判断;幂级数的收敛半径和收敛域;幂级数的展开和求和。
高频考点:一阶线性微分方程;可降阶方程;二阶线性常系数齐次和非齐次方程;微分方程的应用。
除了以上分章节的考查重点,还有跨章节乃至跨科目的综合考查题,这部分题目特点就是考试综合性的体现。数学作为一门经典学科,在知识点的范围和要求上一般没有很大浮动,但题目千变万化,这让大家在平时的复习当中感觉很难,其实数学题型看似眼花缭乱没有规律可循,其实万变不离其宗,基本的概念、形式、定理都是经过数百年的验证铸就的完善理论体系,纵使考题有不计其数的具体形式,考查的内容无外乎上述的基本知识点及建立在对其深入理解基础上的应用。
【本文地址:http://www.pourbars.com/zuowen/15521520.html】