云南数学中考考点归纳总结 云南数学中考试卷分析(3篇)

格式:DOC 上传日期:2023-03-11 09:28:01
云南数学中考考点归纳总结 云南数学中考试卷分析(3篇)
时间:2023-03-11 09:28:01     小编:zdfb

当工作或学习进行到一定阶段或告一段落时,需要回过头来对所做的工作认真地分析研究一下,肯定成绩,找出问题,归纳出经验教训,提高认识,明确方向,以便进一步做好工作,并把这些用文字表述出来,就叫做总结。相信许多人会觉得总结很难写?下面是小编为大家带来的总结书优秀范文,希望大家可以喜欢。

云南数学中考考点归纳总结 云南数学中考试卷分析篇一

圆上各点到定点的距离都等于定长

到定点的距离等于定长的点都在同个平面上

因此,圆心为o、半径为r的圆可以看成所有到定点o距离等于定长r的点的集合

2、弧、弦、圆心角

弧:圆上任意两点间的部分叫做圆弧,简称弧。

圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆

弦:连接圆上任意两点的线段,叫做弦。经过圆心的弦,叫做直径

圆心角:顶点在圆心的角

圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴

圆是中心对称图形,圆心o是它的对称中心

3、圆周角

顶点在圆上,并且两边都圆相交的角叫做圆周角。

4、圆周角定理

在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半

推论:

半圆(或直径)所对的圆周角是直角,90度的圆周角所对应的弦是直径。

推论:

圆的内接四边形对角之和为180度

注意:对内接四边形的判定,必须4个顶点都在圆上。

5、点和圆的位置关系

点p在圆内d点p在圆上d=r

点p在圆外d>r

6、不在同一直线上的三个点确定一个圆

注意:不在同一直线这一要点

经过三角形的三个顶点可以做一个圆,这个圆叫作三角形的外接圆

外接圆的圆心是三角形三条边垂直平分线的交点,叫作这个三角形的外心

特殊的:直角△的外心在斜边上的中点。

一般求△外心的题往往是直角△或者等腰△,等腰△请结合垂径定理和勾股定理

7、直线和圆的位置关系

直线l和圆o相交(有两个公共点)d直线l和圆o相切(有一个公共点)d=r直线为切线,点为切点

直线l和圆o相离(没有公共点)d>r

8、切线的判定定理

经过半径的外端并且垂直于这条半径的直线是圆的切线

在灵活运用该定理的同时,切莫忘记第三大点中的判定方法!(往往在出现角平分线、等腰三角形的场所,我们需要用到此方法去判定相切)

9、切线的性质定理

圆的切线垂直于过切点的半径

这两个定理的运用:前者是不清楚直线与圆的关系,进行判断。后者是已知直线与圆相切,进行性质分析。

10、切线长定理

经过圆外一点作过圆的切线,这点和切点之间的线段的长,叫作这点到圆的切线长

从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。这个定理叫作切线长定理。

云南数学中考考点归纳总结 云南数学中考试卷分析篇二

一、定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:

y=ax^2+bx+c

(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,iai还可以决定开口大小,iai越大开口就越小,iai越小开口就越大.)

则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

二、二次函数的三种表达式

一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)^2+k[抛物线的顶点p(h,k)]

交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点a(x?,0)和b(x?,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

三、二次函数的图像

在平面直角坐标系中作出二次函数y=x^2的图像,

可以看出,二次函数的图像是一条抛物线。

四、抛物线的性质

1.抛物线是轴对称图形。对称轴为直线

x=-b/2a。

对称轴与抛物线的交点为抛物线的顶点p。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点p,坐标为p(-b/2a,(4ac-b^2)/4a)

当-b/2a=0时,p在y轴上;当δ=b^2-4ac=0时,p在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

δ=b^2-4ac>0时,抛物线与x轴有2个交点。

δ=b^2-4ac=0时,抛物线与x轴有1个交点。

δ=b^2-4ac<0时,抛物线与x轴没有交点。x的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

五、二次函数与一元二次方程

特别地,二次函数(以下称函数)y=ax^2+bx+c,

当y=0时,二次函数为关于x的一元二次方程(以下称方程),

即ax^2+bx+c=0

此时,函数图像与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

云南数学中考考点归纳总结 云南数学中考试卷分析篇三

1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

解析式顶点坐标对称轴

y=ax^2(0,0)x=0

y=a(x-h)^2(h,0)x=h

y=a(x-h)^2+k(h,k)x=h

y=ax^2+bx+c(-b/2a,[4ac-b^2]/4a)x=-b/2a

当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

当h<0时,则向左平行移动|h|个单位得到.

当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;

当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;

当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.

4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b^2-4ac>0,图象与x轴交于两点a(x?,0)和b(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=

(a≠0)的两根.这两点间的距离ab=|x?-x?|

当△=0.图象与x轴只有一个交点;

当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.

顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

y=ax^2+bx+c(a≠0).

(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).

(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).

【本文地址:http://www.pourbars.com/zuowen/1552200.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map