大自然中的景色常常给人以美的享受和心灵的启发。在写总结时,我们需要明确总结的目的和对象,这样才能更好地进行概括。下面是一些经验丰富者写的总结样本,供大家参考借鉴。
高等数学考研心得篇一
对于大部分同学而言,由于高等数学学习的时间比较早,而且原来学习所针对的难度并不是很大,又加上遗忘,现在数学知识恐怕已经所剩无几了,所以,这一遍强调学习,要拿出重新学习的劲头亲自动手去做,去思考。
(2)复习顺序的选择问题。
我们建议先高等数学再线性代数再概率论与数理统计。高等数学是线性代数和概率论与数理统计的基础,一定要先学习。我们并不主张三门课齐头并进,毕竟三门课有所区别,要学一门就先学精了再继续推进,做成“夹生饭”会让你有种骑虎难下的感觉,到时你反而会耗费更多的时间去收拾烂摊子。同学们也可根据自己的特殊情况调整复习顺序。
(3)注意基本概念、基本方法和基本定理的复习掌握。
其他一切都是空中楼阁。
(4)加强练习,重视总结、归纳解题思路、方法和技巧。
数学考试的所有任务就是解题,而基本概念、公式、结论等也只有在反复练习中才能真正理解和巩固。试题千变万化,但其知识结构却基本相同,题型也相对固定,一般存在相应的解题规律。通过大量的训练可以切实提高数学的解题能力,做到面对任何试题都能有条不紊地分析和计算。
(5)不要依赖答案。
学习的过程中一定要力求全部理解和掌握知识点,做题的过程中先不要看答案,如果题目确实做不出来,可以先看答案,看明白之后再抛弃答案自己把题目独立地做一遍。不要以为看明白了就会了,只有自己真正做一遍,印象才能深刻。
(6)强调积极主动地亲自参与,并整理出笔记。
注意一定要在学习过程中写出自己的感受,可以在书上以题注的形式或者就是做笔记,尽量深挖例题内涵,这一点很重要,并且要贯彻前三轮的复习,如果最后一轮复习我们有了自己整理的笔记,就会很轻松。有同学说学习线性代数最好的办法就是亲自推导,这话很有道理,事实上如果我们学习什么知识都采取这种态度的话,那肯定都会学得非常好。
高等数学考研心得篇二
高等数学在考研数学中占有的比例非常的大,可以说学好了高等数学考研数学就成功了一大半,那么怎样更加有效、高效的学习高等数学这门学科呢?下文分享了部分高数的学习建议,希望通过本文的探讨给考生提供一些帮助和一些启发。
考研数学每门学科的特点不同,学习方法也不尽相同,如果形象去描述高等数学的学习,可以用盖楼来形容。高等数学的学科搭建是呈现层状上升的态势,与线性代数不同,线性代数呈现的是网状结构。层状结构的知识,要求我们首先打好基础,所谓万丈高楼平地起,就是这个道理。要了解这栋高楼,就要先了解它的作用及框架。数学学科不是空中楼阁,数学是一门随实践发展而展开并且指导实践的学科,它的`研究对象是函数,研究手段是极限,利用极限的方法消除误差,使研究结果具有指导意义也具有可行性。
位于高楼底层的是一元函数的相关理论。众所周知,高等数学又称为微积分,即由微分学和积分学两部门构成,因此首先研究的是一元函数的微分学问题和积分学问题。所谓微分学问题是指与导数相关的理论,利用导数研究函数的一系列形态;所谓积分学,是做为微分学的逆运算出现的,不定积分探讨函数的原函数问题,定积分探讨一些积分的应用。一元函数的理论学习清楚以后,往上就是第二个层次多元函数微积分了。
通过空间解析几何一章的过渡,进入多元函数的微积分部分,对于数一数二数三不同考生要求不同,需要考生根据考试大纲确认自己需要掌握的内容,大致描述一下,微分学积分学的基本理论是都要求掌握的,只是数学一的同学还需掌握一部分几何应用。比如,微分学部分,数学一的同学会考到方向导数与梯度,空间曲线的切线与法平面,空间曲面的切平面与法线;积分学部分数一的同学会考到三重积分,对弧长对坐标的曲线积分,对面积对坐标的曲面积分等内容。
微分方程和级数部分不同门类考生区别比较大,需要根据考试大纲进行学习。微分方程部分比较简单,只需认清楚方程所属类型,根据固定的方法去解题就可以了,属于记忆性的学习,难度不大,这里单独考微分方程的情况一般是小题,微分方程结合级数结合偏导数可以出大题,但难度都不高。级数部分普遍觉得比较难掌握,数二的同学这一部分是不做要求的。级数部分的学习需要首先认清级数,然后学清楚逻辑。级数分为数项级数和函数项级数,对于数项级数的考查集中在敛散性的判定上,以小题为主,数一的同学要求稍高一些,会出一些与判别法相关的大题。函数项级数里边,数三的同学主要考察幂级数,数一的同学还需考查傅里叶级数。函数项级数的考查重点在级数的求和和展开上,是要方法得当并不困难。
高等数学考研心得篇三
高等数学是工科、经管类等专业核心课程之一,是后续专业基础课和专业课学习的重要工具,也是对学生的思维能力、思维方法及创新能力培养的重要手段,因此学好高等数学是很重要的。但随着高等教育的大众化,学历教育的层次和办学模式的多样化,作为基础课的数学,教学班一般多为大班授课,加之学生基础往往参差不齐,学习方法差异较大,这就给数学课的教学增加了难度。下面就这些年自己的教学实践,谈谈怎样搞好高等学校数学课的课堂教学。
一、重视绪论课,激发学生对高等数学的学习热情:
二、通过教学使学生逐步树立学好高等数学的信心。
近几年来我主要从事自考院高等数学的教学工作,针对学生的数学基础比较薄弱,过关率不高,有很多学生一开始就对学好高等数学没有信心等情况。我决定,必须因材施教,在课堂上应尽可能的用通俗易懂的语言来描述数学概念,让学生逐步明白学习高等数学不是简单地从“高三”到“高四”,更主要是思维方式的转变。使学生明白基础不好未必就学不好高等数学,只要方法得当是可以学好高等数学的。
三、注重教学效果。
加强对学生的了解与交流,建立良好的师生关系,有助于将单纯的教育教学过程变成师生平等对话、合力互动、教学相长的友好合作的过程。心理学认为:满足人们对理解、尊重和追求的需要,就能激发人的潜能,使人有一股内在的动力,朝所期望的目标前进。因此教师要树立以学生为主体的生本教育观念,要尊重学生、赏识学生、鼓励学生、相信学生,达到激发学生学习兴趣的目的。另外,教师要注意调控好个人的情绪,不能随意把自己的喜怒哀乐带进教室。良好的教学情绪,积极的教学情感,能唤醒学生愉快的情绪体验,使之精力充沛,兴趣盎然。
好的提问方式常常能激起学生的求知欲和探索欲,引发辩论,引导学生全身心地投入到深层次的思维活动中,从而增强学生的学习兴趣。为此,可以通过以下两个途径:
1、重视预习。预习是学习过程中很重要的一个环节,一方面让学生带着问题来听课,以提高听课的效率。更重要的是逐步培养学生的自学能力。在我看来,大学教育的主要的目的之一就是培养学生的自学能力。教师在每次授课结束时明确提出下次授课的具体内容和预习要求,让学生对将要学习的内容有问可提,才真正达到预习的目的。
2、引导学生分析归纳所提的问题,并学会做出恰当的评价。以鼓励为主,学生提的问题越是多样就表明他们预习效果越好,然后鼓励他们把这些问题分类,教师因势利导地再提出新的问题,并在讲解过程中逐步使学生理解所提问题的价值,分析问题之间的关系,了解其中的含义。
四、重视数学概念和定理的讲述。
在讲叙数学概念和定理时,不仅要向学生传授这些知识,还要向他们传授这种抽象、概括问题的思维方法,让学生学会从具体内容中抽象概括,找出事物的本质。例如,在建立定积分概念时,通过对两个具体问题一一曲边梯形的面积和变速直线运动的路程的计算,可以看到:前者是几何量,后者是物理量,实际意义并不相同,但它们的数学思想和计算方法是相同的。排除其具体内容,抽出其本质特征,即单从数量关系看,都具有一种相同结构的特定形式,从而抽象概括出定积分的普遍性定义。
五、要重视习题课?
1、首先应注重培养学生的逻辑思维能力。逻辑思维能力包括抽象与概括的能力、分析与综合的能力和归纳与演绎的能力。习题课上教师通过具体的例题对高等数学中的概念、定理和法则进行梳理,使学生加深对各个知识点的联系。
2、此外,在习题课上,对所学的基本定理、基本概念要重点强调它们的条件、应用范围及其相互关系,使其在学生思维中形成一个完整有机的知识体系,为培养学生的创造性思维创造有利条件。新旧知识要联系着讲,不仅仅要讲这一单元的知识,也要注重对以前单元知识的复习。随着时间的推移,有些知识可能会遗忘,若在讲题的过程中,把以前单元的知识也捎带着复习一下,不仅可以增加学生的记忆效果,还会加深学生对本单元知识的理解,起到温故而知新的作用。?总之,数学学科自身的特点决定了要学好它就必须对它产生兴趣。为此,需要教师在教学过程的各个环节中,根据学生的具体情况和心理特点,因材施教,采用多样化的教学方法和技巧,有计划、有目的地培养和激发学生的学习兴趣,最终达到较好的教学效果。
高等数学考研心得篇四
摘要:高等数学作为一门基础性学科,在高校教学中具有举足轻重的地位。从基本概念讲解和知识的综合应用两个方面介绍了在本科生高等数学教学中的体会与思考。
高等数学是高校教学中的一门重要课程,也是大多数刚踏入大学校园的本科生必修的一门课程。随着高校规模的进一步扩大,学生的素质和水平参差不齐,而高等数学又是一门理论性强、具有严密逻辑思维性的基础学科,因此要求每位高等数学教师要切实重视这门课的教学。要想学生真正喜欢上这门课,并且很好地掌握这门课,就需要不断提高教师的教学质量。
高等数学基础性强、理论性强、逻辑性强,它的推理、证明、数据演算等必须经得起推敲,容不得半点虚假。为了避免出现“一听就会,一做就错”、生搬硬套、遇到实际问题不会分析的状况,在高等数学的课堂教学中要从基本概念、基础知识出发,逐步培养学生的分析、推理能力和综合应用能力。
一、注重基本概念的讲解。
数学概念是人类对现实世界的空间形式和数学关系的简明概括,它是推导定理、公式、法则的出发点,是建立理论体系的着眼点,是数学教学的核心内容。但是许多学生在学习高等数学的过程中不注重课堂教师概念的讲解,只偏重于解题。一看到题目,如果题目曾经见过,不管条件如何就开始生搬硬套;如果题目没有见过就发呆愣神,根本不会分析推理。因此,在课堂教学中,一定要注重概念的理解,而不是将一个个抽象的概念“冰冷冷”地放在那儿,教师应该将知识体系很好地连贯起来,同时将所学内容与实际生活结合起来,能够生动形象地组织教学。
基本概念的引入和数学史结合。
在讲解基本概念的时候,穿插一些数学史的内容,一方面可以加深学生对数学的兴趣,另一方面也可以加深对概念的理解。例如,在讲解“导数”概念的时候,首先引入一些数学史的内容。
到了17世纪,有许多问题需要解决,这些问题也就是促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是求即时速度问题;第二类是求曲线的切线问题;第三类是求函数的最大值与最小值问题;第四类是求曲线长、曲线围成的面积、曲面围成的体积、物体重心的问题。这些问题在当时得到广泛的关注,许多著名的数学家、物理学家、天文学家都提出了许多很有建树的理论,为微积分的创立作出了贡献。
17世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作,他们最大的功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。
牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼兹却侧重于几何学来考虑。
这一段数学史的讲解,首先为紧接着引入“导数”概念时给出两个引例(直线运动的速度和曲线的切线)做好了铺垫,也引入导数概念的出发点——直观的无穷小量,与上一章的极限概念结合起来。其次,17世纪要解决的前三个问题,也就是导数这一部分重点要解决的问题,开篇就把该章的主要框架给出。第四个问题为后面积分学的引入埋下了伏笔。介绍牛顿和莱布尼兹的主要贡献,为定积分求解公式称为牛顿-莱布尼茨公式给出了合理的解释。
一段数学史的引入既让学生了解了微积分的发展,调动了学生学习兴趣,也可以更好地衔接课堂内容,何乐而不为呢?2.基本概念和实际相结合在讲解级数这一部分内容时,学生总觉得枯燥、抽象,感觉就是一些运算,并没有什么实际的应用。
当achilles再花b秒时间跑完b米时,乌龟又向前爬了c米,……这样的过程可以一直继续下去,因此achilles永远也追不上乌龟。
显然这一结论有悖于常理,是绝对荒谬的,可是如何用数学语言解释清楚呢?这样一个悖论可以调动学生积极思考。在思考的过程中,引入级数的概念。接着讲解级数的一些基本性质,从而再给出一些级数在实际中的应用,例如:一慢性病人需每天服用某种药物,按医嘱每天服用0.05mg,设体内的药物每天有20%通过各种渠道排泄,问长期服药后体内药量维持在怎么样的水平?通过对于级数的计算可以得到长期服药后体内药量近似为:0.0510.25mg54545423#8++`j+`j+gb=而在实际病例中,医生往往根据病人的病情,考虑体内药量水平的需求,确定病人每天的服药量。如一慢性病人需长期服药,按照病情,体内药量需维持在0.2mg,设体内药物每天有15%通过各种渠道排泄掉,问该病人每天的服药剂量应该为多少?[2]这样声情并茂、理论联系实际的一节课就可以让学生既思考了问题,又可以掌握基本知识,同时还激发了学生对抽象数学的兴趣,收到事半功倍的效果。
二、注重知识的综合应用。
高等数学现行教材中的很多例题,由于篇幅原因一般只有题目的解答过程却没有思考过程,因此爱问问题的学生往往会问,如果是自己解题的话,怎么会这样想呢?这个疑问就是授课教师在讲解题目时重点要解决的'。也就是说,授课教师不但要把解题的过程讲解清楚,还要从解题思路方面进行引导,指导学生怎样运用所学知识独立寻找解题思路,也就是逻辑思维能力的培养。
例如在讲中值定理这一节时,有例题:设在区间i上恒有:f(x)f(x)2xx,x,xi1212212-g-!证明此函数在i上为常数函数。
学生本来对证明题就有一种畏难情绪,一见到是抽象函数的证明题,更是无从下手,一头雾水了。这时教师不能直接讲解题过程,而是要逐步分析、理解,让学生给出解题过程。
首先帮助他们分析题意,引导学生逐步思考。要想证明一个函数为常数函数,由拉格朗日中值定理可知,“如果函数在区间i上的导数恒为零,那么函数在区间i上是一个常数”,因此只要证明“在区间i上,函数的导数均为零”。
讲到此处,给学生一个思考的余地,让他们试着去选择方法,看看如何证明函数的导数为零。于是学生在思路的引导下会进一步考虑。很多学生会选择拉格朗日中值定理,将左边函数值的差转化为和导数相关的量。此时教师就可以趁势鼓励他们想着要去转化左边的式子,非常正确。但是转化的过程要利用拉格朗日中值定理,那么条件满足吗?在拉格朗日中值定理中要求所考虑的函数在闭区间内连续,对应的开区间上可导,定理中的两个条件缺一不可,而这个题目中并没有给出函数的连续性和可导性。那要怎么处理呢?如果想出现导数形式,就可以从导数的基本定义出发进行分析。导数是差商的极限,反映的是变化率。
左端只给出了函数值的差,那么自然想着要和自变量的差结合,出现差商形式,将所给等式变形为:()()xxfxfx2xx121212g---而导数是一种极限形式,进而不等式两边取极限,利用夹逼准则结合极限的性质,所证结论成立。
通过逐步分析,问题就迎刃而解了。这个分析题的过程既有学生的参与,也有教师的讲解,利用条件和基本概念逐步分析就是对学生推理思维训练的过程。对学生来说收获更大。由这个题目的分析求解过程可以发现这是一道综合性较强的题目,需要学生对每个知识点——拉格朗日中值定理、导数定义、夹逼准则以及极限的性质必须要熟练掌握,然后才会融会贯通。
数学的题目千变万化,永远做不完。这就要求学生对基本概念掌握扎实,每个知识点要理解清楚。在题目的分析过程中,对基本概念和知识点融会贯通,逐步培养自己的逻辑分析、综合思维的能力。那么无论碰到什么样的题目类型都可以独立思考,逐步分析,寻找合适的解题方法。
总而言之,高等数学的教学是需要一个过程的,在这个过程中,教师只有不断提高自己的数学素养和教学能力,才能把高等数学这门课讲好,才能逐步激发学生学习的兴趣和乐趣,达到教与学的双赢。
参考文献:
[1]卡茨.数学史通论[m].李文琳,等,译.北京:高等教育出版社,2006.
[2]陈纪修,於崇华,金路.数学分析(下册)[m].北京:高等教育出版社,2004.
[3]同济大学数学教研室.高等数学(上册)[m].北京:高等教育出版社,2007.
高等数学考研心得篇五
我们要遵循由浅入深的原则,先将书本上的知识基础打牢靠,一定要重视基础知识的学习,不要过于去追求技巧以及方法,近几年考研真题对基础知识的考察时很频繁的,像刚刚过去的_年考研数学中就有关于用导数定义来推导两个函数乘积的导数。所以,等我们把基础知识掌握牢靠后,再去学一些技巧以及方法。因此我们将基础知识的复习安排在第一阶段,希望大家给予足够重视。
第一,我们强调学习而不是复习。对于大部分同学而言,由于高等数学学习的时间比较早,而且在大学课堂上学习所针对的难度并不是很大,再加上一些知识的遗忘,现在数学知识恐怕已经所剩无几了,所以,这一遍强调学习,要拿出重新学习的劲头亲自动手去做,去思考。
第二,对于复习顺序的选择问题。我们建议先学高等数学再学线性代数,然后再学概率论与数理统计。我们知道高等数学是线性代数和概率论与数理统计的基础,一定要先学习。我们并不主张三门课一起学习,毕竟三门课是有所区别的。我们一定要学一门就先学精了再继续学其他的,倘若你不学透就开始学其他的,每一门都有好多不懂的地方,到时你反而会耗费更多的时间去补前面的知识。当然,你确实也可根据自己的特殊情况调整复习顺序。
第三,注重基本概念、定理和方法的掌握。同学们一定要结合考研辅导书和大纲,先吃透基本概念、基本方法和基本定理,只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。一些学生失分的一个重要原因就是对基本概念、基本定理理解不准确,基本解题方法没有掌握。因此,第一阶段学习必须要在数学基本概念、基本定理、重要的数学原理、重要的数学结论等方面加强学习。
第四,加强练习,多多总结、归纳解题思路以及方法和技巧。数学考试主要就是解题,而考研数学中的基本概念、公式、结论等也只有在反复练习中才能真正理解和巩固。我们通过大量的训练可以切实提高数学的解题能力,做到面对任何试题都能有条不紊地分析和计算。
第五,正确理解答案的作用。我们在学习的过程中一定要力求理解和掌握所有要考的知识点,做题的过程中一定不要先看答案,如果题目实在做不出来了,再看答案,看明白之后自己一定要把题目重新独立地做一遍。不要以为看明白了就会了,只有自己真正做一遍,印象才能深刻,才不会忘的过快,否则是无用的。
第六,每一题亲力亲为,并整理出笔记。
注意一定要在学习过程中写出自己的感受,可以在书上以题注的形式或者就是做笔记,尽量深挖例题,这一点很重要,并且要贯彻前三轮的复习,如果最后一轮复习我们有了自己整理的笔记,就会很轻松。有同学说学习线性代数最好的办法就是亲自推导,这话很有道理,事实上如果我们学习什么知识都采取这种态度的话,那肯定都会学得非常好。
在考研的路上,你肯定会遇到很多困难,我们知道身体是革命的本钱,健康的身体对于我们是很重要的,所以平时多注意饮食和作息时间,而明确的学习方法和对考研的那份坚持,是你成为赢家的第二本钱。
高等数学考研心得篇六
对于20的考研学子,如何在如今的冲刺初期阶段复习中凸显效率尤为重要。特别是那些数一,数三的考生们,因为数学复习的任务量较为繁多,所以想要在2013年的研究生考试中站稳脚跟,现阶段也是一个十分关键的时期。下面,针对区别于数2的数1数3考生数学中概率方面的一些复习技巧和计划做个总结。
首先,结合历年考纲,我们先把全书进行剖析:
第一章。
1、交换律、结合律、分配率、的摩根律;(解题的基础)。
2、古典概型――有限等可能、几何模型――无限等可能;。
3、抽签原理――跟先后顺序无关;。
5、条件概率:注意当条件的概率必须大于0;。
6、全概:原因结果贝叶斯:结果原因;。
7、相容通过事件定义,独立通过概率定义。
第二章。
1、0――1分布,二项分布,泊松分布x的取值都是从0开始;。
2、分布函数是右连续的,在求分布函数也尽量写成右连续的;。
3、分布函数的性质、概率密度的性质;。
4、连续性随机变量任一指定值的概率为0;。
5、概率为0不一定是不可能事件,概率为1不一定是必然事件;。
6、正态分布的图形性质;。
7、求函数的分布尽量按定义法,按定义写出基本公式;。
8、分段单调时应该分段使用公式再相加。
第三章(这章比较容易出错)。
1、二维分布函数的性质;(不减函数而不是单增函数;右连续)。
2、求分布函数一定要按定义来,注意画对图形;。
3、求边缘分布的时候,注意不同变量的区间用在什么地方;求x的边缘分布的话,先对x的区间进行划分,再不同的区间对y的全部区间进行积分(y在不同的区间可能有不同的函数表达)。
4、负无穷到正无穷的e的负的二分之t平方的积分;(浙三p83)。
5、算条件概率也一样,注意相应的区间;(这种题细节丢分太可惜)。
6、max(x,y)与min(x,y)相互独立的情况是什么?独立同分布又是什么?(参见08选择题)。
7、边缘分布一般不能确定分布的,只有当变量相互独立才可以。
第四章。
1、级数绝对收敛,期望才存在;。
3、浙三p120:分解的思想,还有p126;。
4、方差的和在独立和不独立时公式不一样;。
6、二维正态分布、独立不相关等价;。
7、提示:求一些积分的时候有时候可以用到对称性;。
8、数一400题p140那个评注上面t(4)=3!(会用,那么做题会很方便)。
第五章。
1、切比雪夫大数定律条件:相互独立、方差存在一致有上界;。
2、辛钦大数定律条件:独立同分布、期望存在;。
3、二项分布、泊松定理、拉普拉斯大数定理结合着看一下。
第六章。
1、样本的变量独立同分布;。
2、统计量不含未知参数;。
3、x2分布的期望和方差看下去年真题最后一道;。
4、t分布图形对称性a的那个对称性公式看下;。
5、三个分布的形式一定要掌握;。
6、p168对后面检验和估计很有帮助。
第七章。
1、矩估计就是x的1、2次方的期望;。
2、最大似然估计!有可能最大似然估计的两种方法结合在一起;(开下思路)。
3、区间估计;(如果能好好看书的话不难懂,不然就把p205复印下没事看两眼)。
第八章。
1、拒绝域与备择假设的符号相同p229。
2.p436期望和方差;。
注意:浙三上面每章都有小结,要看看。概率论与数理统计一共是八章,前五章是概率论,考研时,数学一、数学三、数学四都要考的。数理统计是后面三张,只有数学一、数学三要考的。作为前面五章的初等概率论,第一章是随机事件和概率,它的重点内容主要是事件的关系和运算。作为另外两个重点,是全概公式和几何概型。第一章不单独命题,至少不单独命大题。第二章是一维随机变量及其分布,这部分的重点内容是常见分布,它和第一章一样,也是基本概念多。单独命题和单独命大题的可能性比较少。第三章二维随机变量,重点内容是随机变量的独立性,第二是有关随机变量的联合分布、边缘分布和条件分布之间的关系。第二章当中常见分布的重点在均匀分布,这方面是考研中,经常命题的。因此,作为这章来综合题相对多一些,我认为八章当中第一个重点考核章。第四章随机变量的数字特征,这里面主要牵扯到一些重点的概念,如均值方差等,重点内容是讨论随机变量的相关性和独立性之间的关系。这也是重点章。每年考研必须考的一章。第五章有三个内容,分别是切比雪夫不等式、大数定律和中心极限定理。这不是重点章,考的机会也比较少,但至少把这三个概念要复习一下。这是概率论的五章,重点章是三、四。
数理统计另外三章,那就是第六章基本概念、第七章参数估计、第八章是假设检验。重点是第七章参数估计。第六章的基本概念目前考得比较多的,可能和分位数有关。作为第七章的有三个内容,分别是点估计、区间估计和估计量的优良性。考得比较多的有关点估计的两种方法,分别是矩法和最大似然法。第八章考得比较少。在数学仅考过一道题,后来就没有考过,所谓第八章不作为重点。还是要全面复习、重点突出。整个概率论可以说一句话,里面没有任何技巧,只要把基本概念、基本方法掌握住的话,肯定会把这部分题答好。但目前同学反映比较多的概率论和数理统计得分比较低,这是由于概率论和数理统计,与微积分、线性代数的学科特点不一样,它是一种不确定的数学,因此在复习考研的时候是把基本概念复习好,掌握最基本有关的方法,不要试图找一些技巧和解题的简单途径,那是没有可能的。所以,作为重点章,每年百分之百考,像三、四、七每年百分之考。作为数学一,有人反映数理统计是不是不作为重点,据我们统计,占概率统计总分的1/3左右,因此数理统计对数学一来说也是很重要的,数学三也是一样。
因为概率在整体数学考试中的比重不是很大,所以一些同学很容易对其放松警惕性,这样是不对的。结合历年真题分析,虽然比重不大,但是确实一些名校竞争中,关键之所在,加上其考点明确,该哪出大题就是哪出。所以希望考生能够认真对待,争取高分。
高等数学考研心得篇七
要对所学的知识有个整体的把握,及时总结知识体系,这样不仅可以加深对知识的理解,还会对进一步的学习有所帮助。
高等数学中包括微积分和立体解析几何,级数和常微分方程。其中尤以微积分的内容最为系统且在其他课程中有广泛的应用。微积分的理论,是由牛顿和莱布尼茨完成的。(当然在他们之前就已有微积分的应用,但不够系统)。
数学备考一定要有一个复习时间表,也就是要有一个周密可行的计划。按照计划,循序渐进,切忌搞突击,临时抱佛脚。
其实数学是基础性学科,解题能力的提高,是一个长期积累的过程,因而复习时间就应适当提前,循序渐进。大致在三、四月分开始着手进行复习,如果数学基础差可以将复习的时间适当提前。复习一定要有一个可行的计划,通过计划保证复习的进度和效果。一般可以将复习分成四个阶段,每个阶段的起止时间和所要完成的任务考生应给予明确规定,以保证计划的可行性。
第一个阶段是按照考试大纲划分复习范围,在熟悉大纲的基础上对考试必备的基础知识进行系统的复习,了解考研数学的基本内容、重点、难点和特点。这个时间段一般划定为六月前。
第二个阶段是在第一阶段的基础上,做一定数量的题,重点解决解题思路的问题。一般从七月到十月。这个阶段要注意归纳总结,即拿到题后要知道从什么角度,可以分几步去求解,每道题并不要求都要写出完整步骤,只要思路有了,运算过程会做了,可以视情况而灵活掌握,这样省出时间来看更多的题。所选试题可以是历年真题,也可以是书上的练习题,但真题一定要做,而且要严格按照实考的要求去做,把握真题的特点和解题思路及运算步骤。
第三个阶段是实战训练阶段,从十一月到十二月的中旬,这也是临考前非常重要的阶段。考生要对大纲所要求的知识点做最后的梳理,熟记公式,系统地做几套模拟试卷,进行实战训练,自测复习成果。在做模拟题前先要系统记忆掌握基本公式,做题要讲究质量,既要有速度,又要有严格的步骤、格式和计算的准确性。最后阶段是考前冲刺,从十二月下旬到考试。针对在做模拟试题过程中出现的问题作最后的补习,查缺补漏,以便以最佳的状态参加考试。
数学的学习一定要每天都有个进度,每天都要有题量,我们不应该搞题海战术,但是通过做题提高实战经验也是必须的,首先有个大的学习框架,然后计划到每天,怎么去学习,每天做那方面的题,定期的查漏补缺,这样的学习才真正的有效果。
高等数学考研心得篇八
数学是所有考研科目中较为难攻克的科,尤其是高等数学部分,以下是百分网小编搜索整理的关于2018年考研高等数学的复习规划,供参考阅读,希望对大家有所帮助!想了解更多相关信息请持续关注我们应届毕业生考试网!
考研数学考察的是对基础知识的综合运用,所以基础知识尤为重要,很多同学在复习时存在一个误区,认为我把难题做好就行了,难题都会做了,简单的题目就更没有问题了,其实这是错误的,如果基础知识没有掌握牢固,在复习过程中会发现越复习越困难,到复习的后期会发现连简单的问题都不知道如何下手了。这就是基础知识没有掌握牢固的结果。
在这一阶段,考生们不要和其他同学比进度,也不要单纯的追求量,完完整整的看一遍,达到看过的知识都能够熟练掌握的'程度,会比我们囫囵吞枣的看三四遍都有用,所以这个阶段不要比进度,争取把每一个知识点都掌握牢固,知道每个定理公式或方法的基本内容、适用条件、易错点等。
七月至九月份是强化阶段,强化阶段是对基础知识的综合运用。这个阶段考生们要提高综合解题能力,形成完整的知识体系。考生们这段时间主要是做题,熟练的掌握每个模块要考的题型类型以及每种题型的解题方法。这个阶段考生易犯的错误是眼高手低,觉得自己解题方法掌握了就可以了,对于计算题就放过了,这是不可以的,考研数学要求考生在规定的时间内完成规定的计算量。所以如果计算题都放过那么就更加无法提高计算能力。
考生掌握了基本的基础知识和针对每个题型的解题方法,这个阶段就需要做分类的真题。分类解析是让大家短时间内获得每个模块考点、考试题型的一种快捷方式,通过做真题了解自己对每一模块和每一题型的掌握情况,对不是很清楚的部分再继续做这一部分的习题,达到每个模块都掌握牢固,每种题型都有解决的思路。
最后这个阶段就是做模拟题,模拟考试环境、考试时间和心态,这一阶段考生在做题的时候注意时间,严格按照考研的考试时间来做真题。这个阶段考生易犯的错误特别是到了十二月份,把主要精力都放在了政治和英语上,基本上会一直不看数学,认为数学也就达到上限了,再做题也不会提高很高的分数。诚然这一阶段背政治或者英语能提的分数比较高,但是,长时间不做数学题考生就会发现再做题的时候手生,很多知识点和题型都忘记了,这样我们辛辛苦苦所掌握的知识又还回去了,岂不很可惜。所以考生们一定要坚持做题,稳中求胜。
最后,祝全体考生考试成功。
高等数学考研心得篇九
高等数学是考研数学必考内容之一,为帮助大家复习备考,以下是百分网小编搜索整理的关于2018考研高等数学复习指导,供参考借鉴,希望对大家有所帮助!想了解更多相关信息请持续关注我们应届毕业生考试网!
考研数学考察的是对基础知识的综合运用,所以基础知识尤为重要,很多同学在复习时存在一个误区,认为我把难题做好就行了,难题都会做了,简单的题目就更没有问题了,其实这是错误的,如果基础知识没有掌握牢固,在复习过程中会发现越复习越困难,到复习的后期会发现连简单的问题都不知道如何下手了。这就是基础知识没有掌握牢固的结果。
在这一阶段,考生们不要和其他同学比进度,也不要单纯的追求量,完完整整的看一遍,达到看过的知识都能够熟练掌握的程度,会比我们囫囵吞枣的看三四遍都有用,所以这个阶段不要比进度,争取把每一个知识点都掌握牢固,知道每个定理公式或方法的基本内容、适用条件、易错点等。
七月至九月份是强化阶段,强化阶段是对基础知识的综合运用。这个阶段考生们要提高综合解题能力,形成完整的知识体系。考生们这段时间主要是做题,熟练的掌握每个模块要考的题型类型以及每种题型的.解题方法。这个阶段考生易犯的错误是眼高手低,觉得自己解题方法掌握了就可以了,对于计算题就放过了,这是不可以的,考研数学要求考生在规定的时间内完成规定的计算量。所以如果计算题都放过那么就更加无法提高计算能力。
考生掌握了基本的基础知识和针对每个题型的解题方法,这个阶段就需要做分类的真题。分类解析是让大家短时间内获得每个模块考点、考试题型的一种快捷方式,通过做真题了解自己对每一模块和每一题型的掌握情况,对不是很清楚的部分再继续做这一部分的习题,达到每个模块都掌握牢固,每种题型都有解决的思路。
最后这个阶段就是做模拟题,模拟考试环境、考试时间和心态,这一阶段考生在做题的时候注意时间,严格按照考研的考试时间来做真题。这个阶段考生易犯的错误特别是到了十二月份,把主要精力都放在了政治和英语上,基本上会一直不看数学,认为数学也就达到上限了,再做题也不会提高很高的分数。诚然这一阶段背政治或者英语能提的分数比较高,但是,长时间不做数学题考生就会发现再做题的时候手生,很多知识点和题型都忘记了,这样我们辛辛苦苦所掌握的知识又还回去了,岂不很可惜。所以考生们一定要坚持做题,稳中求胜。
1.运用洛必达法则和等价无穷小量求极限问题,直接求极限或给出一个分段函数讨论基连续性及间断点问题。
2.运用导数求最值、极值或证明不等式。
3.微积分中值定理的运用。
4.重积分的计算,包括二重积分和三重积分的计算及其应用。
5.曲线积分和曲面积分的计算。
6.幂级数问题,计算幂级数的和函数,将一个已知函数用间接法展开为幂级数。
7.常微分方程问题。可分离变量方程、一阶线性微分方程、伯努利方程等的通解、特解及幂级数解法。
8.解线性方程组,求线性方程组的待定常数等。
9.矩阵的相似对角化,求矩阵的特征值,特征向量,相似矩阵等。
10.概率论与数理统计。求概率分布或随机变量的分布密度及一些数字特征,参数的点估计和区间估计。
高等数学考研心得篇十
暑假
阶段是考研学子的黄金期,大家基本已经对高数的总体有了了解,也许对很多考点还只是大致的复习,没有深入,这个不要紧,因为还有半年的时间。在这一阶段的主要目标是针对高数中的重点考点做强化复习,对一般难度和常见题型要做到熟练掌握。求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。这一部分更多的会以选择题,填空题,或者作为构成大题的一个部件来考核,复习的关键是要对这些概念有本质的理解,在此基础上找习题强化。
求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。
计算题:计算不定积分、定积分及广义积分;
关于
变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。这一部分主要以计算应用题出现,只需多加练习即可。
计算题:求向量的数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间平行、垂直的关系,求夹角;建立旋转面的方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目。这一部分的难度在考研数学中应该是相对简单的,找辅导书上的习题练习,需要做到快速正确的求解。
判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;求二元、三元函数的方向导数和梯度;求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的.综合题,应结合起来复习;多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到
其他
领域的知识,在复习时要引起注意,可以找一些题目做做,找找这类题目的感觉。二重、三重积分在各种坐标下的计算,累次积分交换次序;第一型曲线积分、曲面积分计算;第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;第二型(对坐标)曲面积分的计算,高斯公式及其应用;梯度、散度、旋度的综合计算;重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。
求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,求线性常系数齐次和非齐次方程的特解或通解;根据实际问题或给定的条件建立微分方程并求解;综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。
总之,数学要想考高分,考生必须认真系统地按照考试大纲的要求全面复习,掌握数学的基本概念、基本方法和基本定理。注意抓题型的解决方法和技巧,不断总结。而这一切的获得,都是建立在大量的做习题的基础上的,但是做习题不仅仅是追求量,还要保证质,所谓“质”,就是彻底理解所做过的每一道题,而这一点通常显的更为重要!
高等数学考研心得篇十一
由于数学大纲一般变化不大,因此,虽然考试大纲还未出台,但可以结合近年来的大纲和试题进行初步复习。关于高数、线代、概率三个科的复习方法,考研辅导老师为大家列出基础复习时的注意事项。
准确定位吃透大纲。
结合本科教材和前一年的大纲,先吃透基本概念、基本方法和基本定理。数学是一门逻辑性极强的演绎科学,只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。对近几年数学答卷的分析表明,考生失分的一个重要原因就是对基本概念、定理记不全、记不牢,理解不准确,基本解题方法掌握不好。
尝试做题理解概念。
在掌握了相关概念和理论之后,首先应该自己试着去解题,即使做不出来,对基本概念和理论的理解也会深入一步。因为数学毕竟是个理解加运用的科目,不练习就永远无法熟练掌握。解不出来,再看书上的解题思路和指导,再想想,如果还是想不出来,最后再看书上的详细解答。看一道题怎么做出来不是最重要的东西,重要的是通过你自己的理解,能够在做题的过程中用到它。因此,在看完这本书上的那些精彩的例题之后,切莫忘记要好好在后面的习题中选两道来巩固一下。不过,要注意的是,上对第一轮复习的考生显然是要求太高。不要因这些难题贬低自己的自信心,坚信等若干月复习之后回头看这些题就是小菜一碟。
循序渐进合理安排。
数学成绩是长期积累的结果,准备时间一定要充分。要对各个知识点做深入细致的分析,注意抓考点和重点题型,在一些大的得分点上可以适当地采取题海战术。
适当拔高综合应用。
数学考试会出现一些应用到多个知识点的综合性试题和应用型试题。这类试题一般比较灵活,难度也要大一些。在数学首轮复习期间,可以不将它们作为强化重点,但也应逐步进行一些训练,积累解题思路,同时这也有利于对所学知识的消化吸收,彻底弄清楚有关知识的纵向与横向联系,转化为自己真正掌握的东西。
数学基础复习就是这样,读书,做题,思考缺一不可。读书是前提,是基础,读懂书才有可能做对题目。做题是关键,是目的`。只有会做题,做对题目,快速做题才能应付考试,达到目的。思考是为了更有效的读书和做题。
全面复习注重考点,探索思路。
尽管考题千变万化,但是题型相对固定,提炼题型的目的就是为了提高解题的针对性,形成思维定势。要取得数学考研的理想成绩,主要在于提高解题能力,除了反复训练基本功外,更重要的是在训练中不断总结题型及解题方法,探索如何着手解题的思路,使知识模块化,解题方法格式化。
大纲虽是复习的方向,但考试大纲中列出的许多内容或者从没考过,或者几乎没有被考到过。这主要是研究生入学考试除了选拔人才,还要有助于课程教学,所以必须深入剖析大纲要求,提炼出复习重点。在对概念、定理、公式进行全面复习的基础上对重点和难点部分作重点复习,但不要去做偏题、难题、怪题。
反复的基本训练,紧抓重点。
通过对历年试题的统计分析可以得出常考的内容,考试的重点,通过对近几年考题的分析可得出考试热点,抓住重点、热点可使复习针对性增强,加快复习进度并节省大量时间,提高考研竞争优势,为考场取得高分打下坚实的基础。
考研就是考“熟练”,只有把内容、方法搞熟练,才能获得最后的成功。学数学只有做大量的高质量的练习题才能把基本功练熟、练透,才能提高应试和解题的能力,总之数学需多做题,不能眼高手低。做题时要完整、认真演算,过一段时间要翻出来再看几遍。
多做模拟试题,重视真题。
充分重视历年考题,有助于把握考试重点。历年考题涵盖了各章节的典型题型,通过做历年考题不失为复习数学较好方法之一。此外,研究生入学考试每年举行一次,因此不可能每年的考题都是全新的,或者每道题都有新“花招”。事实表明最新的考题与往年考题非常雷同的占50%以上。
在认真复习完教材和复习完数学指导书后,应多做模拟题。在规定的时间内做几套模拟试卷,一是可以了解一下自己对所考的知识点究竟掌握到什么程度,同时可以了解到自己的薄弱环节从而抓紧时间补上。再者通过平时的“练兵”可以给应试时提供点临场发挥的经验。有相当一部分考生的经验证明:如果考生能够通过做题将所遇到的各种题进行延伸或将试题的变式做到融汇贯通,一定会在考试中运用自如超常发挥,取得好成绩。
独立做题,不依赖答案并善于总结。
学习的过程中一定要力求全部理解和掌握知识点,做题的过程中先不要看答案,如果题目确实做不出来,可以先看答案,看明白之后再抛弃答案自己把题目独立地做一遍。不要以为看明白了就会了,只有自己真正做一遍,印象才能深刻。
注意一定要在学习过程中写出自己的感受,可以在书上以题注的形式或者就是做笔记,尽量深挖例题内涵,这一点很重要,并且要贯彻前三轮的复习,如果最后一轮复习我们有了自己整理的笔记,就会很轻松。有同学说学习线性代数最好的办法就是亲自推导,这话很有道理,事实上如果我们学习什么知识都采取这种态度的话,那肯定都会学得非常好。
从掌握解题技巧,使其化为己有。
根据自己的总结或在权威考研辅导机构的帮助下,考生可以知道常规的题型和解题方法与技巧,但考生如何才能真正吸收消化这些知识以成为自己的知识呢?那就是要进行相当量的综合题练习。因为在复习过程中,不少考生会渐渐地有能力解答一些基本题目,但如果给他一道较为综合的大题,他就无从下手了。所以要做一定量的综合题。
首先从心理上就不要害怕这样的题目,因为大题目肯定是可以分解为若干个小题目的。这样一来,考生要掌握的东西就显然被分为了两个大方向。一是小题目,实质上也就是基础知识点的掌握与常规题型的熟练掌握;二是要能够将大题目拆分为小题目,也就是说能够出题专家的思维方式来推测此大题目是想考我们什么知识点。陷阱在哪儿?我们应该分为几个步骤来解这道题。这两个方面的知识是考生平时复习整个过程中要加以思考的问题,因为基础知识点要不断地巩固加强,将大问题细分的能力是平时的日积月累而形成的本领。
最后,提醒大家:数学复习强调的是学习,要拿出重新学习的劲头亲自动手去做、去思考。在学习数学的时候,最好培养自己的兴趣,兴趣是最好的老师,只要培养出了兴趣自然而然就找到了学习数学的乐趣。如果实在提不起兴趣就拣一些简单的知识点复习,积累一定的自信和兴趣之后再逐一攻破。带着兴趣去学习,在快乐中考研!
高等数学考研心得篇十二
2017年的全国研究生入学统一考试刚刚结束,大家对今年各学科的考查重点和命题人出题思路又有什么进一步的认识呢,下面我们就概率论这门学科考查重难点给大家做一个分析。
从以往的经验来说,概率论与数理统计解答题的常见考点有两个,一个是以分布函数为核心的各类随机变量以及随机变量函数的分布,另一个是参数估计。其中前者是数一、数三共同的考查重点,也是难点。后者无论从考查范围和难度上数一、数三都有明显的区别,从范围上讲,数三参数估计部分只考查点估计的两种方法,分别是矩估计和最大似然估计;数一除了点估计之外还涉及到估计量的评选标准等。从难度上讲,数一参数估计部分的难度要略高于数三,主要表现在数一增加了无偏性这一重要考点,且常常与数理统计的`相关定义结合,从而在计算能力上也提出了更高要求。
今年概率论的考查依旧延续往年的出题思路,数学三的第一个解答题考查二维随机变量一个离散、一个连续情况下的分布,考生要利用全概率公式求解概率;第二个解答题依旧是参数估计部分两种点估计方法的考查。这两种题型的解题思路都是我们的学员在课上课下反复训练过的题型,相信在考场上能够很好的发挥。
高等数学考研心得篇十三
人的记忆效果随着时间的推移而迅速下降,这是正常的现象。一是可以通过反复加强记忆,第二种办法就是加强要点和重点的作用,提纲挈领,从而掌握全局。因此,建议大家复习的时候同时要兼顾复习要点,让要点成为复习中的“刀刃”,起到提纲挈领、统领全局的作用。
那么,考研数学复习中的“刀刃”都有哪些呢?下面说明复习高等数学一科的“刀刃”之处。
高等数学是考研数学的重中之重,备考高等数学要特别注意以下三个方面。
一、按照大纲对数学基本概念、基本方法、基本定理准确把握。
数学是一门演绎的科学,靠侥幸押题是行不通的。只有对基本概念有深入理解,牢牢掌握基本定理和公式,才能找到解题的突破口和切入点。分析近几年考生的数学答卷可以发现,考生失分的一个重要原因就是对基本概念、定理理解不准确,数学中最基本的方法掌握不好,给解题带来思维上的困难。数学的概念和定理是组成数学试题的基本元件,数学思维过程离不开数学概念和定理,因此,正确理解和掌握好数学概念、定理和方法是取得好成绩的基础和前提。
二、要加强解综合性试题和应用题能力的训练,力求在解题思路上有所突破。
综合题的考查内容可以是同一学科的不同章节,也可以是不同学科的。近几年试卷中常见的综合题有:级数与积分的综合题;微积分与微分方程的综合题;求极限的综合题;空间解析几何与多元函数微分的综合题;线性代数与空间解析几何的综合题;以及微积分与微分方程在几何上、物理上、经济上的应用题等等。在解综合题时,迅速地找到解题的切入点是关键一步,为此需要熟悉规范的解题思路。
三、重视历年试题的'强化训练。
统计表明,每年的研究生入学考试高等数学内容较之前几年都有较大的重复率,近年试题与往年考题雷同的占50%左右,这些考题或者改变某一数字,或改变一种说法,但解题的思路和所用到的知识点几乎一样。所以希望考生要注意年年被考到的内容,对往年考题要全部消化巩固。这样,通过对考研的试题类型、特点、思路进行系统的归纳总结,并做一定数量习题,有意识地重点解决解题思路问题。对于那些具有很强的典型性、灵活性、启发性和综合性的题,要特别注重解题思路和技巧的培养。尽管试题千变万化,但其知识结构基本相同,题型相对固定。要特别注意以题型为思路归纳总结。
中国大学网考研信息。
高等数学考研心得篇十四
考研数学中高等数学的确是一门学起来比较难的课程,高数课本上的内容多,而且学了后面易把前面的知识点忘了,有大量的定理与重要结论,需要考生们系统地对知识进行层次化的归类,微积分这个子系统非常重要,它是其它各子系统的基石,而且在概率统计中大量会用到微积分的理论与解题技巧,请大家一定要牢记。
一、有针对性复习,提高常见题型解题技巧。
但复习时间毕竟有限,在确定思考不出结果时,要及时寻求帮助。一定要避免一时性起,盯住一个题目做一个晚上的冲动。要充分借助老师、同学的帮助,将题目弄通搞懂、下次自己会做即可,不要耽误太多时间。另外无论是大题还是小题,都要细心。不能说只要考场上认真,仔细地做题就不会有“会做但做错”的情况出现,应该平时做题就态度认真。
二、真正消化知识点练就解题的内功。
如何才能真正吸收消化这些知识以成为自己的知识呢?根据自己的总结或在权威考研辅导机构的帮助下,考生可以知道常规的题型和解题方法与技巧,考生要进行相当量的综合题型的练习。因为在复习过程中,不少考生会渐渐地有能力解答一些考研的基本题目,但如果给他一道较为综合的大题,就无从下手了。所以要做一定量的综合题。
不要现看到没做过的题就犯怵,一些大题目都是可以分解为若干个小题目去分别解答的。考生要掌握的东西就显然被分为了两个大方向。一是小题目,实质上也就是基础知识点的掌握与常规题型的熟练掌握;二是要能够将大题目拆分为小题目,也就是说能够逆出题专家的思维方式来推测此大题目是想考我们什么知识点。这两个方面的知识是考生平时复习整个过程中要加以思考的问题,因为基础知识点要不断地巩固加强,平时要多多积累将大问题细分的能力是平时的日积月累而形成的能力。祝愿考生们考研一切顺利,取得自己理想的成绩!加油!
高等数学考研心得篇十五
随着气温一日日升高,夏日的炎热浮出水面,焦躁的情绪悄然之间也弥漫在考研自习室,但我们的考研计划却必须仍然保持步调,尤其是考研数学的复习,切忌烦躁情绪影响做题效率。当“考研一族”的你发现自己在酷暑天变得心情烦躁、大脑一片糊涂,又正好碰到一道看似简单的数学题无法解开时,你可以看看答案确认自己遗忘的知识点或者翻翻课本再重新理清头绪试做一遍。总之,切记不要惊慌、不要抱怨、稳住情绪、理清知识点,有秩序有步骤的分析问题所在。在夏日中复习考研数学,我们必须在稳重求胜!
高等数学是一门很抽象的学科,理解的时候,不要纠结于表面的概念,要在思考的时候,在脑中构建一个模型,这个很像编程时,思考内存模型。或者构建自己的复习思路,当复习到高数后面的知识点事,要结合前面的知识点,最后把学到的知识整体联系起来。数学的复习是一项长期工程,关键在于恒心和坚持,只有如此,才能取得最后的'成功,因此,希望你能严格要求自己,能够保证每天都完成相应的学习任务。在暑期结束的时候,如果你都在稳扎稳打的看书了,高等数学的复习应该已经告一段落,考研数学复习的任务也就完成了三分之一。
线性代数在考研数学中难度较高等数学来说要简单得多,但是考试题通常需要结合很多知识点才能解答出来。所以考生要抓住暑假这段时间踏踏实实看一遍线性代数的参考书,然后自己做出总结,并将各知识点串联在一起,结合少量习题理解知识点考核重点即可。
概率论与数理统计在考研数学初试中题型比较固定,一般情况下难度中等,所以,虽然酷暑难耐,同学们在复习这门课程时完全不必太过焦急。花一周左右的时间对照往年考纲,安心看参考书,做少量题型就可以对后期的复习有很大帮助。
如果你在前几个月对待考研复习的态度只是“两天打渔三天晒网”,那么暑期是你踏实打基础的最佳时机。一般来说,这两个月过去之后,九月份十月份的复习就会显得有秩序,反之,等到新的学期,一旦计划不好就会严重影响后期考研数学的复习进度。考研的同学都深知一点“得数学者,得天下”,若考研数学复习的进度不佳,会直接影响到其他三门的复习情况。因此,虽然烈日当头,我们依然要淡定的复习考研数学,一步一个脚印,踏踏实实,在稳重求得以后的胜利!
高等数学考研心得篇十六
相较数二、三,数一的高数是考点最多的,对考生的数学功底要求也是最高的。并且得高数着得天下;成也高数,败也高数是每一位考生都深知的“学问”。下面我们就从实际考题来看看今年的数一高数,今年题目的难度可以说在预期的范围内,考查的知识点广,并且综合性很强。但是仍是以考查基础知识为重,强调考生有扎实的基础及过硬的计算能力。以选择题和填空题为例:
选择题1:考查反常积分收敛性的定义:
极限存在,则反常积分收敛;。
选择题2:已知导函数求原函数,是导数的逆运算。实际在做题时考生可由选项出发,逐一验证排除,因此此题重要的考点仍是考查导数的计算。此外,也涉及到可导与连续之间的关系。
选择题3:考查的是二阶微分方程解与方程的关系;。
选择题4:考查的是连续、可导的定义,这两个定义是考生必须理解和牢固掌握的。此外,间断点的分类考生也应牢记。
填空题11:考查的是二元函数全微分的计算,此题考生在做时既可以用公式,分别求两个偏导数,其中会涉及二元函数隐函数求导,易错点是z=z(x,y)要始终把z看做x和y的函数。除此之外,还可以利用一阶微分形式的不变性,直接求dz,计算较为简便。
从整体上看,今年数一高数部分的选择题和填空题都不是很难,考查的都是基础的知识,强调计算能力。只要在复习时能够打好基础,在考试中足够细心计算不出问题的话,这部分的分数拿下还是比较容易的。
高等数学考研心得篇十七
2017考研高等数学大纲要求(数学二)
2017考研高等数学大纲暂未公布,为帮助同学们快速了解、把握今年的考试方向、复习重点,选择适合的复习方法和策略,下面小编为大家搜索整理了关于2016考研高等数学大纲要求(数学二),欢迎参考借鉴,希望对大家有所帮助!想了解更多相关信息请持续关注我们应届毕业生培训网!
同学们可以通过研究真题来揣摩命题者的出题规律,从而把握今年命题的思路和趋势,按部就班的进行分析复习,增加复习备考的针对性和有效性。
1、理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系。
2、了解函数的有界性、单调性、周期性和奇偶性。
3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4、掌握基本初等函数的性质及其图形,了解初等函数的概念。
5、理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系。
6、掌握极限的性质及四则运算法则。
7、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。
9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
1、理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。
2、掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
3、了解高阶导数的概念,会求简单函数的高阶导数。
4、会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。
5、理解并会用罗尔(rolle)定理、拉格朗日(lagrange)中值定理和泰勒(taylor)定理,了解并会用柯西(cauchy)中值定理。
6、掌握用洛必达法则求未定式极限的方法。
7、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数的最大值和最小值的求法及其应用。
8、会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。
9、了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径。
1、理解原函数的概念,理解不定积分和定积分的概念。
2、掌握不定积分的基本公式,掌握不定积分和定积分的'性质及定积分中值定理,掌握换元积分法与分部积分法。
3、会求有理函数、三角函数有理式和简单无理函数的积分。
4、理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式。
5、了解反常积分的概念,会计算反常积分。
6、掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数平均值。
1、了解多元函数的概念,了解二元函数的几何意义。
2、了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质。
3、了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数。
4、了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。
5、了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标)。
1、了解微分方程及其阶、解、通解、初始条件和特解等概念。
2、掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程。
3、会用降阶法解下列形式的微分方程:和。
4、理解二阶线性微分方程解的性质及解的结构定理。
5、掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。
6、会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程。
7、会用微分方程解决一些简单的应用问题。
高等数学考研心得篇十八
随着伦敦奥运会已闭幕,2013年考研生的暑期复习也已过半,考生是否把握住了这段时光,对公共课和专业课的知识是否掌握牢固。如果还没,那么下面的暑期复习,考生要牢牢把握住时机,加强复习强度,强化知识点记忆。
常常有人说“得暑假者的天下”,可谓之暑假时光的复习重要性,很有可能决定此次考研的成败。在考研四门科目中,考研数学可称之难度最大,以其综合性强、知识点覆盖面广、难度大等特点,考生在暑期复习时,一定要合理安排好考研数学的复习。
下面我们重点说一下考研数学中最重要的分支――高等数学。高等数学是考研数学中所占内容最多的部分,在数一和数三中,高数部分占总分的.56%,在数二中,高数部分占总分的78%,可见高等数学对考研数学的成绩起着至关重要的作用。
很多考生往往对高等数学的复习不得其法,下面,由考研专家为广大考生提供几点高等数学复习建议,希望对考生们有所帮助。
第一,基础是命根,把握住基础知识才能得高分。
考生们要明确考研数学主要考查的是基础知识部分,包括基本概念、基本理论、基本运算等,只有清晰掌握概念、基本运算,才能真正把握住考研数学。
而高等数学的基础应在极限、导数、不定积分、定积分、一元微积分的应用,当然其中还应包含中值定理、多元函数微积分、线面积分等内容。而考查的另一部分则是分析综合能力。因为现在考试中高数很少以一个知识点命题的,一般都是几个知识点的综合考查。要对这几个基础知识进行针对性复习,这样才能取得高分。
第二,高等数学知识点解析,充分把握重点。
关于不定式的极限,要求考生掌握不定式极限的各种求法,比如:四则运算、洛必达法则等。在此还有两个重点知识需要掌握:1.另外两个重要的极限的知识点;2、对函数的连续性的探讨。这也是需要重点掌握的知识点。
关于导数和微分,考试重点考查的知识点是导数的定义,也就是抽象函数的可导性。另外,还需要熟练掌握各类多元函数求偏导的方法以及极值与最值的求解与应用问题。
关于积分,历年来定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重点考查对象。在求积分的过程中,特别注意积分的对称性,利用分段积分去掉绝对值把积分求出来。二重积分的计算,当然数学一里面还包括了三重积分,这里面每年都要考一个题目。另外曲线和曲面积分,这也是必考的重点内容。
关于微分方程、无穷级数以及无穷级数求和等,这几个考点是有一定难度的,需要记忆的公式、定理比较多。微分方程中需要熟练掌握变量可分离的方程、齐次微分方程和一阶线性微分方程的求解方法,以及二阶常系数线性微分方程的求解,对于这些方程要能够判断方程类型,利用对应的求解方法,求解公式,能很快的求解。对于无穷级数,要会判断级数的敛散性,重点掌握幂级数的收敛半径与收敛域的求解,以及求数项级数的和与幂级数的和函数等。最后,制定复习计划,事半功倍。
针对高等数学的复习,需要制定一个具有针对性的复习计划,这样可以有重点有针对的进行知识点复习,这样按计划执行复习,可以达到不错的效果,使复习成果有质的提高。
【本文地址:http://www.pourbars.com/zuowen/15710657.html】