小学数学鸡兔同笼教案(模板20篇)

格式:DOC 上传日期:2023-11-27 20:23:05
小学数学鸡兔同笼教案(模板20篇)
时间:2023-11-27 20:23:05     小编:字海

教案的制定应根据教学大纲和教学要求,确保教学内容的覆盖度和深度。教案的编写需要注重教学资源的充分利用,合理选择和运用多样化的教学媒体和教具。下面是一些教师们精心设计的教案范文,其中包含了一些独特的教学思路和方法。

小学数学鸡兔同笼教案篇一

1,、工人叔叔要在路的一边安装路灯,一共安装了6座。从第一座到最后一座一共有个间隔。

2、一排同学之间有7个间隔,这一排有()个同学。

10、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间?

11、林老师家里时钟5点敲响5下,每下相隔2秒,敲完5下需要()秒。

12、酒店里的大钟4时敲4下,6秒敲完,10时敲响10下,需要多长时间?

13、小明从1楼到3楼需走36级台阶,小明从1楼到6楼需走多少级台阶?

14、小红住的楼房每上一层要走20个台阶,从二楼到四楼要走()个台阶。

小学数学鸡兔同笼教案篇二

生:独立解答后全班交流。

师:哪位同学愿意说说你是怎么解决这个问题的?

生:汇报不同的算法。(学生边汇报边把计算方法展示在实物展台上)。

师:刚才我们用自己的办法解决了这个问题,你们想知道古人是怎么解决这个问题的吗?我们一起来看一看。(课件示)。

师:古人的办法很巧妙吧?如果大家对这种解法感兴趣,课后可以再研究。

小学数学鸡兔同笼教案篇三

教学目标:

1、知识与技能。

让学生学会“列举法”,并运用“列举法”解决问题。

2、过程与方法。

让学生在尝试与猜测的过程中,探索出“列举法”,最终发现一些规律性的知识。

让学生养成“尝试”的数学思维与方法。

3、情感态度与价值观。

利用发现的规律,解决生活中的实际问题,体会数学与日常生活的联系,获得成功的体验,增强学习数学的兴趣和信心。

了解中国数学历史,渗透数学文化的思想。

教学重点:

让学生学会“列举法”,并运用“列举法”解决“鸡兔同笼”问题及相类似的数学问题。

教学难点:

让学生在尝试与猜测的过程中,探索出“列举法”,最终发现一些规律性的知识。

教学关键:

让学生经历列表、尝试和不断调整的过程,从中体会出解决问题的一般策略——列表。

教具准备:

三个表格,卡片。

教学过程:

一、导入。

1、师:一只鸡有几条腿?一只兔有几条腿?(生齐答)。

2、师:(出示卡片:三只鸡两只兔)这个笼子里一共有几个头?(生齐答)一共有多少条腿?(让生独立计算后,再指名说说计算的方法)。

3、谈话导入:今天我们就一起来学习“鸡兔同笼”。(师板书课题:鸡兔同笼)。

二、授新课。

1、师:老师想考考你们,你们看。

(师出示:鸡兔同笼,一共有8个头,20条腿,鸡、兔各有多少只?

师:请你赶快猜一猜吧!生:独立思考后全班交流。

2、师(出示题目):鸡兔同笼,共有20个头,54条腿,鸡、兔各有多少只?

(1)。

a、让生齐读题目。

b、师让生独立思考后再与同桌交流。

d、此时,师明确告诉学生:像这样依次尝试的方法我们就叫它一一列举法。(师板书:一一列举法)。

e、观察这个表格,你发现了什么?(指名生说)。

(2)小结:对于发现的同学及时给予表扬,你真是个善于发现的孩子。

a、我们再来观察一下这个表格,我们从1开始假设时就有78。

条腿和答案的54条腿相比,怎么样?我们能不能让列举的次数更少一些?现在就请你们四个人为一小组开始讨论:(讨论后再请小组汇报)。

b、根据生的回答,师板书:

c、师小结:你真是个爱动脑筋的孩子,真聪明!那我们也给。

这个表格取一个形象的名字,就叫它跳跃式列举法(师板书:跳跃式列举法)。

(3)师:还有别的列举法?

a、学生可能会说出取中列举法,师就问让其说清楚,明白。

学生可能说不出时,师出示(先假设鸡和兔各占一半,再列表),再让生试填表格3,最后集体订正。

b、像这样,从中间开始列举的方法叫取中列举法(师板书:取中列举法)。

3、观察比较这三种列举法,你喜欢哪种?为什么?(指明生说,师再小结)。

三、

1、试一试。

完成81页练一练第2、3题。(先独立完成再集体订正。)。

2、深化练习:一次数学竞赛,共10道题,每做对一道可得8分,每做错一道扣5分,小英最后得41分,她做对了几道题?(此题有时间就做,没时间就不做。)。

四、课堂小结:

通过这节课的学习,你学会了什么?(先请生说,师再总结。)。

小学数学鸡兔同笼教案篇四

生:我学会用……方法解决“鸡兔同笼”问题。

师:今天通过大家的自主探索,找到了多种解决“鸡兔同笼”问题的方法。方程法和假设法应用得都比较广泛。生活中我们还会遇到类似“鸡兔同笼”的问题,比如有些租船问题,钱币问题等。下节课我们就应用这些方法去解决那些实际问题。

板书设计:

列表法。

方程法假设法。

解:设有兔x只,鸡就有2(8-x)只。全看作鸡。

4x+2(8-x)=268×2=16(只)。

x=54-2=2(只)。

8-5=3(只)10÷2=5(只)。

答:有5只兔,3只鸡。8-5=3(只)。

26-4x=2(8-x)全看作兔。

26-2(8-x)=4x8×4=32(只)。

26-2x=4(8-x)4-2=2(只)。

26-4(8-x)=2x6÷2=3(只)。

8-3=5(只)。

小学数学鸡兔同笼教案篇五

1(课件示:书中112页情境图)。

师:同学们看这就是《孙子算经》中的鸡兔同笼问题。

这里的“雉”指的是什么,你们知道吗?这道题是什么意思呢?谁能试着说一说?

生:试述题意。(笼子里有鸡和兔,从上面数有35个头,从下面数有94只脚。问鸡兔各几只?)。

师:从题中你发现了那些数学信息?

生:笼子里有鸡和兔共35只,脚一共有94只。

生:这题中还隐含着鸡有2只脚,兔有4只脚这两个信息。

师:根据这些数学信息你们能解决这个问题吗?这道题的数据是不是太大了?咱们把它换成数据小一点的相信同学们就能解决了。

2.出示例一(课件示例一)。

师:谁来读读这个问题。

谁能流利的读一遍?

请同学们轻声读题,看看题里告诉我们什么信息,要解决什么问题?

生:读题。

师:现在就请你来解决这个问题,你想怎样解决?把你的想法和小组内的同学说一说。

生:我想我能猜出来。一次猜不对,多猜几次就能猜对。

师:按你的意思就是随意的猜,为了不重复,不遗漏,我们可以列表按顺序推算。(板书:列表法)。

师:还有其他方法吗?

生:我想用方程法也能解决。(板书:方程法)。

生:要是笼子里光有鸡或光有兔就好算了,可这笼子里却有两种动物,我还没想好怎么算。

师:那我们就不妨按笼子里只有鸡或只有兔来思考,假设笼子里全是鸡或全是兔,看脚数会有什么变化,说不定从中你们就能找到解题的思路呢。(板书:假设法)。

师:还有别的方法吗?那这些方法行不行呢?下面就请同学们以小组为单位,对你们感兴趣的方法进行尝试验证一下吧。

生:在小组内尝试各种方法。

师:经过上面的研究学习,你们都尝试运用了哪种方法呢?下面以小组为单位进行汇报。

生1:我们小组用列表法找到了答案,有3只鸡,5只兔。

生:很麻烦。

师:是啊,那要花费很长时间。哪个小组还想汇报?

生:我们小组用方程法计算的。(生说计算过程,师板书过程。)。

生:说数量关系。(鸡脚数+兔脚数=26只脚)。

师:根据这个数量关系你能想到另两个数量关系吗?

生:汇报师板书两方程。

师:除了可以设兔有x只,还可以怎样设?

生:还可以设鸡有x只。那兔就有(8-x)只。

师:对,那根据什么数量关系你又能列出怎样的方程呢?

生:汇报,根据鸡脚数+兔脚数=26只能列出方程2x+4(8-x)=26根据26只脚-鸡脚数=兔脚数能列出26-2x=4(8-x)根据26只脚-兔脚数=鸡脚数能列出26-4(8-x)=2x。

师:同学们看根据不同的数量关系我们能列出这么多的方程,但是同学们要注意用方程法解决问题时必须要找准数量关系。

师:除了这两种方法,假设法有运用的吗?

生:汇报。我们小组是把笼子里的动物都看做鸡。(板书:全看作鸡)。

生:我们是这样想的。假设笼子里都是鸡,应有脚8×2=16只,比实际少了26-16=10只,一只兔少算2只脚,列式为:4-2=2只,所以能算出共有兔10÷2=5只鸡就有8-5=3只。(生说师板书计算过程)。

师:这位同学说的你们听明白了吗?结合算式进行明理。明确每一步算式各表示什么意义。

师:这种方法都明白了吗?结合课件图画进行解释质疑。

生:16只。

师:实际上笼子里有26只脚,怎么会少了10只脚呢?(课件显示)。

生:每只兔子少算2只脚。

师:一共少算10只脚,每只兔子少算2只脚,所以有5只兔子,3只鸡了。

生:试做。

师:刚才已经假设都是兔的同学,再按假设全是鸡的情形算一算。

生:练做。

师:谁来说说假设全是兔该怎么算?

生:假设笼子里都是兔,就应有脚8×4=32只,比实际多了32-26=6只。一只鸡多算2只脚,4-2=2只。就能算出共有鸡6÷2=3只。兔就有8-3=5只。(生说师板书计算过程。)。

师:你们也都算上了吗?师解释:要是都是兔的话,就有32只脚,而实际有26只脚,为什么会多出6只脚呢?(课件示)。

生:每只鸡多算2只脚。

师:一共多算6只脚,每只鸡算2只,所以有3只鸡,5只兔。

师:还有运用其他方法的吗?

生汇报:列表法适合于数据小的问题,数据大了就不适用了。

方程法思路很简捷,但解方程比较麻烦。假设法,写起来简便,但思路很繁琐。

师:那以后我们再解决鸡兔同笼问题时就要根据具体情况灵活选择计算方法。

小学数学鸡兔同笼教案篇六

对于鸡兔同笼问题,只有个别的学生在校外曾接触到会用方程法列式计算。大多数孩子不知道怎么解决,更不要说多种方法解决了。由于方程是学生五年级新接触的内容,所以大多孩子还不习惯用方程解决问题。学生不会主动想到列表。基于学生的情况,在课堂教学过程中通过引导学生自主探索,合作交流,逐步掌握用列表法解决问题的方法,并对假设的方法有进一步的认识,准备在第二节课体会方程法的优越性。

小学数学鸡兔同笼教案篇七

尊敬的各位评委,各位老师:

大家好!

我所说课的内容是北师大版五年级上“尝试与猜测”的第一课时《鸡兔同笼》,教材安排了此类应用题,且把它归类于尝试与猜测这个大课题之下,其用意就是要学生通过对日常生活中的现象进行观察与思考,并从中发现一些特殊的规律。教材借助于“鸡兔同笼”这个载体,让学生经历列表,尝试和不断调整数据的过程。从中体会解决问题的一般策略——列表。

围绕“鸡兔同笼”使学生展开讨论,应用假设的数学思想,从多角度思考,运用多种方法解题,学生可以应用逐一尝试法,跳跃尝试法,取中尝试法等来解决问题。

学生在三年级时学习了简单的“鸡兔同笼”问题,他们已经初步尝试了应用逐一尝试法列表解决问题。本班的学生思维活跃,敢想敢说,有一定的小组合作经验。

基于以上认识,我确立了本节课的教学目标:

知识目标:在解决“鸡兔同笼”的活动中,通过列表举例,尝试计算等方法解决鸡兔的数量问题。

能力目标:培养学生的合作意识,在现实情境中,使学生感受到数学思想的运用和解决问题的关系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。

情感目标:了解我国古代数学的光辉成就,增强民族自豪感;提高学生对数学的好奇心和求知欲;增强学数学的自信心。

教学重点:探索列表枚举的不同的方法,找到解决问题的策略。

教学难点:在自主探索过程中,掌握利用数据比较、判断、调整的方法。

突破点:发现规律,确定猜测范围。

教学过程中我将游戏导入立足于学生的生活经验和知识背景,新授部分围绕着“自主参与---合作学习----深刻体会”让学生开展学习活动。我将教学过程分为以下四个部分:

一游戏导入,在学生的头脑中有个初步的鸡兔腿数的计算意识。

二新授部分,通过观察主题图,确定数学信息,根据要求填写表格。汇报三张表格的填写过程,以及所运用的尝试方法的各自优势所在。

三迁移练习,综合应用。

四课堂总结及情感目标延伸。

课堂教学实施过程:

一游戏导入。

初步计算鸡兔的总腿数。“今天我们来玩个接数游戏,请你仔细听,然后大家一起接数。一只小鸡一只兔,两个头六条腿。两只小鸡两只兔,四个头十二条腿。。。。。。”目的是在学生头脑中对鸡兔的头,腿的总数有个初步映像。在这里利用了生活资源调动学生的已有的知识背景来参加这个活动,使其产生了浓厚的兴趣。同时游戏导入也起到了引题的作用。此时介绍我国古代数学名著《孙子算经》,让学生了解我国古代数学的光辉成就,渗透德育教育。

二新授部分。

1(课件)出示主题图。让学生根据数学信息,结合刚才的游戏去猜鸡兔各有多少只?学生猜测的数据都能符合鸡兔有20个头这个条件。要想验证数据是否正确,就是要看腿的总数是否符合题上的条件54条。

2于是,安排了学生自己列表填数来解决问题。在这个过程中,如何凭自己的猜测来调整数据就显得尤为重要。猜测是要学生根据自己的知识背景和生活经验。让学生分组合作讨论。因为已经有了导入的铺垫所以在这个环节我没有给与更多的提示。

3展示学生的表格与书本相似的。我先把问题抛给学生:现在老师给大家一点时间,请你仔细看看这三张表格是怎样填数的。小组再一次合作交流。

第二张表格是学生自己汇报完成。强调跳跃尝试法的制表过程。它有很多种呈现方式。可以从2只鸡,18只兔开始。每次增加2只鸡。或者是每次增加不同数量的鸡的只数。

第三张表格,老师和学生共同完成。这种方法对于一些思维活跃的学生是一次提升的过程。总结制表方法:取中尝试法。

三迁移练习,综合应用。

我把教材的练习题部分改动。因为本课主要不是为了解决“鸡兔同笼”问题本身,而是借助这个载体解决与之类似的问题。

第一题是为了巩固本课的新知。

第二题的答案有两个,在学生找到第一个答案的时候。引导学生继续举例。这说明了数学答案的不唯一性,要求学生有严谨的学习态度。

四课堂总结及情感目标延伸。

1总结列表是解决一般问题的策略,以及列表的三种方法。

2根据时间灵活安排《孙子算经》中是如何解答“鸡兔同笼”问题的呢?(课件)。

五反思教学效果。

深入浅出的教学过程让学生体会到了列表不仅可以解决鸡兔同笼的问题,还可以解决生活中的问题。新课标指出数学来源于生活更要应用于生活。

本节课能够顺利完成,那是因为学生的合作交流得到了充分的发挥。让学生学会讨论,合作交流。讨论会使学生成为知识的共同创造者!

以上就是我的反思性说课。这是我第一次参加这种形式的比赛。感谢一直帮助我的网友,老师。我的课不一定成功,但这次非比寻常的经历却让我成功的学到了很多知识。

尝试与猜测(鸡兔同笼)教学设计第二稿。

哈市松北区万宝中心校车成超。

教材分析。

本课时向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用假设的数学思想,从多角度思考,运用多种方法解题,学生可以应用逐一尝试法,跳跃尝试法,取中尝试法等来解决问题。学生在具体的解决问题过程中,他们可以根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。

学情分析。

在此之前,学生已经在三年级时学习了简单的“鸡兔同笼”问题,他们已经初步尝试了应用逐一尝试列表解决问题。本班的学生思维活跃,敢想敢说,有一定的小组合作经验。

教学目标。

知识目标:在解决“鸡兔同笼”的活动中,通过列表举例,尝试计算等方法解决鸡兔的数量问题。

能力目标:培养学生的合作意识,在现实情境中,使学生感受到数学思想的运用和解决问题的关系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。

情感目标:了解我国古代数学的光辉成就,增强民族自豪感;提高学生对数学的好奇心和求知欲;增强学数学的自信心。

教学重点:探索列表枚举的不同的方法,找到解决问题的策略。

教学难点:在自主探索过程中,掌握利用数据比较、判断、调整的方法。

突破点:发现规律,确定猜测范围。

针对本节课的教学目标及重、难点,根据五年级学生的认知水平,本节课的教学思路是。

一游戏导入,在学生的头脑中有个初步的鸡兔腿数的计算意识。

二通过观察主题图,确定数学息,根据要求填写表格。

三汇报三张表格的填写过程,以及所运用的尝试方法的各自优势所在。

(一)游戏导入,初步计算鸡兔腿数。

师:同学们,我们来玩一个接数游戏好吗?要求事请你仔细听,咱们大家一起数下去。

一只小鸡,一只兔,两个头,六条腿。

两只小鸡,两只兔,四个头,十二条腿。

三只小鸡,三只兔,六个头,十八条腿。

四只小鸡,四只兔,八个头,二十四条腿。

五只小鸡,五只兔,十个头,三十条腿。

师:同学们数得很准确。原来在动物身上有许多数学信息是值得研究的数学问题。如在我国古代数学名著《孙子算经》中有这样一个题目:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?就是研究鸡兔同笼的问题。今天我们就来学习有关鸡兔同笼问题的应用题。(板题)。

二自主探索,发现新知。

1(课件)。

师:从图中你能知道哪些数学信息?(有鸡、兔,20个头,54条腿)。

现在同学们就来猜一猜鸡兔各有多少只?(可以根据我们刚才玩的游戏)。

师:把你猜想的结果跟你的同桌交流交流。

生1:鸡7只,兔13只。

师:他的答案是否正确呢?我们就来验证一下。

腿:14+52=66条。

生2:猜测鸡是15只,兔是5只,腿50条。

师:总腿数少了4条,怎么办?请同学们用老师发的这张表格完成你的猜想。

(展示学生的表格与书本相似的)。

现在老师给大家一点时间,看看这三张表格是怎样解决这个问题的?5分钟。

师:现在我们就来具体看看这三张表格。

1课件出示:第一张表格。

师:谁来解释一下第一栏的过个数字各代表什么意思?

谁来说说第二栏的各数的意思?

师:你们认为第一张表是按照什么样的顺序来找到正确答案的?

(第一张表,它是先假设鸡有一只,则兔子有19只,看腿的总数是不是54条,腿多了,说明兔子多了,然后依次增加一只鸡,减少一只兔,就这样依次的用一只鸡换一只兔,再算腿的总数符不符合条件,直到找到正确答案为止。最后经过了13次计算,终于找到了答案。)。

师:我们给这种列表方法取个名字叫“逐一尝试法”

小结:从表中我们可以看出每减少一只兔增加一只鸡,腿的总数都减少2只。

下面我们来看第二张表。

2、课件出示第二张表:

师:谁愿意说说第二张表格的列表过程?

第一次换了4只鸡,总腿数减少8条。第二次又换了5只鸡,总腿数减少10条。于是又换了5只鸡,总腿数是50条。由此可以判断兔的只数应该在5和10之间。接下来又增加1只兔,2只兔,得到正确答案13只鸡,7只兔。

师:我们给这种列表方法也取个名字叫“跳跃尝试法”。

3、课件出示第三张表。

师:谁来解释一下第三张表是如何来解决这个问题的?

生:先是假设兔子数和鸡的只数各一半,发现总腿数偏多,于是肯定兔的只数多了,应该减少兔子的只数来增加鸡的只数。

师:我们给这种列表方法取个名字叫“取中尝试法”

师:看完了这三张表,你能不能说说这三“逐一尝试法,跳跃尝试法和取中尝试法”在列表解决这个问题时有什么不一样的地方?)。

师小结:逐一尝试法:优点是能够引导大家发现规律,而且答案不会遗漏。

跳跃尝试法:优点是尝试的范围缩小了一半。

取中尝试法:需要不断调整,思维价值大。

三作业布置,巩固提高。

1、停车场里有三轮车和自行车共22辆,有59个轮子,自行车、三轮车各几辆?

四全课总结。

在这节有趣的数学课上,你学到了什么知识?

(灵活安排)介绍《孙子算经》:《孙子算经》中是如何解答“鸡兔同笼”问题的呢?(课件)。

小学数学鸡兔同笼教案篇八

(二)探索新知。

先从简单问题出发,呈现例1:8个头,26只脚,鸡和兔子各几只?猜测一下。

追问:按顺序列表填写一下,应该是各有几只?

得出结论有3只鸡,5只兔子。

进一步追问:还有没有其他方法?

学生活动:前后四人一小组讨论。

教师总结:假设笼子里都是鸡,那么多出来的脚的个数除以2便是兔子的只数,用头数减去便得到鸡的只数。如果假设所有的动物都是鸡,那么就有8×2=16只脚,这样就多出26-16=10只脚。多出的10只脚均为兔子的,一只兔子比一只鸡多2只脚,所以算得有10÷2=5只兔,3只鸡。

(三)课堂练习。

ppt再次出示导入中的问题“上有三十五头,下有九十四足,问雉兔各几何”

(四)小结作业。

提问:今天有什么收获?

教师引导学生回顾解决鸡兔同笼问题的方法。

课后作业:思考还有没有其他方式能够解决鸡兔同笼问题?自己设计鸡兔同笼的问题去考考小伙伴或家人。

小学数学鸡兔同笼教案篇九

师:咱班同学家里有养鸡的吗?有养兔的吗?既养鸡又养兔的有吗?把鸡和兔放在同一个笼子里养的有吗?在我国古代就有人把鸡和兔放在同一个笼子里养,正因为这样,在我国历才出现了一道非常有名的数学问题,是什么问题呢?你们想知道吗?这节课我们就共同来研究大约产生于一千五百年前,一直流传至今的“鸡兔同笼”问题。

小学数学鸡兔同笼教案篇十

(学生游戏,体验鸡兔同笼)

师:谁来说说你们刚才是怎样数出有多少只脚的?

生:用鸡数乘以2,用兔数乘以4。

板书:鸡数2+兔数4

师:通过刚才的游戏你有什么发现?

生:当头数相同,而鸡和兔的只数不同,脚数就会发生变化。

师:如果头数和脚数都不变,鸡兔同笼,数头20个,数脚54只,你能猜出有多少只鸡和兔吗?现在请同学们大胆地猜测,并在小组内说一说。

(小组讨论)

师;可以用什么办法把你们刚才猜测的过程记录下来。

生发言:可以用画图或制成统计表的方法。

师:今天我们主要来学习用统计表的`方法解决鸡兔同笼的问题。

师:谁来说说,统计表中每栏要表示什么?

师:现在请同学们独立地把你们猜测的过程记录下来,然后在小组内交流不同的方法。

(小组活动)

师:谁来说说你是怎样记录的?

反馈总结:同学们记录的方法大致可纳成三种情况;逐一列举法、跳跃列举法、取中列举法。谁能说说这三种方法各自的特点?(学生发言)

师:谁来说说三种方法哪种更快捷?

生:我们可以采用取中列表法,再结合跳跃列表法进行调整。

师:如何调整?

生:当发现在尝试过程中所算出的腿数比已知的腿数多,那么腿多的小动物要减少,当尝试过程中所算出的腿数比已知的腿数少,腿多的小动物要增加。

板书:猜测列举调整

师:刚才我们通过了猜测列举调整等过程,解决了鸡兔同笼的问题,你们学会了吗?

师:鸡兔同笼的问题很有意思吧。早在1500年前我国古代的《孙子算经》里这记载着这样问题,后来传到日本,演变成龟鹤算。古代人真值得我们骄傲,可是今天你们是老师的骄傲,你们想出这么多解决鸡兔同笼的问题的方法,甚至有的同学还会自己设计问题,实在是了不起,希望同学们要把这种善于发现问题的精神发扬下去,将来成为一个了不起的人。

对于我班多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。本人本想以游戏为开端想去激发学生的学习兴趣,但由于本班学生学习基础差,参与意识不强,因此本人对本堂课不是很满意。

我认为我做的比较成功的地方是,在这节课当中我主要借助教材上的列表法,再让学生进行大胆的尝试与猜测,去弄懂鸡兔同笼问题的基本解题思路。师生共同经历了和得出三种不同的列表方法:逐一列表法、、跳跃式列表法、取中列表法。

1 、在创设完情景引导学生用什么方法解这个问题时,学生的参与意思被动,是我没有预想到的。如果把前一部分改成让学生动手画图,可能效果会更好。情景创设上有漏洞,需进一步完善。

2 、我在假设之后怎么验证结果是否正确分析得较细,但对怎么假设觉得没有引导好,过程中出现了学生只假设了鸡的只数,然后根据腿的数量去推算出兔的只数,误解了题意。

3 、在总结规律是我如果能让学生自己多动嘴说一说,也许课堂效果会更好。

4 、由于时间练习量不多,最后一个练习题应有多种结果,也没有一一罗列。今后教学中要紧凑课堂结构,要少讲,留更多的时间给学生于练习。

小学数学鸡兔同笼教案篇十一

教学目标:

1、了解鸡兔同笼问题,掌握用列表法、假设法的方法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。

2、让学生在自主探索、尝试、合作学习的过程中,经历用不同方法解决鸡兔同笼问题的过程,使学生体会用方程解鸡兔同笼问题的一般性。

3、了解我国古人解鸡兔同笼问题的方法,感受其趣味性。

教学重点:

尝试用不同的方法解决鸡兔同笼问题,在尝试中培养学生的思维能力。

教学难点:

在解决问题的过程中,培养学生的逻辑思维能力。

教法:分析、引导。

学法:自主探究。

课前准备:多媒体。

教学过程:

一、定向导学:2分钟。

生:……(课件演示)。

师:这就是有趣的“鸡兔同笼”问题。(板书课题)今天我们就一起研究这一问题。

2、学习目标:

掌握用列表法、假设法或列方程的方法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。

二、自主探究:8分钟。

内容:课本p104例1的(1)。

时间:5分钟。

方法:边看书边完成下面要求:

1、“鸡兔同笼”这四个字是什么意思?

2、书上用了种方法来解决这个问题。

3、我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了哪些信息?

生理解:

(1)鸡和兔共8只;

(2)鸡和兔共有26只脚;

(3)鸡有2只脚;

(4)兔有4只脚;

(5)兔比鸡多2只脚。(课件演示)。

师:那问题是什么?

生:鸡和兔各有多少只?

3、猜一猜:

师:请同学们猜一猜鸡和兔可能各有多少只?(学生猜测)还有其它的猜测吗?

4、介绍列表法:

师:你们猜出的结果鸡和兔的总只数都是8只,但是你们猜想的结果都正确吗?到底哪个是正确的呢?下面请同学们把你们的猜想整理到这张表格中,并进行调整,看看哪个结果才是共有26只脚。(学生活动)。

学生汇报整理后的表格,教师板书学生整理后的表格。(边板书,边理解填表过程)。

5、观察发现,列式计算。

三、合作交流:5分钟。

假设全是兔,怎样解决?试一试。

四、质疑探究:5分钟。

解决鸡兔同笼这类问题,有几种假设的方法?

五、小结检测:20分钟。

1、小结方法:

同学们真了不起,刚才我们在解决鸡兔同笼的问题时,用到了多种方法:列表法,假设法。

2、检测:

a、问答:

(1)如果老师让你们解决《孙子算经》中的原题,你会选哪种方法解决呢?

为什么不选择列表法?难?为什么难?(要列举的情况很多)有没有好的办法?(有没有不用列举那么多就能找到答案呢)。

(2)如果一定要你用列表法解答你有什么办法?学生讨论。(教师引导列表折半调整。)。

(注:如果前面出现了折半列表,就把这个环节提前讲。)。

b、解决问题。

(1)有龟和鹤共40只,龟的腿和鹤的腿共112条,龟和鹤各有多少只?

作业:p106;1、2、3。

板书:

假设全是鸡,就有脚8×2=16(只)。

比实际少26—16=10(只)。

一只鸡比一只兔少4—2=2(只)。

兔子:10÷2=5(只)。

鸡:8—5=3(只)。

小学数学鸡兔同笼教案篇十二

《鸡兔同笼》(第一课时)。

教学。

设计教学内容:

人教版小学四年级数学下册。

第1。

03—105页教学目标:

知识技能1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2.尝试用不同的方法解决“鸡兔同笼”问题,并使学生体会代数方法的一般性。

3.在解决问题的过程中培养学生的逻辑推理能力。

数学思考与问题解决经历解决问题的过程,体验分析解决问题的方法。

情感态度体会数学知识在日常生活中的广泛应用,培养学生的探究意识和能力,激发学生学数学、用数学的兴趣。

重点:理解掌握解决问题的不同思路和方法。

难点:能运用不同方法解决实际问题。

教学过程:

一、创设游戏,提出问题师:同学们,前段时间我们学校进行了有关h7n9禽流感的知识讲座,大家还记得吗?其中就有一条要远离家禽,同学们做到了吗?其实,在这些家禽里也蕴含了一些数学知识。今天,我们就来学习一下著名的数学问题。先让我们来玩个接龙游戏,我说动物的数量,你们对应说出他们的头的个数和脚的只数。如:

师:一只鸡。

生:一只鸡,一个头,两只脚。

师:一只鸡和一只兔。

生:一只鸡和一只兔,两个头,6只脚。

……师:那反过来如果有5个头,16只脚,该有几只鸡几只兔呢?……师:下面,我们来看看怎样解决这类问题的。

设计意图:创设游戏情境,很自然地引入课题。

二、出示表格,学习模式已知:鸡和兔共有5个头,16只脚。

问题:鸡和兔各有几只?画图法:

头兔兔鸡鸡兔脚兔有3只,鸡有2只。

鸡543210兔0123总脚数10121416列表法(枚举法):

兔有3只,鸡有2只。

文字说明:

1.画图法:先画出5个头和16只脚,然后先给每个头配2只脚,剩下的脚再两只两只地加到每个头上,分配完后,4只脚的是兔,2只脚的是鸡。

2.列表法:假设4只鸡,1只兔,那么共有12只脚,与题目条件不符;

假设3只鸡,2只兔,那么共有14只脚,也不符合条件;

假设3只鸡,2只兔,那么共有16只脚,刚好符合题目条件。

设计意图:数形结合,以画促思,更好地帮助学生理解题意,同事激发学生学习兴趣。

三、

例题讲解那现在我把数量增加一点点,你们再来算一下?(出示例1)。

例1:笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?1.尝试与猜想(分小组合作,活动后汇报、交流)。

四人小组按照表格模式,探讨方法,并把讨论结果综合在表格里,组长负责收集和整理相关信息,并推荐一位组员上台展示成果并分享方法。

画图法:

8个头26只脚兔有()只,鸡有()只。

鸡8765兔012总脚数1618列表法(枚举法):

兔有()只,鸡有()只经过同学们的小组交流,合作探讨,基本解决了这个问题,而且你们善于观察和。

总结。

规律,老师为你们感到高兴。以上的方法属于一种猜测和推算的过程,这些方法在对于一些数字简单的题目还是可行的,但是如果数字较大,以上两种方法操作起来就有些难度了,我们能不能用列式的方法来解决这个问题呢?下面我们一起来探讨一下。

2.假设与探究假设全是鸡师:突然传来一阵鞭炮声,兔子们吓得全都用前面两只脚捂住耳朵,站立了起来。这时,兔子和鸡一样只有两只脚站在地上。同学们,听到这里,你想到了什么?你能列式解决这个问题吗?(小组合作探究,师生再交流)。

设计意图:拟人化的比喻,让学生兴趣盎然。

生:我们是这样想的:兔子都用2只前脚捂住耳朵,用2只后脚站了起来,这时每一个头就对应着有2只脚站在地上(即可假设8个头都是鸡头),此时站在地上的脚的个数是8×2=16只。

师:算式里的8表示什么?2又表示什么?结果的16只脚是什么的脚?生:8表示“假设8个头都是鸡的头”,2表示“每只鸡有2只脚”,16只脚是站在地上的脚。而之前数有26只脚,少了26-16=10只脚,这10只脚是兔子捂耳朵的前脚,而每只兔子有2只前脚,所以兔子的只数是:10÷2=5只,鸡的个数是:8-5=3只。

师:“10÷2=5”式中的10表示什么?2表示什么?生:10表示兔子抬起捂耳朵的前脚,2表示每只兔子有2只前脚,【板书1】:假设全是鸡:

8×2=16(只脚)。

兔子:10÷2=5(只)。

鸡:8-5=3(只)。

10÷2表示兔子的数量。

师:以上的方法就是假设法,假设全是鸡,先算出脚的假设总数,然后对比实际总数,再用少了的脚数除以2就可以算出兔子的数量了。

假设全是兔师:鞭炮声停了,兔子们都把前脚放回到地上,这时所有的鸡看到兔子被鞭炮声吓倒,都笑得站不稳,用两只翅膀撑到地上,变成了鸡好像也有4只脚的样子。你又想到了什么?(小组合作探究,师生再交流)。

生2:我们是这样想的:鸡都把翅膀撑到地上当“脚”了(即可假设8个头都是兔头),这时地上的脚的总数是8×4=32只,但实际上只有26只脚,多出来的“脚”32-26=6只,多出来的这6只“脚”实际上是鸡的翅膀来的,每只鸡有2个翅膀,所以鸡的个数有6÷2=3(只),兔的个数有8-3=5(只)。

【板书2】:假设全是兔:

8×4=32(只脚)。

鸡:6÷2=3(只)。

兔子:8-3=5(只)。

假设全是兔,就会先求出鸡的只数。

四、渗透文化,激发情感师:同学们,让我们闭上眼睛穿越时空回到1500年前。在一间学堂里,一位先生拿着一本数学名著《孙子算经》,摇头晃脑地读着:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”同学们,你们能用我们刚才学习的几种方法帮帮古代的学生们吗?谁来先翻译一下这个古代数学问题的意思?然后,请各位同学用刚才学过的方法解答这个问题。

(独立完成后汇报、交流)。

师:同学们都做得很好,那么古代的人又是怎样解决这类问题的呢?下面我们一起来看看他们是怎样做的。(看阅读资料)。

设计意图:渗透古代数学思想,适时适地进行思想教育,创设课堂数学文化氛围。

五、畅谈收获师:今天的学习有趣吗?大家有哪些收获?生1:……生2:…………师:今天,我们通过了小组合作、自主探究学习了用画图、列表和假设的方法来解决“鸡兔同笼”的问题,希望你们能用今天学到的方法去解决实际生活中的数学问题。

小学数学鸡兔同笼教案篇十三

今天的一堂课,又让我感受到了学习的快乐。老师教我们用“鸡兔同笼”法解题,其中一道题是这样写的:

老师问:“这道题谁会解答?”我举手了,但老师没发现,自己讲解了:“其实这道题蛮简单的。我们由3头牛和8只羊一天共吃草42.5千克,可知3×3头牛和8×3只羊一天可吃……”老师的解答步骤共有4步,而我想的才用了3步。老师讲完后,我说:“老师,我只要用3步就能解决问题。”老师说:“那你说一说你的解法。”我说:“条件里说一头牛一天吃的草是羊一天吃草数的3倍,我把牛转化成羊来算后,3头羊就转化成3×3只羊,一共有9+8=17只羊,用3头牛和8只羊一天吃草的'总量42.5÷17=2.5千克,求出每只羊每天吃草2.5千克了。”老师笑着说:“对,安婷的解题方法叫作替代法,用在这道题上使解答很简便,大家以后要向她学习这种不断求新的学习态度,不要只满足于一种解法。”夸得我心里美滋滋的。

我学习,我快乐,这里的“风景”真奇特,同学们,让我们一起来欣赏它吧!

小学数学鸡兔同笼教案篇十四

本节课通过创设生动的问题情境,让学生投入到解决问题的实践活动中去,自己探究,经历数学学习的全过程,从而体会假设的数学思想的应用与解决问题的关系。在学习中我注重鼓励每一个学生参与学习过程,用适合他们的方法解决问题,同时也体验解决问题的不同方法。

“鸡兔同笼”以前是属于奥数类型的题目,如今编入教材,对学生尤其是基础不好的学生来说有一定的难度,特别是使用假设法解答时,学生理解起来很难,为此我先采用列表法来帮助学生理解,把抽象的知识直观化,然后再引入假设法。对于理解能力较差的学生来说,列表法数据较大,假设法又不易理解,所以我也将抬脚法引入课堂,希望能够为学生提供解决问题的多种思路。

对于本节课的学习,部分学生已经在课外辅导班学习过了,课堂上这些学生的积极性很高,也能够深刻理解鸡兔同笼的意义,但这就造成了个别程度较差的学生偷懒现象,所以在接下来的练习课上要更多的关注那些做题速度较慢、思维不清晰的学生。

小学数学鸡兔同笼教案篇十五

“鸡兔同笼”是我国古代数学的经典趣题,分享了鸡兔同笼的教学课件,欢迎欣赏!

教材分析:

本节是尝试与猜测活动之一。本活动的目的是通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。在“鸡兔同笼”的活动中,通过列表方法解决鸡与兔的数量问题。

教学目标:

1、通过对日常生活中现象的观察和思考,发现一些特殊的规律。

2、从不同角度分析,掌握列表解题的策略与方法。

3、培养学生分析的能力,初步渗透假设的数学思想。

教学重难点:

从不同角度分析,掌握列表解题的策略与方法。

教具准备:

多媒体课件。

教学过程:

一、激趣导入。

1、引导学生发现鸡和兔的异同点,学生得出鸡和兔都有一个头,鸡有两条腿,兔有四条腿。

2、通过练习发现问题。

出示多媒体课件:

一只公鸡()条腿,两只公鸡()条腿,五只公鸡()条腿。

一只兔子()条腿,两只兔子()条腿,五只兔子()条腿。

鸡兔共五只,腿有()条。

3、得出关系式:鸡的数量×2+兔的数量×4=腿的数量。

质疑:如果知道了腿的总数能知道鸡兔各几只吗?

4、引出课题:早在1500多年前,我国古代的数学家就在《孙子算经》中提出了这样有意思的题目,今天我们就一起来研究。(板书:鸡兔同笼)。

二、开展活动,探究规律。

1、课件出示题目:笼中鸡兔共8只,腿有22条,鸡兔各几只?

学生猜测鸡兔各几只,按顺序整理所有可能性。

学生根据总结出的关系式,计算找出正确答案。

学生汇报正确答案是鸡5只,兔3只。

小结:像这样把所有情况一一列举出来的`方法叫逐一列表法。(板书)。

2、质疑:这个方法好不好?

学生感受这个方法要一一列举,比较麻烦。

下面就利用简单的数据总结规律,运用到复杂的情况中。

3、请同学们观察:你发现了什么规律?

同桌互相讨论。

生得出结论:鸡增加1只,同时兔减少1只,腿减少2条。

鸡减少1只,同时兔增加1只,腿增加2条。

腿增加和减少于兔保持一致。

4、游戏练习:

鸡增加2只,同时兔减少2只,腿()。

鸡减少5只,同时兔增加5只,腿()。

生得出:鸡兔每对换一次,腿数增加/减少两条。

三、利用规律,实题操作。

利用总结的规律,做一道数目稍大的题,不用逐一列表,试试看。

课件出示:鸡兔同笼,有10个头,28条腿,鸡、兔各有多少只?

生利用规律进行练习。

生汇报,根据汇报总结出取中列表法和跳跃列表法。

四、练习。

练习熟练运用取中列表法和跳跃列表法。

1、鸡兔同笼,有20个头,56条腿,鸡、兔各有多少只?

从鸡兔同笼问题中取得数学学习的方法,这里的鸡兔不仅仅代表鸡和兔,运用所学的方法可以解决生活中类似的问题。

这道题与鸡兔同笼问题有什么联系?

生找出两者的异同点,进行练习。

五、课外延伸。

与大家分享小知识。

“鸡兔同笼”是一类中国有名的算术题,最早出现在《孙子算经》中。此书约成书于四、五世纪,作者生平和编写年代都不清楚。先传版本的《孙子算经》共三卷。卷下31题,可谓是后世“鸡兔同笼”的始祖,后来传到日本,变成“龟鹤算”。书中是这样叙述的:“今有鸡兔同笼,上有35头,下有九十四足,问鸡兔各几何?”

许许多多数学应用题都可以转化成这类问题来解决,或者用解决“鸡兔同笼”问题的解法来解决。

小学数学鸡兔同笼教案篇十六

1.了解”鸡兔同笼”问题,感受中国古代数学问题的趣味性。

2.尝试列表枚举、算术、方程等不同的方法解决“鸡兔同笼”问题,体验解决问题方法的多样性,提高解决实际问题的能力。

3.通过自主探索、合作交流,培养合作意识和逻辑推理能力。

4.体会数学问题在日常生活中的应用,进而体会数学的价值。

学情分析。

“鸡兔同笼”题目是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”题目,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。

教材的编排有以下特点:

1.教材首先通过富有情趣的古代课堂,生动地呈现了在《孙子算经》中记载的“鸡兔同笼”题目,并通过小精灵的提问激发学生解答我国古代著名数学题目的爱好。

2.注重体现解决“鸡兔同笼”题目的不同思路和方法。

3.让学生进一步体会到这类题目在日常生活中的应用。

教学重点:亲历列表、假设、方程等解题的过程,体会解决问题的一般策略。

教学难点:建构解决“鸡兔同笼”问题的数学模型,运用学到的解题策略解决生活中的实际问题。

教学过程。

活动1【导入】激趣导入引发思考。

课件出示:笼子里有若干只鸡和兔,从上面数,有12个头;从下面数,有32条腿。鸡和兔各有几只?(全班齐读)。

活动2【活动】合作交流预设生成。

(一)这个问题课前你们通过自学都有了自己的想法,现在请你们把自己研究的收获和小组的同学交流交流,等一下大胆地上台展示自己的研究成果。开始吧!(学生交流)。

(二)老师刚才听了你们的交流,老师发现同学们的思维真的很活跃,谁愿意第一个上台展示?掌声有请第一个小勇士上讲台给大家交流他解决问题的方法,大家要认真倾听,随时向这位同学提问。

1.生:我是这样想的,假设鸡为0只,兔为12只的时候,腿数为48;当鸡的只数为1只,兔为11只的时候,腿为46,依次类推,当鸡为8只,兔为4只的时候,腿就刚好是32.这样都得出了鸡为8只,兔为4只。

请同学们观察分析这些数据,你发现了什么?(鸡兔共12只;鸡的只数在逐一增多;兔的只数在逐一减少;腿的条数也在减少;鸡增加一只兔减少一只,腿数减少两条)追问:腿的条数是怎样减少的?谁的只数变化使腿数减少?反过来观察你有什么发现吗?(因为鸡和兔的只数是固定的,每增加一只兔子减少一只鸡,腿的总只数就增加2条。)。

(1)还有哪些同学与他的方法相同或类似?你们认为这种方法有什么特点?这位同学的这个方法按顺序一个一个列举下来,不容易遗漏,我们取个名字记住它吧!(板书:逐一列举)。

(4)取中列举和跳跃列举方法的同学汇报,说出是如何确定第一组数据的?计算验证后发现了什么问题?如何调整的?谁还有不同的调整策略?问:你们觉得这种方法怎么样?(简便、快捷)。

重点追问:计算验证后发现什麽,怎样想到用这种方法进行调整的?

(三)回顾与交流。

谢谢同学们还有其他的方法解决这道题吗?

(四)继续交流分享。

2.生:我先假设全都是鸡,那么就有24条腿,比实际的腿少了32-24=8条。多的这8条腿就是由于我们把兔当作了鸡,每只兔鸡少算了2条腿,所以用8除以2就得到了兔的只数,兔是4只,鸡只有8只。

师:大家听懂这个方法了吗?你有什么问题要提出来的?没关系,我们请12个小朋友充当小动物来演一演帮忙同学们理解一下这种方法。

(学生表演,借助学生表演理解算术解法每一步的意思)。

师:如果假设全都兔呢?你们会解决吗?对手试试看。(学生动手试做,然后汇报)。

3.生:我用的.是画图的方法。我们先画12个圆代表12个头,然后个头添上2条腿,就一共添了24条腿,这个时候鸡的腿数齐了,剩下8条腿的全是兔的腿了,每只兔子还差2条腿,所以再给每只兔子添上两条腿,这样就可以添4只兔子,所以有4只兔子,有8只鸡。

生:我觉得这个方法和列举法一样,如果数目较多的时候,画图就麻烦了。

师:这道题用画图的方法可行吗?

生:数目简单的时候可行。

师:这也就解决问题的一种策略,如果数目较多,我们可以把图画在心中,心中想怎么画就可以了。下面有请其他小组进行汇报。

4.生:我们小组是用抬腿法来做的。我们先让每只动物抬起一条腿来,这样就还剩下了26-8=18条腿,我们再让每只动物再抬一次腿,这个时候就还剩下了18-8=10条腿了。这10条腿全都是兔子的了。所以兔子有5只,鸡有3只。

师:这个方法就是古人的奇思妙想,你们也想到了,真好!有兴趣的同学课后可以看课本的阅读资料,也可以和同学们演一演,研究研究。

活动3【练习】联系生活建构模型。

同学们,生活中有没有类似鸡兔同笼这样的问题呢?我们走进生活一起去找一找吧!请看租船中的问题:

全班一共有38人,共租了8条船,大船能坐6人,小船能坐4人,每条船都坐满了。大、小船各租了几条?(38人相当于鸡兔同笼的腿数,8条船相当于头数,大船坐6人相当于6条腿的怪兔,小船相当于4条腿的怪鸡)。

活动4【测试】实际应用解决问题。

尝试运用你喜欢的方法独立完成此题。

就这道题而言,你认为它与鸡兔同笼问题有什么联系?不同之处呢?哪种方法解决最好?

活动5【作业】生活拓展谈谈收获。

结束语:孩子们,课上到这里,你还有什么疑问或想法吗?老师通过这节课和同学们的交流,觉得你们太棒了,你们通过课前自学,课上通过交流并分享了自己的研究成果,还用学到的方法解决了生活中的许多类似问题,相信同学们只要保持这种研究精神,一定能有更多的收获。谢谢同学们!

小学数学鸡兔同笼教案篇十七

教学目标:

1、对日常生活中的现象进行观察和思考,引导学生从中发现特殊规律,使学生掌握用列表的方法来解决“鸡兔同笼”的问题。

2、从不同的角度分析问题,掌握解题的策略与方法,从而感受到数学思想的运用和解决实际问题的联系。

3、培养学生分析问题的能力,渗透假设的数学思想,在解题中数形结合,提高学生对数据的再认识,再分析,将列表的过程更优化。

教学重点:从不同的角度分析,掌握解题的策略与方法。

教学流程:

一、创设情境,明确目标。

1、谈话:“同学们,自我介绍一下,我姓周,你们可以称呼我?今天需要我们共同配合,在这里上一节数学课,为了表达谢意,我为你们带来了一些礼物,快来猜一猜,有多少?(5…)太少了?(50…)多了,(40…)少了(45…)差不多了,(46…)恭喜你,答对了,下课就由你发给同学们。

2、喜欢数学吗?数学不但可以开阔我们的视野,增长我们的'知识,还可以锻炼我们的思维。在我国古代就有许多有趣的数学名题,你们了解吗?今天,。老师就向你们推荐一种有趣的问题------鸡兔同笼。

二、自主探索,合作交流。

1出示问题:“鸡兔同笼,有5个头,14条腿,鸡兔各有几只?”

(1)你从中获取什么信息?……。

(2)请你们猜一猜将鸡、兔可能是几只?(……)。

(3)把你猜的过程给大家说一说。

(4)板书学生的过程。

鸡123。

兔432。

腿181614。

(4)评价:从尝试简单的开始,一个一个的试,最终找到了正确的答案,方法多么简单啊?如果我们再横竖加上几条线,就成了美观的表格。看来,列表来解决这类问题还确实简单,如果现在将鸡兔的数量增加,还能解决吗?(重点引入列表)。

2、出示:“鸡兔同笼,有20个头,54条腿,鸡兔各几只?”

(1)自己先想一想如何利用列表来解决?

(2)小组内交流一下自己的想法。

(3)独立完成列表。

(4)汇报想法和过程。

小组1:逐一列表------假设鸡有1只,兔子有19只,那么就有78条腿,(腿多了,说明什么?兔子多了,怎么办?)鸡有2只,兔子有18只,那么就有76条腿,一只一只地试,学生把试的结果列成表格。

通过表格引导学生观察:发现了什么?(每多一只鸡,少一只兔子,相应减少2条腿,)。

小组2:跳跃式列表------假设鸡有1只,兔子有19只,那么就有78条腿,要比54条腿多的多,因此,兔子的只数也可能多了很多,但是鸡的只数可以不用一只一只依次递增,而是从猜一只到猜5只(或者其它几只),当腿的条数在50到60之间,(提出问题:兔子可能是几只?到底是谁估计的更加接近呢?)。

引导发现:这样就减少举例的次数。并通过数据的调整来优化解题策略。

小组3:取中列表------假设鸡兔各有10只。

小组4:方程。

小组5;奥书班中学习过算术方法(让孩子清楚表达出自己的想法)。

三、适时反思,掌握策略(两题任选其一)。

1、观察三种列表的方法,比较异同?

2、谈一谈;你们有什么感受?

四、深化练习,拓展延伸。

1、课后练习1、2、3(比较不同-----答案是否唯一)。

2、通过今天的学习,有什么收获?

小学数学鸡兔同笼教案篇十八

教学目标:

1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2.尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。

3.在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。

教学重点:

教学具准备:

课件。

教学过程。

一、历史激趣,导入新课(3分)。

【设计意图】这一引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。

1.分析题意:这道题目是什么意思?(这道题目是说,现在有一些野鸡和兔子,关在同一只笼子里,从上面看,共有35个头;从下面看,共有94只脚。问有多少只野鸡、多少只兔子?)。

2.出示例题:贴出例题及插图:鸡兔同笼,上面看有35个头,下面看有94条腿,鸡兔各有多少只?(请一名同学读题)。

你从中发现了哪些数学信息?这道题里还有隐藏的数学信息吗?同学们先来尝试猜测鸡、兔可能各有多少只?(找一两个同学猜测)。

过渡:看来这么大的数据,同学们尝试猜测有一定的难度,那我们把它化难为易,从简单入手找出规律,再来尝试猜测解决这个问题。

二、化难为易,寻找规律(15分)。

1.如果鸡兔共5只,共有18条腿,尝试猜测一下鸡、兔可能各有多少只?

2.鸡兔共5只不变,腿数变为16条,鸡兔各有多少只?你是怎样猜测出来的?

3.鸡兔共5只不变,鸡、兔的只数还有其他情况吗?腿数是多少?

请同学们借助表格1,整理一下我们的解题过程;

头数鸡(只)兔(只)腿数。

51418。

52316。

53214。

54112。

过渡:刚才我们运用列表的方法解决了这道简单的鸡兔同笼问题,并且在表格中发现了规律,那么你们能不能运用列表的方法以及刚才发现的规律来解决《孙子算经》中的鸡兔同笼问题?(板书:列表法)。

【设计意图】简单入手、化难为易发现规律,运用知识迁移,拓宽学生思路,留给学生思考的空间,在解决问题的过程中发现表格的用处,及其在表格中发现规律,为构建新知奠定基础。

三、交流强趣构建新知。

1.学生独立完成,教师巡视。

2.在小组里交流一下你尝试猜测的过程。

(选出:逐一列表法;腿数少小幅度跳跃;腿数多大幅度跳跃;跳跃逐一相结合;取中列表)。

3.学生汇报:

(1)请一个采用逐一列表法解决的同学汇报(假如有采用逐一列表法的)。

汇报讲出理由(你是依据什么确定第一组数据的,计算验证后发现了什么问题,腿数多或少说明什么?怎样进行调整的也就是调整的方法),并且说一说调整过程中有什么发现?(因为鸡和兔的只数是固定的,每增加一只兔子减少一只鸡,腿的总只数就增加2条。)。

还有哪些同学与他的方法相同或类似?补充说明理由和发现的规律。你们认为这种方法有什么特点?(板书:逐一)。

小结:逐一列表法虽然比较麻烦,但是不重复不遗漏;

(2)请小幅度跳跃列表的同学汇报。

问:你们觉得这种方法怎么样?(简便、快捷)。

(3)请大幅度跳跃列表同学汇报。

你是怎样想到把鸡或兔的只数调整的?

(4)请大或小幅度调整与逐一相结合的汇报。

重点追问:计算验证后发现什麽,怎样想到用这种方法进行调整的?

小结:列表过程中根据需要我们可以有规律的小幅度跳跃,也可以根据自己的发现大幅度的跳跃;(板书跳跃)。

(5)请选用取中列举法的同学汇报?

小结:取中列举法在逐一和跳跃的基础上直取中间数,验证后调整幅度缩小更为简便快捷(板书取中)。

3.回顾与交流。

回顾一下我们的解题思路和方法,首先根据已知信息进行尝试猜测,然后进行计算验证,分析后进行合理调整。(相机板书:猜测、验证、调整)。

你最喜欢那种列表方法?理由呢?

同学们还有其他的方法解决这道题吗?

直观画图法:大家明白了吗?你觉得这种解法怎么样?

小结:画图的方法非常直观便于观察、非常容易理解。

同学们还有具有独特个性的解法吗?可以用自己的名字命名汇报。

【设计意图】在问题情境中探究解决问题的方法,给学生足够的空间经历数学知识的形成过程,体验猜测—验证—调整—再验证—再调整的过程,从而得到解决鸡兔同笼问题的一般方法策略:列表法。

过渡:你们在这么短的时间内就想出了这么多解决鸡兔同笼问题的方法,你们很了不起。

四、方法应用,巩固新知(5分)。

【设计意图】学数学用数学,引领学生抓住数学的本质,学习鸡兔同笼问题并非单纯解决鸡兔同笼问题而是借助鸡兔同笼问题学习列表法。

五、实践应用解决问题。

地震后要用大小卡车往灾区运29吨食品,大卡车每辆每次运5吨,小卡车每辆每次运3吨,大小卡车各用几辆能一次运完?尝试运用你喜欢的方法独立完成此题。

学生汇报:你采用的是那种列表方法?为什么要选用这种列表方法?谁有不同的列表方法?

1.(如分别出现两种不同的正确答案)两种答案都正确吗?那么用什么方法能使所有的正确答案都不遗漏呢?师生集体尝试逐一列表的方法。

2.(如出现一名同学有两个正确答案和分别一个正确答案)你认为谁的方法更好?

过渡语:老师相信同学们一定会耐心细致的做每一件事请。

【设计意图】此练习题的`出示目的是使学生在发现问题,解决问题的学习过程中明确因题而异选择方法,认识到对于本题来讲选用逐一列表法最为合适,进一步明确逐一列举法的优势好处。

六、生活拓展、谈谈收获(3分)。

愿意告诉老师这节课你的学习收获吗?

结束语:数学自古以来是中国历史上的璀璨明珠,在我们的生活中无处不在,我相信同学们只要敢于猜测尝试、并且不断的实践验证、调整创新,任何问题都能迎刃而解。

小学数学鸡兔同笼教案篇十九

一、课题与内容:

“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。对于六年级的学生来说,解决“鸡兔同笼”问题“假设法”有利于培养学生的逻辑推理能力。

二、教学目标:

知识与技能目标:

通过猜想列表法和假设尝试法使全体学生初步感知两种方法从数到形的转化过程,尝试用不同的方法解决“鸡兔同笼”问题,体会代数方法的一般性,培养学生的逻辑推理能力。

过程与方法目标:

经历“鸡兔同笼”问题的探究与解答过程,使全体学生体会分析问题、解决问题的方法。

情感态度价值观目标:

让学生感受数学与日常生活之间的`密切联系,培养学生分析解决问题的方法。

三、教学过程。

活动1:活动名称:初步感知猜想列表。

活动意图:通过学生的大胆猜测,不断验证,使全体学生初步建立头和腿的联系。由于猜想的局限性,让学生通过列表法有序进行列举,培养学生严谨的思维能力。

活动组织过程:(10分钟)。

1、出示例题:鸡兔同笼,有6个头,共16条腿,几只鸡,几只兔?

2、读题,审题,学生先猜测。

3、怎么确定同学们的猜测是否正确?

4、用列表法进行验证。

5、像这样把数字一一列举的方法叫做“列举法”。

6、那如果对大的数据来说,猜测或列表法会有什么问题?

7、这节课我们来研究新的方法。

问题:会有重复或有遗漏。

活动2:活动名称:假设法尝试。

活动意图:让学生在猜测列表的基础上,运用假设法使全体学生初步理解什么是假设。在列表法变化规律的基础上,以独立思考,小组合作,交流汇报的形式,用课件动画的模式进行辅助学生,让学生了解算理,培养学生的逻辑思维能力和推理能力。

活动组织过程:(20分钟)。

1、出示例题:鸡兔同笼,有8个头,共26条腿,几只鸡,几只兔?

2、假设全是鸡一共有多少条腿,比实际多还是少了多少条腿,多或少了谁的腿呢?

3、把上面的过程用算式表示出来。

4、计算出结果,怎们检验结果是否正确。

5、假设全是兔,又该如何解决呢?

6、小组交流,汇报结果,自我检查结果是否正确。

7、说一说学习方法。

问题:假设中多或少的部分学生会有疑惑。

活动3:灵活运用。(10分钟)。

活动意图:通过鸡兔同笼问题与实际生活相结合,让学生进一步感受到我国古代数学的魅力。与生活实际相联系,进一步巩固本节课所学习的鸡兔同笼问题在实际生活中的正确理解与运用,使学生的逻辑思维能力和推理能力得到进一步的提升。

活动组织过程:。

1、出示例题:自行车和三轮车共10辆,总共有26个轮子。自行车和三轮车各有几辆?

2、读题,审题,独立尝试。

3、小组交流。

4、全班交流汇报。

问题:本题的难点对数形结合思想的联系不够。

四、小结本节内容。

:谈谈你的收获与不足?

五、教学反思:

小组合作学习中教师如何调控才能进一步提高合作学习的效率,如时间的把握、学生合作过程的控制、合作学习的效果等;要想大面积提高课堂教学效益,必须在课堂中注重培优辅困,特别是学困生的辅导如何在课堂教学中落实,使他们通过教师的引导取得明显的学习效果,真正落实新课标提出的“不同的人在数学上得到不同的发展”目标;有意义的练习及作业的设计要考虑有利于知识点的落实,要能激发学生的兴趣,还要考虑练习内容的层次性,手段的灵活性,逐步培养学生的创新能力和动手能力。

小学数学鸡兔同笼教案篇二十

教学过程:

一、游戏体验。

师:这节课我们来做个鸡兔同笼的游戏好吗?

师:谁来介绍鸡和兔的特征?

生1:鸡一个头,两条腿。

生2:兔一个头,四条腿。

二、建立模型。

师:谁来说说你们刚才是怎样数出有多少只脚的?

生:用鸡数乘以2,用兔数乘以4。

板书:鸡数2+兔数4。

师:通过刚才的游戏你有什么发现?

生:当头数相同,而鸡和兔的只数不同,脚数就会发生变化。

师:如果头数和脚数都不变,鸡兔同笼,数头20个,数脚54只,你能猜出有多少只鸡和兔吗?现在请同学们大胆地猜测,并在小组内说一说。

(小组讨论)。

师;可以用什么办法把你们刚才猜测的过程记录下来。

生发言:可以用画图或制成统计表的方法。

师:今天我们主要来学习用统计表的方法解决鸡兔同笼的问题。

师:谁来说说,统计表中每栏要表示什么?

师:现在请同学们独立地把你们猜测的过程记录下来,然后在小组内交流不同的方法。

(小组活动)。

师:谁来说说你是怎样记录的?

反馈总结:同学们记录的方法大致可纳成三种情况;逐一列举法、跳跃列举法、取中列举法。谁能说说这三种方法各自的特点?(学生发言)。

生:我们可以采用取中列表法,再结合跳跃列表法进行调整。

师:如何调整?

生:当发现在尝试过程中所算出的腿数比已知的腿数多,那么腿多的小动物要减少,当尝试过程中所算出的腿数比已知的腿数少,腿多的小动物要增加。

板书:猜测列举调整。

三、巩固提升。

师:刚才我们通过了猜测列举调整等过程,解决了鸡兔同笼的问题,你们学会了吗?

四、思想教育与总结。

师:鸡兔同笼的问题很有意思吧。早在15前我国古代的《孙子算经》里这记载着这样问题,后来传到日本,演变成龟鹤算。古代人真值得我们骄傲,可是今天你们是老师的骄傲,你们想出这么多解决鸡兔同笼的问题的方法,甚至有的同学还会自己设计问题,实在是了不起,希望同学们要把这种善于发现问题的精神发扬下去,将来成为一个了不起的人。

【本文地址:http://www.pourbars.com/zuowen/15773881.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map