撰写教案时,教师应该注意逻辑清晰,内容全面,语言简明扼要。在编写教案时,要充分考虑学生的学情特点和认知规律,以便根据学生的差异化需求进行个性化教学。以下是一些典型的教案模板,可以帮助大家系统化地进行教学设计。
梯形面积的教案篇一
今天,我执教的是《梯形的面积》一课,这节课的教学目标是:在实际情境中,让学生认识计算梯形面积的必要性;在学生自主探索的活动中,经历推导梯形面积公式的过程;能运用梯形面积的计算公式,解决相应的实际问题。从整个教学过程看,这一目标得到了充分的落实和体现。梯形面积的计算方法的推导,正确计算梯形的面积,作为教学重点、难点,也贯穿于整个教学环节中。
对于本节课,我觉得有以下几点值得思考:
1、尊重学生的认知规律,注重知识的前后联系。
我在设计教学时,就关注学生已有的知识、水平和经验。由于学生学过了平行四边形和三角形的面积,而梯形的面积公式推导方法与三角形的面积公式推导方法有很大的相似之处,我就放手让学生自己利用前面的学习经验,推导出梯形的面积公式。
2、以学生的活动为主,实现生生互动。
本节课力求让学生自己去发现和概括梯形的面积公式,在探究的过程中发展学生思维的创造性。为了达到这一目的,我让学生动手操作,分组合作探究,初步概括出梯形的面积公式。这样,通过“剪、移、转、拼”的活动,让学生真正亲历知识的探究过程。同时,又由于各项活动的设计环环相扣,步步深入,不仅激发了学生探究学习的兴趣,同时学生思维深度和广度也得到了有效的培养。
3、学生自主探索的活动在时间上给以保证。
本节课一系列活动的设计是为了学生给充足地用眼看,用手做,用耳听,用嘴说,用脑想的时间和空间,让学生尽情的`表现和发展自己,每一位学生都在亲自实践中认识理解了新知。充分体现了教师指导者,参与者的作用。当学生受现有知识的制约,推导概括公式思维停滞时,我进行点拨诱导,促其思维顺畅,变通,最后使学生明确,尽管拼摆的方法不同,但都达到验证了梯形的面积公式的目的。
这节课的教学已经结束,自己感觉教学过程顺畅,是一节自己比较满意的课。但对于很多细节,觉得仍需要推敲,相信自己会在今后的教学中不断探索,使自己的教学日趋成熟、完善。
梯形面积的教案篇二
梯形面积的计算是在学生学会计算平行四边形、三角形面积计算的基础上教学的。教材先复习梯形的有关知识,然后引导学生想,怎样把梯形转化为已学过的图形,从而推导出梯形的面积计算公式。其中理解梯形面积计算公式的推导过程是本节课教学的难点。
下面就从以下几个方面进行剖析:
(一)以旧促新,探究新知。
1、出示梯形请学生找出梯形的上底、下底和高,然后请学生想一想:我们在推导平行四边形、三角形面积计算公式的时候,都用到了什么方法?带领学生回顾以前知识,(把一个平行四边形进行割补转化成一个长方形,推导出平行四边形的面积计算公式;把两个完全一样的三角形拼成一个平行四边形推导出三角形的面积计算公式。)使学生明确都用到了转化的方法。然后教师启发:我们能否也用转化的方法来推导梯形面积的计算公式呢?下面我们就来共同研究、探讨。本环节的设计,善于抓住新旧知识的内在联系,数学思想方法的类比迁移,用循序渐进的启发性提问,培养学生的发散思维。促进学生将梯形面积计算公式与已有认知结构中的平行四边形、三角形面积计算公式建立非人为的实质性联系,为学生对梯形面积公式的探究、研讨,促进知识方法的有效迁移创造条件。
在引导学生进行操作时,我先课件显示操作提纲:1、拿出两个完全一样的梯形动手拼一拼。2、你拼成了什么图形?怎样拼的?3、你发现拼成的平行四边形和梯形之间有什么关系?让学生带着教师提出的问题一边思考,一边动手,防止出现学生不知道做什么的现象。然后学生示范拼图,用两个完全一样的梯形拼成一个平行四边形。由于学生操作的两个完全相等的梯形是等腰梯形,因此未出现异常现象,学生都兴奋地说拼成了平行四边形。为了加深学生对书本图示的理解,我故意剪了两个完全相等的任意梯形,结果问题就出现了,一名学生没有按照书本上的拼法,结果自然没有拼成平行四边形,学生都感到惊讶。我见时机成熟,叫学生再打开书本,仔细观察书上的拼法,使学生明确拼的步骤:即先要重合,再向左旋转,最后沿着梯形的一条边向上平移,直至两条底成一条直线,才能拼成。学生这才明白过来。通过动手操作,同学们都明确了两个完全相同的梯形能拼成一个平行四边形。
接下来根据拼成的平行四边形,请学生一边看图一边找关系,先找出平行四边形的底与梯形的底之间的关系,即拼成的平行四边形底是梯形上底和下底之和,再找出梯形的高与拼成的平行四边形的高的关系,即拼成的平行四边形的高是梯形的高,然后得出梯形面积与拼成的平行四边形面积之间的关系,即梯形面积是拼成的平行四边形面积的一半,最后得出梯形的面积计算公式及字母公式。
本环节的设计,从学生实际出发,设计了相应的填空题,使研究的要求清楚,目的明确,有利于学生有效、有序地进行思维。
(二)学以致用。
在例题的教学中,由于有前面平行四边形、三角形面积计算的基础,因此我没有花很多的精力,而是先出示例题,让学生自己尝试解答,充分发挥了学生的主观能动性。在练习的设计中,我也能从学生实际出发,选择学生中有可能出现错误的列式,让学生选择正确答案,从而杜绝错误现象。为了让学有余力的学生能吃得饱,我又布置了一些拓展题,。让学生尝试用不同的方法得出梯形面积的推导公式。(用一个梯形拼一个平行四边形,然后推导梯形面积的计算公式)。
总之,本堂课能以全体学生为本,从教学形式和教学方法上有了较大的更新。通过让学生操作、思考、观察、讨论、说理、计算、看书和概括等多种形式,注意了变"教师讲授"为"研究交流",变"灌输"为"引导",较好地处理了"主体"和"主导"的关系,有利于培养学生学会学习,学会创造的良好素质。
梯形面积的教案篇三
2、教材简析:梯形面积的计算是在学习了平行四边形、三角形面积的基础上教学的。学生学好这部分内容,既发展了空间观念,又培养了运用旧知识解决新问题的能力,更为今后学习几何知识奠定了基础。
3、教学目标:
(1)知识教学:掌握梯形面积公式,理解推导过程。
(2)能力训练:通过操作、观察、比较,发展学生的空间观念,培养学生的创新意识和实践能力。
(3)素质培养:渗透旋转和平移的思想,让学生在拼剪中感受数学知识的内在美,培养团队合作意识。
4、教学重点:理解梯形面积公式,掌握计算方法。
5、教学难点:通过图形的转化推导面积公式。
6、教学关键:借助图形之间的转化,沟通知识间的联系,合理使用多媒体,促进学生独立推导出面积公式。
7、教具准备:电教多媒体、实物投影。
学具准备:各种梯形卡片若干、小刀、胶水。
二、说教学策略及教法。
这节课主要本着“以学生发展为本,以活动为主线,以创新为主导”的思想。主要教法有引导法、直观演示法和讨论法等。在教学策略上,把梯形面积公式的推导化为学生“拼、剪、画、说“的活动,通过小组活动、操作实践等手段借助多媒体的演示,帮助学生理解知识点,使抽象的知识变得直观形象,给学生一个创新的空间。变“讲堂”为“学堂”,从而从根本上打破传统的教学方法,建构一种新型的现代教育模式。
三、说学法。
在教学中注重指导学生的自主学习,把学习的钥匙交给学生,在传授知识的同时,授以科学的思维方法,这节课学生主要采用以下两种学法进行探究学习:1、小组合作学习的方法,运用这种方法,便于培养学生的参与合作精神。例如,让学生寻求梯形面积的计算方法,看谁想出的办法多,学生在组内合作交流,互相可以得到启发,共同理清思路。2、迁移尝试法:在教学过程中引导学生模仿平行四边形、三角形的面积公式的推导,运用转化的方法推出梯形面积计算公式。学生在模仿、迁移、推导的过程中,学会学习、学会思考,真正成为学习的主人。
四、说教学程序。
本节课属于几何知识中公式推导教学。根据内容特点和学生学习数学的心理特点,教学程序可分为五大环节:
第一环节:创设情境导入联系学生熟悉的例子,创设一个能激起学生认知冲突的问题情境,让学生计算一个上底3厘米、下底5厘米,高4厘米的梯形彩纸的面积。这时大多数学生会束手无策,就在学生产生认知冲突时导入课题:同学们,这就是我们今天要研究的内容“梯形面积的计算”。精心设计好这个开端,很自然地把学生带入新知的学习环节。这样既激发了学生探索新知的欲望,又使学生明确了探索目标与方向。
第二环节:搭建脚手架,激活思维这一环节主要是针对学生求梯形面积时遇到的困难而设计的。这样一来就为学生解决新问题做了认知上的铺垫。这一环节共分两步进行:第一步操作铺垫;第二步再现旧知。操作铺势是先让学生将两个完全一样的梯形任意摆成各种各样的图形,然后再要求学生摆成一个学过的图形:如长方形、平行四边形等。“好动”是孩子的天性,图形的拼摆操作能激起学生的学习兴趣。通过对两个完全一样的梯形能拼成一个平行四边形的操作验证,丰富了学生的感性认识,积累了丰富的表象,使学生独立思考,自由探索有了基础;第二步再现旧知,先让学生说一说平行四边形、三角形面积公式是什么?面积公式的推导过程又是怎样?再用多媒体演示,揭示图形的转化方法,为梯形面积公式的推导提供内在的类比推理。接着问学生:回顾了平行四边形和三角形面积公式的推导过程,你受到了什么启发?这时安排学生进行小组讨论、交流,让学生从中感悟到用转化的方法可以解决新问题,从而对学生的学法做了有力地指导,使学生更好地自己把握自己学习的活动。
第三环节:自主探索,合作交流建构主义学说认为:学习是学习者主体主动建构的过程。在这一环节的学习中,要充分相信学生,并为之提供主动建构的过程,从而使“有意义学习”的实现成为可能。这一环节也分两步进行:第一步,让学生拿出课前准备好的各种梯形,鼓励学生操作,寻找梯形面积的计算方法,让学生拼拼剪剪中实现转换,比一比哪一组同学想出的办法多。由于刚才提出的问题比较大,答案不唯一,这样整个课堂就完全放开了,让学生自己去找。这时学生就开始动手操作了,剪得剪,拼得拼,教师在这个时候,会积极参与小组的讨论之中,并引导组织好学生的学习活动,使学生变被动学习为主动学习,真正把课堂还给学生,使学生成为课堂的主人,学习的主体;第二步,交流验证是学生在小组间相互交流,展示不同的思考方法。除了这些方法外,可能还有其它的方法,那么学生汇报时要充分肯定他们的推理与计算。学生在交流与展示中相互得到启发,这样学生就经历了一个学习再创造的过程,使学生创新思维得到更好的发展,也就可以收到“保底不封顶”的效果。
第四环节:点拨归纳、解决问题学生经过自主探索合作交流,有的悟出了梯形面积公式,但不一定讲得清道理,有的学生在公式的理解上存在障碍,基本处于“悱”、“愤”状态。这时应抓住时机,引导学生梳理思路找出最简便的解题方法,接着就重点演示两个完全一样的梯形拼成一个平行四边形,让学生观察原梯形和所拼图形之间有什么关系?师生共同推导出梯形面积的计算公式,并用字母表示出来,这时候计算公式的得出,也就水到渠成了。接着让学生看书质疑,理解公式。最后进行课堂小结:同学们,通过这节课的学习,你有什么收获?你还想出什么问题,这样学生头脑中形成一个完整的知识体系。
第五环节:综合练习、拓展延伸练习是理解知识、掌握知识、形成技能的基本途径,为使不同层次的学生都得到不同程度的发展,我设计了以下几个层次的练习:
1、自命题练习:学生自己出题自己解答,并进行自评互评。这样摆脱了由老师出题,学生依次解答,一贯做法。老师只在关键的地方加以点拨、引导。这样设计,学生不但感兴趣,而且这个出题与解题的过程,更加深了学生对知识的理解与巩固。
2、巩固练习:先让学生以抢答形式练习,直接用公式求面积,再让学生以小组为单位,完成一道实践与计算相结合的综合性题目。
3、对学有余力的学生设计一道思考题,供他们解答。这些练习紧扣教学重点,既有层次,又有梯度,提高了解决问题的能力,增强了学生学好知识的自信心。
五、板书设计。
这样的设计体现了教学内容的系统性和完整性,又做到了重点突出。
梯形面积的教案篇四
二、对学情进行分析。
(五)年纪的学生具有认真、好学、勇于探究的学习态度,因此我在教学过程中设计了(讨论、猜想、探究)等多种活动来加深学生对(梯形面积公式)的感受和理解。
三、教法与学法学生是学习的主体,教师是学习的组织者、引导者和合作者,因此我将采用一下几种教法和学法:
3.练习法:通过适当的练习,巩固所学的知识,解决生活中简单的实际问题为了能在课堂上更好的进行教学我将会准备好多媒体课件、(梯形教具若干)„让学生准备好(相同的梯形若干个、剪刀、尺子)。
四、教学流程。
根据。
(一)创设情境,提出问题。
(二)自主(合作)探究、解决问题在这一部分我安排了()个教学环节第一个环节:对学生进行引导:“同学们还记得我们在学习三角形的面积的时候是怎么做的吗?你能将梯形转化为已经学过的什么几何图形?四人小组合作并且记录下转化后什么改变什么不改变?怎么计算梯形的面积?”
第二个环节:小组展示。(在黑板上板书)请小组代表上台展示。预设1:用两个相同的梯形转化成平行四边形,转化后梯形上底和下底加起来刚好是平行四边形的底,平行四边形的高是梯形的高,因此梯形的面积是(上底+下底)*高/2预设2:沿梯形两腰的中点剪开,拼成一个平行四边形。平行四边形的底就是梯形的上底和下底的和,高是原梯形的一半,因此梯形的面积是(上底+下底)*高/2预设3:分割。
通过学生的展示和交流,我会引导学生得到梯形的面积公式是(上底+下底)*高/2第三个环节:用字母表示公式。
设计意图:我注重将“重视结论”的教学转变为“重视过程”的教学;发挥教师主体作用,处理好讲授与学生自主学习的关系,引导学生独立思考,主动探究。合作交流,让学生充分经历观察,操作等数学活动和数学思考,达到落实教学目标,突出教学重点,突破教学难点的目的。
(三)练习巩固。
练习是掌握知识、形成技能、发展思维的重要手段,结合本结课的教学重难点和学生的具体情况我设计了三个层次的练习:
第二层次:如课本练习的第3、4题。第三题让学生通过动手实践,体会到尽管梯形的形状不同,但是只要梯形的高,上底和下底相同,则面积也相同;第4题,学生通过动手操作计算梯形的面积,通过对位置放置不同的梯形,让学生能正确寻找上底、下底和高。
(四)课堂总结提升。
我将会引导学生:这节课我们学习了什么本领?我们是如何学的?我们应该注意些什么?
以上就是我对本节课的整体设想和教学预设,希望能够得到各位老师的指正,谢谢!
梯形面积的教案篇五
今天听了徐老师上的《梯形的面积计算》这节课,整堂课的教学,我们感觉较为满意的是,突出了以下几个方面:
一、体现了探究性教学的特点。
《数学课程标准》指出:有效的数学学习活动不能单纯地依赖模仿与记忆。动手实践、自主探索与合作交流是学生学习数学的重要方式。本课的教学应该说较好地落实了这一理念:充分让学生动手实践——用学具剪剪拼拼,进行了自主探索,并在形式上响应地组织了小组合作交流。体现了探究性教学的特点。具体在教学中的体现如下:
放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。在这一环节的教学中,老师十分注意突出学生主体作用的发挥,让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。在这一环节中,学生出现了多种操作方法,如:一部分学生把两个完全一样的梯形通过旋转、平移转化成一个平行四边形,推导出梯形的面积公式;一部分学生用一个梯形沿中位线剪开,翻转180度,拼成一个平行四边形,推导出公式;还有一部分学生用一个梯形沿梯形的右上角到对腰的中点剪下,翻转180度,拼成一个三角形,推导出面积公式。这样的教学正好落实了《标准》提出的“数学教学要在学生已有的知识背景下学习”的理念。尤其突出的是充分发挥了学生的自主性,实实在在地给了学生进行探究、发现、创新的时间和空间!真正体现了“学生是学习的主人,教师是组织者、引导者和参与者”。发展了学生的创新能力。值得指出的是:这当中还蕴含了数学思想方法的教学:让学生把陌生的知识自主地转化为已有的知识经验,体现了迁移、转化思想。经过课堂小结的点拨,使得这一教学效果尤其明显。
二、体现数学与生活的联系。
首先,在导课时,创设了猜两个与数学有关的谜语,不仅有效培养了学生的学习兴趣,同时还激发了学生求知的愿望。其次,创设应用探索出来的方法解决实际生活中的问题。主要是通过解决一些生活中的梯形的面积来实现的。课堂上黄老师依据学生的心理特点,做到了《标准》对于情景的创设“要联系学生的生活实际”的要求。在这一前提下让学生进行探究,是水到渠成,显示了学习的自主性。在获取了知识后马上让学生运用新知来解决实际问题,使学生切实并切身地体会到了数学与生活的密切联系!真正体现了数学“来源于生活,回归于生活”的思想。
三、体现练习的层次性。
练习的设计体现由简到难的梯度性,关注后进生,也兼顾学有余力的学生,做到面向全体学生。使学生在不同程度上得到发展。
总之,在本节课中,教师注重了以学生为主体,通过学生的动手操作和实物展示、合作交流等各种教学手段,促进学生的思维能力,合作能力的发展,培养了学生的动手能力,更重要的是展现知识形成的过程,让学生亲身体验知识的形成,体现了学生自身的价值,从而感受到成功的喜悦,提高了教学效率,收到较好的教学效果。
梯形面积的教案篇六
这节课是人教版六年制小学数学第九册的教学内容,是在学生学会计算平行四边形、三角形的面积的基础上进行教学的,这部分知识是将来进一步学习计算组合图形面积计算的基础。
本节课内容共分为两个层次。一是推导梯形面积的计算公式;二是应用梯形面积的计算公式计算梯形面积,解决实际问题。通过观察新旧图形的内在联系得出梯形面积的计算公式。
2、教学目标。
根据新课标提倡的三维目标教学,我给学生制定的学习目标是:
(1).在实际情境中,尝试计算梯形的面积。
(2).通过预习,引导学生在自主参与探索的过程中,发现梯形的面积计算方法,能灵活运用梯形面积计算公式解决相关的数学问题。
(3).通过操作,培养学生的迁移类推能力和抽象概括能力。
3、教学的重点、难点、关键。
由于学生学习了平行四边形、三角形的面积计算公式,初步理解了平移、旋转的思想,具备了初步的归纳、对比和推理的数学活动经验,对梯形面积公式的推导,有一定的启发。所以教学的重点:理解并运用梯形的面积计算公式。教学的难点:梯形面积公式的推导过程。教学的关键是怎样把梯形转化为学过的图形来推导出梯形的面积公式。
二、教学实施过程:
基于上述认识与理解,我对梯形的面积计算教学流程作了如下设计:
检查预习——合作探究——汇报交流——应用新知。
第一环节:检查预习(4分钟)。
这环节分两个部分:先让学生回忆三角形面积公式的推导过程。
这样是为学习梯形的面积计算做好了铺垫。因为三角形面积公式及其推导过程与梯形有许多相似之处,有了前几节课的基础,学生推导出梯形面积公式就并不困难。
接着出示灌溉堤坝的横截面,呈现实际情境,感受计算梯形面积的必要性,学生尝试计算,检查预习。
这样导入,使学生感受数学与实际生活的密切联系,恰到好处地激发学生求知的欲望,使学生产生一种探求知识的动力。
第二环节:动手操作,探究交流(8分钟)。
(1)用两个完全一样的梯形可以拼成一个___________形。
第三环节:抽象概括,总结提高(6分钟)。
在操作探究的基础上,我引导学生自己来总结梯形面积的计算公式,让学生利用字母表述出计算公式,体现学与析的重要作用。来鼓励学生采用多种方法进行推理,让学生各抒已见。
通过这样的设计,体现了让“学生自主探究、自主学习”的教学理念,满足了“学生希望自己是一个发现者、研究者、探索者”的需要,进一步的促进了学生的学习兴趣。让学生把他想到的推导方法展示出来,既达到突出“重点”,又化解“难点”的目的。
第四环节:应用新知,深化提高(5分钟)。
通过动手操作,自主探究,学生获得梯形面积的计算公式后,我出示了课本的例题,求梯形水渠的横截面面积。通过实际问题的解决,将学生探究发现的数学知识转化为自身的能力,“学以致用”,来解决生活的实际问题。
第五环节:巩固练习,形成技能(14分钟)。
数学知识来源于生活又服务于生活,要使学生真正学好数学,形成数学技能,必须密切联系学生的生活实际,使其体验数学在生活中的广泛应用。所以,围绕这个目的,我设计了下面的一些练习:
练习的第一题是回应引入,给出一个灌溉堤坝的横截面,求出它的面积。
出示汽车侧面玻璃,要制作这扇门的窗户需要多少平方厘米的有机玻璃?
米
为了提高趣味性,第二题是动手操作题,先测量出自己所剪的梯形学具,再求面积。
第三题是判断题,判断出对错并且说出原因,提高学生对新课的理解。
(1)两个面积相等的梯形可以拼成一个平行四边形。()。
(2)梯形的上底扩大2倍,下底也扩大2倍,面积扩大4倍。()。
(3)梯形的面积等于平行四边形面积的一半。()。
(4)两个梯形面积相等,但形状不一定相同。()。
第四题是思考题,
梯形面积的教案篇七
九年义务教育小学《数学》教科书(人教版)第九册。
【教材分析】。
梯形而积的计算是在学生学会计算平行四边形、三角形的面积计算的基础上进行教学的。教材的编排不同于平行四边形和三角形。它的编排特点是引导学生把梯形转化为已经学过的图形。
再求面积。因此教材的编写跨越了数方格的感性认识阶段。引导学生思考怎样仿照求三角形面积的方法。用转化的思想。探究梯形面积的计算方法。这部分内容是学生以后学习圆面积和立体图形表面积的基础。
【学情分析】。
学习本课内容时学生己经掌握了长方形、正方形、平行四边形、三角形的面积计算方法。而且在学习平行四边形、三角形面积时。对转化、平移等数学思想的方法己经有了一定的认识。学生具备一定的知识和方法基础。因此。梯形面积的学习是运用旧知识解决新问题。实现迁移类推和新旧转化。进一步发展学生思维的创新能力和动手实践能力。
【教学目标】。
1.使学生用转化的思想方法自行尝试学习,通过不同途径探究推导出梯形面积的计算方法。学会应用公式计算梯形的面积。
2.进一步发展学生利用旧知识解决新问题的能力。发展学生的创造思维能力、动手实践能力。通过讨论、争辩、操作和推理。提高学生解决实际问题的能力。发展学生的空间概念。
3.向学生渗透转化的思想。培养学生的合作意识和竞争意识。
【教学准备】。
多媒体课件。同样大小的梯形纸片(至少四弓长)。剪刀。
【教学过程】。
一、复习旧知,引入探究情境。
1.教师谈话:请说出所学过的平面图形的面积计算公式。
3.猜测:梯形面积计算能转化成我们以前学过的图形面积来进行计算吗?
4.下面就请同学利用手中的材料动手实践。进行验证。
【设计意图】:通过义习。梳理学过的直线型图形的而积计算公式。并通过质疑激发学生自主探究的*。
二、自主探究,寻求规律。
(一)推导面积计算公式1.谈话指导:请同学们根据我们以前学过的有关平面图形面积计算公式推导的知识和方法。利用自己手中的材料以小组为单位尝试推导梯形的面积。
2.学生尝试探究验证。教师巡视观察指导学生的学习方法并帮助学习有困难的小组。
【设计意图】:给学生提供充分动手动脑的机会,给学生利用旧知探求新知的时间。把知识产生的过程创造出来。培养学生的探究精神并学会探究的方法。
3.展示汇报自己的学习成果。
(1)让学生自由发表意见,说出自己转化推导的方法。
(2)教师配合学生的叙述。用课件演示梯形是如何转化成己学过的平而图形的,并让其他同学质疑、评价(这里可能会出现拼一拼、割补、分一分等多种方案)。
4.引导学生总结计算公式。
(”教师提问:“谁能总结出梯形的面积计算公式?请说明你的根据。”
(2)教师根据学生的回答进行小结并板书:
梯形的面积=(上底+下底)x高=25.根据推导过程和公式。让学生提出问题:
(1)二上底加下底”指的是什么?
(2)为什么要“除以2"?
【设计意图】:学生通过自主探究合作交流。不仅知道了梯形的面积计算公式。而且更明确如此计算的原因。达到“知其然。
更知其所以然”的学习效果。培养学生科学学习的习惯和创新能力。通过教师的课件演示,使学生形象地感知转化思想的内涵。
2.学生自己尝试独立计算。
3.学生互相出题进行公式应用练习。
【设计意图】:通过学生互相出题训练。不但巩固了知识。而且实现学生真正的自主参与。同时充分地发挥了学生的聪明才智,使训练多样而有趣。变苦学为乐学。
三、巩固练习完成做一做。
2.完成练习十九的1-4题。
3.灵活变换条件。联系实际进行练习。
4.拓展尝试:下图是两个相同的汽角三角形补在一起。求涂色部分的面积。(单位:分米)。
【设计意图】:灵活的练习是检验学习效果的有效方法。联系实际能充分体现学以致用的原则。数学来源于生活更应该服务于生活,因此。联系实际的练习才是更为科学的训练方法。
【教学反思】。
本节课的学习是由学生独立思考、讨论、归纳、概括解决的。体现了学生主体的发展。但不足之处是:由于学生个体间发展的不平衡。因此并不是每一个学生都能去积极地思考、讨论。另外。还应多提一些开放性强的问题。使学生的思维得到充分的训练。
梯形面积的教案篇八
《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。这节课上完以后我觉得有成功,也有一些不足:
一、动手操作,培养探索能力。
在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的`图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生说说可以把梯形转化成已经学过的什么图形?用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。
二、发散验证培养解决问题的能力。
在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。
不足:
梯形面积的教案篇九
使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积。
含资料辑录或图表绘制。
一、第2题。
让学生先在小组里说说怎样找出面积相等的梯形。由于这4个梯形的高相等,只要比较它们的商、下底的和是否相等。这几个梯形中,除左起第3个梯形之外,其余的面积都是相等的。
二、第3题。
右图是直角梯形,可以通过讨论使学生明白:直角梯形中与上、下底垂直的那条腰的长度就是梯形的高。
三、第5题。
要注意两个问题:1、统一面积单位;2、讲清楚数量关系。
四、第6题。
先搞清楚水渠和拦水坝的横截面积分别是指图中的哪个部分,分别是什么形状,图中标出的条件又有哪些。在此基础上,再让学生分别进行计算。
五、针对学生在学习过程中出现的问题适当的进行补充和强化。
通过今天的练习我们对梯形面积计算方法的运用就更加熟练了,在以后的学习生活中我们还要多用它去解决一些实际问题,达到学以至用的目的。
梯形面积的教案篇十
教学内容:
认识梯形。
设计理念:
关注学生在数学活动中所表现出来的情感与态度,关注学生的需要,帮助学生认识自我,建立信心。数学活动是建立在学生的认知发展水平和已有的知识经验基础之上,教师应激发学生的学习积极性,帮助他们在自主探索和合作交流的过程中真正理解掌握基本的数学知识与技能、数学思想与方法,获得广泛的数学活动经验。
教学目标:
1、观察梯形的特点,概括归纳出定义,并且知道各部分名称;通过动手操作找到等腰梯形的特征;并对所学四边形进行建构,能用集合图表示它们的关系。
2、培养学生的观察、归纳概括、动手操作实践能力和创新能力。
3、通过动手操作、讨论、归纳等活动获取新知,对知识进行建构,使其体验成功的喜悦。
教学重点:
经历探究的过程,获取新知,亲身经历知识的再现过程。
教学过程:
一、从经验出发导入新课。
通过收集展示学生课前所画的各种四边形,并结合生活实例引入课题。
二、从需要出发合作探究。
1.了解学生的需要。
师:凭前面学习长方形、平行四边形的经验,你们想从哪些方面认识梯形呢?
预设:生可能从以下方面回答:
(1)定义。
(2)各部分名称。
(3)特性。
(4)特征。
师:那我们就按自己的想法先研究什么样的图形是梯形。
(学生已经学过平行四边形,对研究方法已有一定的掌握,这样教学以关注学生需求,教师可就着学生的思路进行教学,是教师跟着学生走,而不是教师拽着学生走,学生跟着教师跑。)。
2.合作探究梯形的定义。
学生选择老师提供的研究材料(一组梯形的题卡、量角器、直尺等),先独立思考,再以小组汇总意见讨论。(学生以组讨论,教师巡视,引导学生参与到活动中去。)。
组织小组汇报交流,预设:小组可能从以下几个方面回答:
(1)通过数一数、量一量等方法得知有四个角、四条边、四个顶点、一组对边平行,另一组对边不平行的图形是梯形。
处理应变:引导学生把四个角、四条边、四个顶点等特点归纳为四边形。
梯形面积的教案篇十一
(1)理解梯形面积公式的推导过程,会应用公式正确计算梯形的面积。
(2)培养学生合作学习的能力。
(3)继续渗透旋转、平移的数学思想。
一、复习旧知。
1.求出下面图形的面积。
2.回忆三角形面积公式推导过程(演示课件:拼摆三角形 下载)。
二、设疑引入。
三、指导探索。
第一部分:梯形面积公式的推导。
1.小组合作推导公式。
提纲:
2.(演示课件:拼摆梯形 下载)。
电脑演示转化推导的全过程。
梯形面积的教案篇十二
彭山县第二小学 盛光林。
教学内容:人教版九年义务教材小学数学第九册80页至81页“梯形面积的计算”
教学目标 :
1、使学生理解并掌握梯形面积的计算公式,并能正确计算出梯形面积。
2、通过梯形面积计算公式的推导过程,培养学生的实际操作能力和抽象概括能力,发展学生的空间观念。
3、结合教学,使学生受到唯物辩证观的启蒙教育,知道事物是相互联系的、变化的。在一定条件下可以转化。懂得用运动、联系的观点去观察、研究事物。
教学重点、难点和关键:
教学重点:梯形面积的计算公式。教学难点 :梯形面积计算公式的推导过程。教学关键:通过操作实践,将梯形转化为平行四边形,探索梯形与拼成的平行四边形的关系。
教具、学具准备:
教师准备多媒体课件、学生备用梯形硬纸片。
教学过程 :
一、复习引入:
1、复习:
计算下列图形的面积:多媒体出示。
2、引入:
屏幕出现梯形,问:这是什么图形,图上告诉了什么?它的面积是多少?同学们还不会计算。这节课,老师就和同学们一起来研究梯形面积的计算方法。
3、回忆旧知。
我们在学习平行四边形面积时,是怎样推导出平行四边形面积公式的?(多媒体课件演示)。
我们在学习三角形面积时,又是怎样推导出三角形面积计算公式的?(课件演示)。
二、探索解决问题办法,并尝试转化。
1、引导学生提出解决问题方案。
你准备用什么方法把梯形转化为我们学过的图形?
2、学生尝试转化。
刚才同学提出了用割补的方法、用拼摆的方法。那么,怎样来割补呢?
学生上台演示后,教师指出:由于梯形的不规划,刚才的同学没有转化成功,其实是可以用割补的方法来转化的,请大家看一看:多媒体演示割补转化。
那么,用拼摆的方法呢,你准备怎样来拼?
学生上台演示。
3、学生操作、实施转化。
学生以四人小组为单位,拼摆梯形。
请同学们告诉老师:你用两个完全一样的梯形拼成了一个什么图形?
谁来说一说,你是怎样拼的?多媒体课件演示。
三、观察图形,推导公式:
1、观察。
它们的底、高和面积,大小怎样呢?小组讨论。
学生总结汇报后多媒体课件演示。
平行四边形的面积会算吗,这个应该怎样计算?同桌讨论计算方法。算式是什么?
算式中3加5的和求的是什么?乘以4得到什么?再除以2呢?为什么要除以2?
计算面积,学生口述,教师板书。
算式中的3、5、4分别表示梯形的什么,想一想梯形面积的计算方法是什么?
阅读教材,加深理解。
1、基本练习:
2、教学例题。
出示例题并理解题意。
计算面积,一人板演,全班齐练。
3、判断题。
4、抢答题。
5、测量并计算。
五、总结课堂。
梯形面积的教案篇十三
1、在实际情境中,认识计算梯形面积的必要性。
2、在自主探索活动中,经历推导梯形面积公式的过程。
3、运用梯形面积的计算公式,解决相应的实际问题。
难点:能运用梯形面积的计算公式,解决相应的实际问题。
相等梯形若干个、小剪刀、挂图。
1、前面我们推导了平行四边形和三角形面积的计算公式,还记得三角形面积的计算公式是怎么推导出来的吗?(转化成平行四边形)。
2、把不知道的转化成知道的从而得出结论,是我们常用的探究新知的方法。
1、出示主题图:这是一个堤坝的横截面,从图中你得到了哪些信息?(横截面是梯形,上底是20米,下底是80米,高是40米)。
2、今天我们就一起动手推导梯形面积的计算公式。(板书:梯形的面积)。
3、下面请同学们拿出准备好的梯形,通过转化的方法,自己动手拼一拼或剪一剪,推导出梯形面积的计算公式。(教师巡视指导)。
4、小组内交流方法。
5、学生汇报,教师总结。
(1)平移法。
用两个大小完全一致的梯形。经过旋转、平移组成平行四边形。
(2)分割法。
将梯形分割成两个三角形。
(3)割补法。
取两条边的中点(中位线)剪开,经过旋转、平移组成平行四边形。
得出结论:梯形面积=(上底+下底)高2。
字母表示:s=(a+b)h2。
1、p28试一试。(在练习中,针对错误比较多的,进行集体讲解,少的则个别讲解)。
2、p28练一练1题,继续巩固练习。
1、这节课我们学习了什么?
2、梯形面积公式的推导〈梯形面积=(上底+下底)高2〉。
字母表示:s=(a+b)h2。
本节课的教学,我是采取学生亲自动手操作实践来得出梯形的面积公式。但在学生探索的时候,学生的思维大多只停留在平行四边形上,也就是书中的第一个例子。在课堂练习的时候,由于公式记得不牢,在求面积的时候经常忘了除2。
梯形面积的教案篇十四
经过上一节课对于三角形面积的探索,本节课笔者对于教学有了延伸和改进。
在准备学具方面,笔者用到了直角梯形、等腰梯形、普通梯形三种,在教学过程中分别发给学生,有一张的,也有两张形状大小都一样的,这样可以更全面地去进行验证。其中在制作学具时,在剪裁方面也有了一些思考:如何才能减少边角料的损失?第一次的剪裁方式如下图,将一个长方形剪成了一个直角三角形、普通梯形和直角梯形,其中直角三角形在本次课中是用不到的,于是在第二次剪的时候做了调整,使得两边都剪出直角梯形,这样学具就不会浪费了。
相比于上次三角形面积公式的推导过程,这次笔者放手让学生去尝试,不仅要有剪拼的方法分享,还要有公式的推导过程,也曾考虑过,这种设计对他们来讲有一定的难度,但还是想锻炼一下,于是有了以下的成果:
相对来讲学生的表现还是比较不错的,联系上节课的验证方法,学生还进行了折,但是对于这里并不是很好进行,因此方法多是“拼”“剪拼”等,同时学生在推导过程中还不能做到有十分缜密的逻辑思维,但如果能逐渐去培养,是不是学生这方面的能力也会有增强。
笔者在教学过程中还是比较喜欢渗透一些隐性的内容,例如让他们学会用已有知识解决新问题,需要先将新问题转化为学过的问题,另一方面也会培养学生的积极思考,勇于发问的学习习惯,但是却缺乏了对于解题答题的规范步骤,最近发现学生出现了书写乱,答题不规范,多步混合运算直接写结果的情况,因此在本节课的最后笔者针对课后第2和5题,给学生进行了板演,要求解决问题要写“解”,在计算面积时,要把面积公式写出来,然后再带入数据求解,并进行详细的答题。
但针对教材中最后一题的讲解并不是很详细,至于如何挖掘这道题的本质需要再进行进一步的推敲。
梯形面积的教案篇十五
(1)理解梯形面积公式的推导过程,会应用公式正确计算梯形的面积。
(2)培养学生合作学习的能力。
(3)继续渗透旋转、平移的数学思想。
梯形面积的计算是在学生学会梯形的特征以及学会计算平行四边形、三角形的面积的基础上进行教学的。这部分知识是将来进一步学习计算组合图形面积和圆的面积计算的基础。
本小节内容共分为两个层次。第一层是推导梯形面积的计算公式;第二层是应用梯形面积的计算公式计算梯形面积,解决实际问题。
例1的重点是应用梯形面积公式计算面积。难点在于把题目中所给的已知条件与梯形的各部分名称一一对应起来。
教学梯形面积的计算之前,可以先回忆一下三角形面积公式的推导过程,(三角形面积公式及其推导过程与梯形有许多相似之处)。讲解梯形面积公式的推导过程要注意引导学生根据三角形面积公式推导过程的思路展开联想,这样进行迁移,有了前面的基础,学生用两个梯形拼成平行四边形并不困难。
在推导梯形面积公式的过程中观察、对比新旧图形的联系很重要,为了便于发挥学生的主体性,增进学生交流,教师可把梯形与转化后的平行四边形的关系印成小篇子,由学生讨论后小组合作完成,由学生自己找出梯形面积的计算公式和字母公式。
在应用梯形面积计算公式中,教师尽量选择贴近生活实际的事例由学生解答,如计算篮球场中梯形的面积,计算梯形机翼模型的面积,计算梯形钢管堆中的钢管的根数等等,使学生体会到学习数学的价值与乐趣。
在设计练习时注意层次,使学生从练习中体会到题题具有挑战性.如变换梯形的摆放位置和角度,先测量再计算梯形面积,结合直角梯形,面积单位换算等旧知识进行综合练习,使学生既巩固旧知识又深化新知。
梯形面积的教案篇十六
本节教学内容是梯形的面积,是在学过的平行四边形和三角形的面积的基础上进行教学的。教学目标有两个:
一、在自主探究、合作交流中经历梯形面积的推导过程,掌握梯形面积的计算方法;
二、能利用梯形的面积公式解决实际问题问题。其中,目标一的达成度挺好的。目标一的达成之所以很理想,是因为本节课中我努力做到了以下两点。
一、大胆尝试,自主探究,亲历知识的获取过程。“自主探索”是学生学习数学的主要方式之一,教师把自主探索的机会、时间和空间留给学生,让学生在探究过程中感受问题的存在,从而发现问题,提出问题,并创造性地解决问题。案例2的教学正注重了这一点教师给予了开阔的目标(同学们已经掌握了推导平行四边形、三角形的面积计算公式的方法,你能把梯形转化成已学过的图形,并推倒出梯形的面积计算公式吗?),给予了多元的方法提示(请你们利用准备好的学具,小组合作学习,议一议,剪一剪,拼一拼,可能有意想不到的发现!),学生的思维被激活,亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,从而让学生在探究中不仅获取了知识,而且学会了学习。
二、强化实践,为学生搭建创新的舞台。著名教育家皮亚杰说过:“孩子的智慧生长在手指尖上。”教师应重视学生的动手操作,增强学生的感性认识,主动探索和发现图形的内在联系,为学生搭建一个创新的舞台。案例2的教学中,教师让每一个学生动手操作,把梯形剪拼成已学过的各种平面图形,教会学生用“转化”的方法解决问题,逐步形成这种思考问题的习惯,学生亲历了梯形面积公式的推导过程,获取了多种多样的计算方法,培养了学生灵活的多向创新能力。这节课中,也存在一定的不足,如学生在与老师的配合上还有待改进,其中部分学生的讨论不够积极,有个别学生不会参与讨论,不愿意发表自己的见解,而且气氛也有待改提高,不过学生对动手操作、推导公式倒是很感兴趣。
梯形面积的教案篇十七
教学内容:"梯形面积的计算"。下面我从以下四个方面:说教材,说教法,说学法,说教学过程,进行说课。
(一)内容分析:
小学数学教材中关于几何初步知识的安排特点是:梯形的认识,清楚了梯形的特征及底和高的概念。而本册教材中先安排了平行四边形的面积计算、三角形面积的计算的基础上,再安排学习“梯形面积的计算”。所以要使学生理解掌握好梯形面积的计算公式,必须以平行四边形的面积、三角形的面积、梯形的底和高为基础,运用迁移和同化理论,使梯形面积的计算公式这一新知识,纳入到原有的认知结构之中。
(基于以上认识,按照大纲要求,我确定了以下的教学目标)。
(二)教学目标:
1、通过学具的实际操作,学会用割补、拼凑的实验方法,运用学过的面积公式推导梯形的面积公式,并能运用梯形的面积公式解决简单的实际问题。
2、通过操作、观察、比较,渗透旋转、平移、转化的数学思想方法,培养学生的分析、综合、抽象和概括能力。
(三)教学重点:
(五)教学难点:
理解梯形面积公式的推导及推导过程。
教具:自制的课件,硬纸板做的平行四边形、梯形几个,剪刀。
学具:硬纸板做的梯形几个,剪刀,三角板,直尺。
为实现以上教学目标,突出重点,解决难点,充分发挥现代教育技术的作用,运用多媒体辅助教学,变静为动,融声、形、色为一体,为学生提供生动、形象、直观的观察材料,激发学生学习的积极性和主动性。
(根据以上的教学目标,教学重点和难点,我准备采用以下的教学方法进行教学)。
1.发展迁移原则。运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现“温故知新”的教学思想。
2.大胆放手,以学生为主体的教学原则。针对几何知识教学的特点、本节课的教学内容以小学生以形象思维为主,我打算主要采用动手操作,自主探索,合作交流的学习方式,并运用计算机多媒体教学课件辅助教学,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体的教学原则。
3.反馈教学法。为了体现学生的主体性和创新性,在教学中,采用反馈教学法进行教学,给学生提供一个参与梯形面积公式形成和运用的机会,使学生不仅“学会”而且“会学”。
坚持“发展为本”,促进学生个性发展,并在时间和空间诸方面为学生提供发展的充分条件,以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,要注意引导学生怎样有序观察、怎样操作、怎样概括结论,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。
针对上述内容的需要,可设计如下课堂教学环节:
(一)迁移诱导,引入新课。
(二)引导发现,探索创新。
(三)分层训练,提高能力。
(四)课堂总结,巩固新知。(下面我就分别从这四个方面说一说)。
一、迁移诱导,引入新课。
迁移诱导,由已知到未知,即由旧知识引入新知识,为学生学习新知识创设情境,铺路搭桥,引导学生初步感知解决问题的途径进行类推,掌握新概念。这是教学抽象的数学知识的一种重要途径。"三角形面积的计算"这一内容,与长方形面积、平行四边形面积的计算有着密切的联系,适合用这一途径进行教学。
具体做法如下:
第一步,引旧设疑,提出问题.板演:一个平行四边形的底是40厘米,高是30厘米,面积是多少平方厘米?(学生反馈,应用计算机演示,以唤取学生对旧知识的回忆。)。
第二步,出示图形,复习旧知。出示准备好三角形纸片,提问:这是什么图形?什么叫三角形?谁能指出它的底和高?(底40厘米,高30厘米)。
第三步:比较大小,产生悬念。比较黑板题中平行四边形和这个三角形的面积谁大谁小?它们是等底等高的,为什么面积不相等呢?通过第1、2两道题的复习,使学生清楚平行四边形的面积公式并清楚了三角形的概念及底和高的含义,为推导三角形的面积公式打下了扎实的基础。通过第3题的练习,产生悬念,引起学生学习三角形面积公式的动机与欲望,教师由此引出新课。对于等底等高的平行四边形和三角形的面积为什么相差这么大,必须科学的计算出它的面积,那么怎样计算三角形的面积呢?这节课我们就来研究这个问题。
梯形面积的教案篇十八
1.两个完全一样的梯形一定可以拼成一个()。
2.平行四边形面积的计算公式用字母表示是();三角形面积的计算公式用字母表示是();梯形面积的计算公式用字母表示是()。
二、判断题。
(1)平行四边形的面积大于梯形面积。()。
(3)任何一个梯形都可以分成两个等高的三角形。()。
(4)两个形状相同的三角形可以拼成一个平行四边形。()。
三、用总长40米的篱笆,靠墙围成一块梯形菜地(如图)。已知梯形的高是10米,求菜地的面积。
四、应用题。
梯形的上底是3.8厘米,高是4厘米,已知它的面积是20平方厘米,下底是多少厘米?
以上就是五年级数学:《梯形的面积》练习题全文,希望能给大家带来帮助!
梯形面积的教案篇十九
五年级上册数学第六单元是图形的面积,这一单元主要学习习近平行四边形面积、三角形面积、梯形面积,规则组合图形的面积和不规则图形的面积的求法。今天我讲的是《梯形的面积》一课,本课在探索活动中学生借助知识的迁移,主动提出了“把梯形转化成学过的图形,并比较转化前后图形的面积”思考问题,主动思考,把一个新的图形面积的计算,转化为已学过的图形面积的计算,从而使问题得到解决。同时将解决生活实际问题转化成求梯形面积的数学问题,呈现多种转化的方法,能够丰富学生对图形的认识,加深对几何基本概念的理解,发展学生的空间观念,提高空间推理和解决问题的能力。
在这堂课的教学中,我依然采用了学生动手拼一拼的活动,让学生自己动手,通过拼图,在头脑中呈现出空间形象。这既能加深学生对面积公式推到的过程,记住面积公式,又能锻炼学生的空间思维,让几何图形在学生的头脑里能够动来动去,为今后的教学打基础。
然而,学生的动不是乱动,我先出示学习目标,再出示学习方法,学生根据学习目标明确这节课需要解决的问题,所要掌握的知识点,然后通过学习方法进行自学。在自学过程中如果遇到难题,可以组内解决,组内解决不了,我们统一由组长提出,同学们共同交流讨论,最后得到总结。
其实,这节课跟学习三角形面积公式那节课所采用的方法是一样的,只不过孩子在拼的过程中产生了不一样的梯形拼出的图形是不一样的情况。这是教师事先没有安排到位导致的,他们有的梯形形状和大小都不一样,在拼的过程中产生了脱节现象。但多数同学做的都很好,用不同种类的梯形拼出的平行四边形,进而推导出梯形的面积公式。
这节课完成情况还算理想,多数同学都能够举一反三,理解梯形面积公式的推导。
梯形面积的教案篇二十
梯形面积的计算是在学生学会计算平行四边形、三角形面积计算的基础上教学的。先复习梯形的有关知识,然后引导学生想,怎样把梯形转化为已学过的图形,从而推导出梯形的面积计算公式。其中理解梯形面积计算公式的推导过程是本节课教学的难点。
在明确梯形的上底、下底和高后,请学生想一想:我们在推导平行四边形、三角形面积计算公式的时候,都用到了什么方法?带领学生回顾以前知识,(把一个平行四边形进行割补转化成一个长方形,推导出平行四边形的面积计算公式;把两个完全一样的三角形拼成一个平行四边形推导出三角形的面积计算公式。)使学生明确都用到了转化的方法。然后启发:我们能否也用转化的方法来推导梯形面积的计算公式呢?本课的复习导入部分处理较好,但在操作部分出现失误!
课前让学生剪下了教材117的三对完全一样的梯形。在让学生进行操作时,事先没有演示,也没有列出操作提纲,只是要求拿出两个完全一样的梯形动手拼一拼,拼成我们已经学过的图形。结果大部分同学很快地拼成了平行四边形,但有几位没有拼成。拼成的'同学有的是通过旋转、平移的方法得到的,有的只是无意中凑巧拼成的;没拼成的同学开始着急了,换了另外一个不同的梯形,显然更不能拼成平行四边形。再换,还是不行!此时,我也开始着急,拿起事先准备好的两个完全一样的梯形,开始演示:如何旋转、如何平移……可无论拼成的还是没拼成的同学,都只顾着忙自个的,没拼成的依旧没拼成;凑巧拼成的同学剩下的两对梯形不会拼了。为接下来找出平行四边形的底与梯形的底之间的关系,(即拼成的平行四边形底是梯形上底和下底之和)再找出梯形的高与拼成的平行四边形的高的关系(即拼成的平行四边形的高是梯形的高)带来很大的难度,不能水到渠成地得出梯形面积与拼成的平行四边形面积之间的关系,(即梯形面积是拼成的平行四边形面积的一半)从而最后得出梯形的面积计算公式及字母公式。
梯形面积的教案篇二十一
五年级上册数学第六单元是图形的面积,这一单元主要学习平行四边形面积、三角形面积、梯形面积,规则组合图形的面积和不规则图形的面积的求法。今天我讲的是《梯形的面积》一课,本课在探索活动中学生借助知识的迁移,主动提出了“把梯形转化成学过的图形,并比较转化前后图形的面积”思考问题,主动思考,把一个新的图形面积的计算,转化为已学过的图形面积的计算,从而使问题得到解决。同时将解决生活实际问题转化成求梯形面积的数学问题,呈现多种转化的方法,能够丰富学生对图形的认识,加深对几何基本概念的理解,发展学生的空间观念,提高空间推理和解决问题的能力。
在这堂课的教学中,我依然采用了学生动手拼一拼的活动,让学生自己动手,通过拼图,在头脑中呈现出空间形象。这既能加深学生对面积公式推到的过程,记住面积公式,又能锻炼学生的空间思维,让几何图形在学生的头脑里能够动来动去,为今后的教学打基础。
然而,学生的动不是乱动,我先出示学习目标,再出示学习方法,学生根据学习目标明确这节课需要解决的问题,所要掌握的知识点,然后通过学习方法进行自学。在自学过程中如果遇到难题,可以组内解决,组内解决不了,我们统一由组长提出,同学们共同交流讨论,最后得到总结。
其实,这节课跟学习三角形面积公式那节课所采用的方法是一样的,只不过孩子在拼的过程中产生了不一样的梯形拼出的图形是不一样的情况。这是教师事先没有安排到位导致的,他们有的梯形形状和大小都不一样,在拼的过程中产生了脱节现象。但多数同学做的都很好,用不同种类的梯形拼出的平行四边形,进而推导出梯形的面积公式。
这节课完成情况还算理想,多数同学都能够举一反三,理解梯形面积公式的推导。
【本文地址:http://www.pourbars.com/zuowen/16082206.html】