梯形面积的教案(优质14篇)

格式:DOC 上传日期:2023-11-28 18:10:03
梯形面积的教案(优质14篇)
时间:2023-11-28 18:10:03     小编:GZ才子

教案对于教学的规范化和系统化起着重要的作用。编写教案前,教师需要仔细分析教学内容,明确教学重点和难点。小编精心挑选了一些优秀的教案范文,希望能为广大教师提供帮助和启示。

梯形面积的教案篇一

教学目标:

1让学生在实际情境中,认识计算梯形面积的必要性。

2在自主探索活动中,让学生经历推导梯形面积公式的过程。

3能运用梯形面积的计算公式,解决相应的实际问题。

教学重难点:

理解梯形面积公式的推导过程,帮助学生形成思考问题的习惯。

教学准备:

梯形纸片、多媒体课件、剪刀。

教学过程:

二探究新知。

实际操作,自主探究。

1独立操作,自主探索。

学生用事先准备的学具自己进行剪拼,在探索的过程中,逐步形成特有的思考问题的习惯。

2小组讨论。

四人小组继续运用转化的方法将梯形转化成前面学过的图形,进而求出梯形的面积。

3交流汇报,发现规律。

(1)引导观察,转化后的图形与原来的梯形有什么关系?请学生用语言描述梯形面积的推导过程。

(3)经观察分析后,引导学生得出结论,并用字母公式来表示。

三看书质疑,交流感想。

阅读第24页内容,回顾自己探索梯形面积公式的过程,并与同伴谈谈自己的想法。

完成课前提出的问题。

四巩固应用,拓展提高。

完成25页习题。

五全课总结与反思。

通过本课的学习,你又有哪些收获?你在学习方法上又有了那些提高。

梯形面积的教案篇二

这节课是人教版六年制小学数学第九册的教学内容,是在学生学会计算平行四边形、三角形的面积的基础上进行教学的,这部分知识是将来进一步学习计算组合图形面积计算的基础。

本节课内容共分为两个层次。一是推导梯形面积的计算公式;二是应用梯形面积的计算公式计算梯形面积,解决实际问题。通过观察新旧图形的内在联系得出梯形面积的计算公式。

2、教学目标。

根据新课标提倡的三维目标教学,我给学生制定的学习目标是:

(1).在实际情境中,尝试计算梯形的面积。

(2).通过预习,引导学生在自主参与探索的过程中,发现梯形的面积计算方法,能灵活运用梯形面积计算公式解决相关的数学问题。

(3).通过操作,培养学生的迁移类推能力和抽象概括能力。

3、教学的重点、难点、关键。

由于学生学习了平行四边形、三角形的面积计算公式,初步理解了平移、旋转的思想,具备了初步的归纳、对比和推理的数学活动经验,对梯形面积公式的推导,有一定的启发。所以教学的重点:理解并运用梯形的面积计算公式。教学的难点:梯形面积公式的推导过程。教学的关键是怎样把梯形转化为学过的图形来推导出梯形的面积公式。

二、教学实施过程:

基于上述认识与理解,我对梯形的面积计算教学流程作了如下设计:

检查预习——合作探究——汇报交流——应用新知。

第一环节:检查预习(4分钟)。

这环节分两个部分:先让学生回忆三角形面积公式的推导过程。

这样是为学习梯形的面积计算做好了铺垫。因为三角形面积公式及其推导过程与梯形有许多相似之处,有了前几节课的基础,学生推导出梯形面积公式就并不困难。

接着出示灌溉堤坝的横截面,呈现实际情境,感受计算梯形面积的必要性,学生尝试计算,检查预习。

这样导入,使学生感受数学与实际生活的密切联系,恰到好处地激发学生求知的欲望,使学生产生一种探求知识的动力。

第二环节:动手操作,探究交流(8分钟)。

(1)用两个完全一样的梯形可以拼成一个___________形。

第三环节:抽象概括,总结提高(6分钟)。

在操作探究的基础上,我引导学生自己来总结梯形面积的计算公式,让学生利用字母表述出计算公式,体现学与析的重要作用。来鼓励学生采用多种方法进行推理,让学生各抒已见。

通过这样的设计,体现了让“学生自主探究、自主学习”的教学理念,满足了“学生希望自己是一个发现者、研究者、探索者”的需要,进一步的促进了学生的学习兴趣。让学生把他想到的推导方法展示出来,既达到突出“重点”,又化解“难点”的目的。

第四环节:应用新知,深化提高(5分钟)。

通过动手操作,自主探究,学生获得梯形面积的计算公式后,我出示了课本的例题,求梯形水渠的横截面面积。通过实际问题的解决,将学生探究发现的数学知识转化为自身的能力,“学以致用”,来解决生活的实际问题。

第五环节:巩固练习,形成技能(14分钟)。

数学知识来源于生活又服务于生活,要使学生真正学好数学,形成数学技能,必须密切联系学生的生活实际,使其体验数学在生活中的广泛应用。所以,围绕这个目的,我设计了下面的一些练习:

练习的第一题是回应引入,给出一个灌溉堤坝的横截面,求出它的面积。

出示汽车侧面玻璃,要制作这扇门的窗户需要多少平方厘米的有机玻璃?

为了提高趣味性,第二题是动手操作题,先测量出自己所剪的梯形学具,再求面积。

第三题是判断题,判断出对错并且说出原因,提高学生对新课的理解。

(1)两个面积相等的梯形可以拼成一个平行四边形。()。

(2)梯形的上底扩大2倍,下底也扩大2倍,面积扩大4倍。()。

(3)梯形的面积等于平行四边形面积的一半。()。

(4)两个梯形面积相等,但形状不一定相同。()。

第四题是思考题,

梯形面积的教案篇三

二、对学情进行分析。

(五)年纪的学生具有认真、好学、勇于探究的学习态度,因此我在教学过程中设计了(讨论、猜想、探究)等多种活动来加深学生对(梯形面积公式)的感受和理解。

三、教法与学法学生是学习的主体,教师是学习的组织者、引导者和合作者,因此我将采用一下几种教法和学法:

3.练习法:通过适当的练习,巩固所学的知识,解决生活中简单的实际问题为了能在课堂上更好的进行教学我将会准备好多媒体课件、(梯形教具若干)„让学生准备好(相同的梯形若干个、剪刀、尺子)。

四、教学流程。

根据。

(一)创设情境,提出问题。

(二)自主(合作)探究、解决问题在这一部分我安排了()个教学环节第一个环节:对学生进行引导:“同学们还记得我们在学习三角形的面积的时候是怎么做的吗?你能将梯形转化为已经学过的什么几何图形?四人小组合作并且记录下转化后什么改变什么不改变?怎么计算梯形的面积?”

第二个环节:小组展示。(在黑板上板书)请小组代表上台展示。预设1:用两个相同的梯形转化成平行四边形,转化后梯形上底和下底加起来刚好是平行四边形的底,平行四边形的高是梯形的高,因此梯形的面积是(上底+下底)*高/2预设2:沿梯形两腰的中点剪开,拼成一个平行四边形。平行四边形的底就是梯形的上底和下底的和,高是原梯形的一半,因此梯形的面积是(上底+下底)*高/2预设3:分割。

通过学生的展示和交流,我会引导学生得到梯形的面积公式是(上底+下底)*高/2第三个环节:用字母表示公式。

设计意图:我注重将“重视结论”的教学转变为“重视过程”的教学;发挥教师主体作用,处理好讲授与学生自主学习的关系,引导学生独立思考,主动探究。合作交流,让学生充分经历观察,操作等数学活动和数学思考,达到落实教学目标,突出教学重点,突破教学难点的目的。

(三)练习巩固。

练习是掌握知识、形成技能、发展思维的重要手段,结合本结课的教学重难点和学生的具体情况我设计了三个层次的练习:

第二层次:如课本练习的第3、4题。第三题让学生通过动手实践,体会到尽管梯形的形状不同,但是只要梯形的高,上底和下底相同,则面积也相同;第4题,学生通过动手操作计算梯形的面积,通过对位置放置不同的梯形,让学生能正确寻找上底、下底和高。

(四)课堂总结提升。

我将会引导学生:这节课我们学习了什么本领?我们是如何学的?我们应该注意些什么?

以上就是我对本节课的整体设想和教学预设,希望能够得到各位老师的指正,谢谢!

梯形面积的教案篇四

(1)理解梯形面积公式的推导过程,会应用公式正确计算梯形的面积。

(2)培养学生合作学习的能力。

(3)继续渗透旋转、平移的数学思想。

一、复习旧知。

1.求出下面图形的面积。

2.回忆三角形面积公式推导过程(演示课件:拼摆三角形 下载)。

二、设疑引入。

三、指导探索。

第一部分:梯形面积公式的推导。

1.小组合作推导公式。

提纲:

2.(演示课件:拼摆梯形 下载)。

电脑演示转化推导的全过程。

梯形面积的教案篇五

本课是在学生认识了梯形的特征,并掌握了长方形、正方形、平行四边形和三角形面积的计算,并形成一定空间观念的基础上进行教学的,因此教材没有安排数方格的方法求梯形的面积,而是直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法,把梯形转化成我们已经学过的图形来计算它的面积,让学生在主动参与探索的过程中,发现并掌握梯形的面积计算方法,让学生在教学的再创造过程中实现对新知识的意义构建,解决新问题,获得新发展。

根据上述教材分析,考虑到学生已有的认知结构心理特征,我制定了如下教学目标:

1、在实际情境中,认识计算梯形面积的必要性。

2、能运用梯形的面积公式解决相应的实际问题。

3、在自主探索过程中,经历推导梯形面积公式的过程。

4、体会数学与生活的联系,培养学生热爱数学的兴趣。

本节课教学重点是在自主探索中,经历推导梯形面积公式的过程,难点是能运用梯形的面积计算公式解决相关的实际问题。

二、说教法和学法。

数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。为此,我主要采用了启发式谈话法,直观演示法等教学方法,来组织学生开展探索性的学习活动,让他们在自主探索中学习新知,亲历探索,获得知识。

动手操作法、自主探究法、观察发现法、合作交流法等等。

三、说教学过程。

为了实现教学目标,完成新课标赋予的教学任务,我把本课的教学过程分为四个环节:

1、第一个环节是:复习旧知、铺垫引导。

本节课教学中,我首先出示了课中主题图这一生活情境,让学生感受计算梯形面积的必要性,接着让学生回忆平行四边形,三角形面积公式的推导转化过程,让学生通过复习,从而唤起学生的回忆,为沟通新旧知识的联系,奠定基础,再提出假设,今天我们要学习梯形的面积计算是否也可以将它转化成我们已经学过的图形来进行梯形面积公式的推导呢?通过这一设计来启发学生运用已学知识大胆提出猜测,激发学生探索新知的欲望,又使学生明确了探索目标与方向。

2、第二个环节是:合作学习、探索新知。

首先让学生拿出准备好的梯形分小组进行画、剪、拼、摆等操作活动,让学生通过讨论,自主探索梯形的面积公式,然后让学生汇报交流探索结果,最后教师针对学生的汇报进行归纳总结得出梯形的面积计算公式为上底与下底之和乘高除以二这一结论,这是本节课的重点及难点,教学的设计是在激发学生的探究欲望后,采用小组合作学习这种方法,让学生主动探究,大胆猜想积极验证,使学生在相互合作,主动探索的活动中学习数学,使之真正成为课堂教学中的主体,让学生能把新知识转化为旧知识,新知、旧知有机的融为一体,让学生通过实际操作来推导出梯形的面积计算公式并体验经历这一知识形成的过程,从而获取这一知识,弄清知识的来龙去脉,既培养了学生能力,又让学生感受到了成功的喜悦。

3、第三个环节是:应用知识、巩固提高。

这一部分是通过不同的练习,训练学生,巩固拓展已学知识,让学生再次体验学习,认识到梯形面积公式在生活中的运用及重要性,感悟数学与生活的联系,最后让学生总结概括本节课所学内容,既培养了学生的语言表达、归纳概括的能力,还关注了学生的情感体验。

4、第四个环节是:课堂小结、深化知识。

课末小结不仅有助于学生加深对所学知识的理解和掌握,使知识条理化、系统化,同时也有利于培养学生的概括能力,帮助学生掌握数学思想和方法,还能激发学生学习兴趣,培养学生自主探索和求知欲望。教师通过提问:“今天我们学习了什么?”让学生回忆所学知识的内容,并帮助学生加以梳理,促进学生对梯形面积计算方法的认识,培养学生的数学思维能力。最后鼓励学生用数学的眼光观察生活,用数学的头脑思考问题。

梯形面积的教案篇六

九年义务教育小学《数学》教科书(人教版)第九册。

【教材分析】。

梯形而积的计算是在学生学会计算平行四边形、三角形的面积计算的基础上进行教学的。教材的编排不同于平行四边形和三角形。它的编排特点是引导学生把梯形转化为已经学过的图形。

再求面积。因此教材的编写跨越了数方格的感性认识阶段。引导学生思考怎样仿照求三角形面积的方法。用转化的思想。探究梯形面积的计算方法。这部分内容是学生以后学习圆面积和立体图形表面积的基础。

【学情分析】。

学习本课内容时学生己经掌握了长方形、正方形、平行四边形、三角形的面积计算方法。而且在学习平行四边形、三角形面积时。对转化、平移等数学思想的方法己经有了一定的认识。学生具备一定的知识和方法基础。因此。梯形面积的学习是运用旧知识解决新问题。实现迁移类推和新旧转化。进一步发展学生思维的创新能力和动手实践能力。

【教学目标】。

1.使学生用转化的思想方法自行尝试学习,通过不同途径探究推导出梯形面积的计算方法。学会应用公式计算梯形的面积。

2.进一步发展学生利用旧知识解决新问题的能力。发展学生的创造思维能力、动手实践能力。通过讨论、争辩、操作和推理。提高学生解决实际问题的能力。发展学生的空间概念。

3.向学生渗透转化的思想。培养学生的合作意识和竞争意识。

【教学准备】。

多媒体课件。同样大小的梯形纸片(至少四弓长)。剪刀。

【教学过程】。

一、复习旧知,引入探究情境。

1.教师谈话:请说出所学过的平面图形的面积计算公式。

3.猜测:梯形面积计算能转化成我们以前学过的图形面积来进行计算吗?

4.下面就请同学利用手中的材料动手实践。进行验证。

【设计意图】:通过义习。梳理学过的直线型图形的而积计算公式。并通过质疑激发学生自主探究的*。

二、自主探究,寻求规律。

(一)推导面积计算公式1.谈话指导:请同学们根据我们以前学过的有关平面图形面积计算公式推导的知识和方法。利用自己手中的材料以小组为单位尝试推导梯形的面积。

2.学生尝试探究验证。教师巡视观察指导学生的学习方法并帮助学习有困难的小组。

【设计意图】:给学生提供充分动手动脑的机会,给学生利用旧知探求新知的时间。把知识产生的过程创造出来。培养学生的探究精神并学会探究的方法。

3.展示汇报自己的学习成果。

(1)让学生自由发表意见,说出自己转化推导的方法。

(2)教师配合学生的叙述。用课件演示梯形是如何转化成己学过的平而图形的,并让其他同学质疑、评价(这里可能会出现拼一拼、割补、分一分等多种方案)。

4.引导学生总结计算公式。

(”教师提问:“谁能总结出梯形的面积计算公式?请说明你的根据。”

(2)教师根据学生的回答进行小结并板书:

梯形的面积=(上底+下底)x高=25.根据推导过程和公式。让学生提出问题:

(1)二上底加下底”指的是什么?

(2)为什么要“除以2"?

【设计意图】:学生通过自主探究合作交流。不仅知道了梯形的面积计算公式。而且更明确如此计算的原因。达到“知其然。

更知其所以然”的学习效果。培养学生科学学习的习惯和创新能力。通过教师的课件演示,使学生形象地感知转化思想的内涵。

2.学生自己尝试独立计算。

3.学生互相出题进行公式应用练习。

【设计意图】:通过学生互相出题训练。不但巩固了知识。而且实现学生真正的自主参与。同时充分地发挥了学生的聪明才智,使训练多样而有趣。变苦学为乐学。

三、巩固练习完成做一做。

2.完成练习十九的1-4题。

3.灵活变换条件。联系实际进行练习。

4.拓展尝试:下图是两个相同的汽角三角形补在一起。求涂色部分的面积。(单位:分米)。

【设计意图】:灵活的练习是检验学习效果的有效方法。联系实际能充分体现学以致用的原则。数学来源于生活更应该服务于生活,因此。联系实际的练习才是更为科学的训练方法。

【教学反思】。

本节课的学习是由学生独立思考、讨论、归纳、概括解决的。体现了学生主体的发展。但不足之处是:由于学生个体间发展的不平衡。因此并不是每一个学生都能去积极地思考、讨论。另外。还应多提一些开放性强的问题。使学生的思维得到充分的训练。

梯形面积的教案篇七

今天,我执教的是《梯形的面积》一课,这节课的教学目标是:在实际情境中,让学生认识计算梯形面积的必要性;在学生自主探索的活动中,经历推导梯形面积公式的过程;能运用梯形面积的计算公式,解决相应的实际问题。从整个教学过程看,这一目标得到了充分的落实和体现。梯形面积的计算方法的推导,正确计算梯形的面积,作为教学重点、难点,也贯穿于整个教学环节中。

对于本节课,我觉得有以下几点值得思考:

1、尊重学生的认知规律,注重知识的前后联系。

我在设计教学时,就关注学生已有的知识、水平和经验。由于学生学过了平行四边形和三角形的面积,而梯形的面积公式推导方法与三角形的面积公式推导方法有很大的相似之处,我就放手让学生自己利用前面的学习经验,推导出梯形的面积公式。

2、以学生的活动为主,实现生生互动。

本节课力求让学生自己去发现和概括梯形的面积公式,在探究的过程中发展学生思维的创造性。为了达到这一目的,我让学生动手操作,分组合作探究,初步概括出梯形的面积公式。这样,通过“剪、移、转、拼”的活动,让学生真正亲历知识的探究过程。同时,又由于各项活动的设计环环相扣,步步深入,不仅激发了学生探究学习的兴趣,同时学生思维深度和广度也得到了有效的培养。

3、学生自主探索的活动在时间上给以保证。

本节课一系列活动的设计是为了学生给充足地用眼看,用手做,用耳听,用嘴说,用脑想的时间和空间,让学生尽情的`表现和发展自己,每一位学生都在亲自实践中认识理解了新知。充分体现了教师指导者,参与者的作用。当学生受现有知识的制约,推导概括公式思维停滞时,我进行点拨诱导,促其思维顺畅,变通,最后使学生明确,尽管拼摆的方法不同,但都达到验证了梯形的面积公式的目的。

这节课的教学已经结束,自己感觉教学过程顺畅,是一节自己比较满意的课。但对于很多细节,觉得仍需要推敲,相信自己会在今后的教学中不断探索,使自己的教学日趋成熟、完善。

梯形面积的教案篇八

1、教学内容:五年制小学数学第七册《梯形面积的计算》。

2、教材简析:梯形面积的计算是在学习了平行四边形、三角形面积的基础上教学的。学生学好这部分内容,既发展了空间观念,又培养了运用旧知识解决新问题的能力,更为今后学习几何知识奠定了基础。

知识教学:掌握梯形面积公式,理解推导过程。

能力训练:通过操作、观察、比较,发展学生的空间观念,培养学生的创新意识和实践能力。

素质培养:渗透旋转和平移的思想,让学生在拼剪中感受数学知识的内在美,培养团队合作意识。

教学重点:理解梯形面积公式,掌握计算方法。

教学难点:通过图形的转化推导面积公式。

教具准备:电教多媒体、实物投影。

学具准备:各种梯形卡片若干、小刀、胶水。

这节课主要本着“以学生发展为本,以活动为主线,以创新为主导”的思想。主要教法有引导法、直观演示法和讨论法等。在教学策略上,把梯形面积公式的推导化为学生“拼、剪、画、说“的活动,通过小组活动、操作实践等手段借助多媒体的演示,帮助学生理解知识点,使抽象的知识变得直观形象,给学生一个创新的空间。变“讲堂”为“学堂”,从而从根本上打破传统的教学方法,建构一种新型的现代教育模式。

在教学中注重指导学生的自主学习,把学习的钥匙交给学生,在传授知识的同时,授以科学的思维方法,这节课学生主要采用以下两种学法进行探究学习:

1、小组合作学习的方法,运用这种方法,便于培养学生的参与合作精神。例如,让学生寻求梯形面积的计算方法,看谁想出的办法多,学生在组内合作交流,互相可以得到启发,共同理清思路。

2、迁移尝试法:在教学过程中引导学生模仿平行四边形、三角形的面积公式的推导,运用转化的方法推出梯形面积计算公式。学生在模仿、迁移、推导的过程中,学会学习、学会思考,真正成为学习的主人。

本节课属于几何知识中公式推导教学。根据内容特点和学生学习数学的心理特点,教学程序可分为五大环节:

第一环节:创设情境导入。

联系学生熟悉的例子,创设一个能激起学生认知冲突的问题情境,让学生计算一个上底3厘米、下底5厘米,高4厘米的梯形彩纸的面积。这时大多数学生会束手无策,就在学生产生认知冲突时导入课题:同学们,这就是我们今天要研究的内容“梯形面积的计算”。精心设计好这个开端,很自然地把学生带入新知的学习环节。这样既激发了学生探索新知的欲望,又使学生明确了探索目标与方向。

第二环节:搭建脚手架,激活思维。

这一环节主要是针对学生求梯形面积时遇到的困难而设计的。这样一来就为学生解决新问题做了认知上的铺垫。这一环节共分两步进行:第一步操作铺垫;第二步再现旧知。

第三环节:自主探索,合作交流。

建构主义学说认为:学习是学习者主体主动建构的过程。在这一环节的学习中,要充分相信学生,并为之提供主动建构的过程,从而使“有意义学习”的实现成为可能。这一环节也分两步进行:第一步,让学生拿出课前准备好的各种梯形,鼓励学生操作,寻找梯形面积的计算方法,让学生拼拼剪剪中实现转换,比一比哪一组同学想出的办法多。第二步,交流验证是学生在小组间相互交流,展示不同的思考方法。除了这些方法外,可能还有其它的方法,那么学生汇报时要充分肯定他们的推理与计算。学生在交流与展示中相互得到启发,这样学生就经历了一个学习再创造的过程,使学生创新思维得到更好的发展,也就可以收到“保底不封顶”的效果。

第四环节:点拨归纳、解决问题。

学生经过自主探索合作交流,有的悟出了梯形面积公式,但不一定讲得清道理,有的学生在公式的理解上存在障碍,基本处于“悱”、“愤”状态。这时应抓住时机,引导学生梳理思路找出最简便的解题方法,接着就重点演示两个完全一样的梯形拼成一个平行四边形,让学生观察原梯形和所拼图形之间有什么关系?师生共同推导出梯形面积的计算公式,并用字母表示出来,这时候计算公式的得出,也就水到渠成了。接着让学生看书质疑,理解公式。最后进行课堂小结:同学们,通过这节课的学习,你有什么收获?你还想出什么问题,这样学生头脑中形成一个完整的知识体系。

第五环节:综合练习、拓展延伸。

练习是理解知识、掌握知识、形成技能的基本途径,为使不同层次的学生都得到不同程度的发展,我设计了以下几个层次的练习:

1、自命题练习:学生自己出题自己解答,并进行自评互评。这样摆脱了由老师出题,学生依次解答,一贯做法。老师只在关键的地方加以点拨、引导。这样设计,学生不但感兴趣,而且这个出题与解题的过程,更加深了学生对知识的理解与巩固。

2、巩固练习:先让学生以抢答形式练习,直接用公式求面积,再让学生以小组为单位,完成一道实践与计算相结合的综合性题目。

3、对学有余力的学生设计一道思考题,供他们解答。这些练习紧扣教学重点,既有层次,又有梯度,提高了解决问题的能力,增强了学生学好知识的自信心。

梯形面积的教案篇九

1.两个完全一样的梯形一定可以拼成一个()。

2.平行四边形面积的计算公式用字母表示是();三角形面积的计算公式用字母表示是();梯形面积的计算公式用字母表示是()。

二、判断题。

(1)平行四边形的面积大于梯形面积。()。

(3)任何一个梯形都可以分成两个等高的三角形。()。

(4)两个形状相同的三角形可以拼成一个平行四边形。()。

三、用总长40米的篱笆,靠墙围成一块梯形菜地(如图)。已知梯形的高是10米,求菜地的面积。

四、应用题。

梯形的上底是3.8厘米,高是4厘米,已知它的面积是20平方厘米,下底是多少厘米?

以上就是五年级数学:《梯形的面积》练习题全文,希望能给大家带来帮助!

梯形面积的教案篇十

在学习过程中,我抓住学生喜欢动手操作这一特点,用摆、拼、演示、转换调动学生学习的积极性。在教学过程设计中力求突破传统的教学模式,充分体现以“学生发展为本”的教学理念,在获取新知识的过程中,大胆放手,引导学生自主探索,培养学生的创新意识和实践能力,在教学中主要有以下两点:

1、联系生活,让学生学会生活中的数学。

在教学中我注重所学知识与日常生活密切联系,让学生在观察,操作等活动中,获得对简单图形的直接经验。因此,在学习新课之前我给学生布置任务,要求每个学上做4个三角形(其中有两个是一模一样的)、一个平行四边形和观察红领巾,让学生知道做一条红领巾要多大的布,需要用数学知识去解决,这样激发了学生学习的兴趣。

2.引导学生自主探索,体验成功的乐趣。

数学知识只有通过学生亲身主动地参与,自主的探索才能够转化成学生自己的知识,学得透、记得深。本节课,我为学生提供了一个动手实践,自主探索,合作交流的学习方法,引导学生主动探索、观察、发现、讨论图形与所学图形之间的联系,大胆推导公式的来由,把学生置于主体,把学习数学知识转化为数学活动,在活动中学生通过拼、摆畅所欲言,介绍自己的拼法和推导的过程,使学生真正体会到数学的乐趣,切实提高了课堂教学质量。

总之,本节课我力求体现了学生是学习的主体,教师只是教学活动的组织者、指导者、参与者。根据“自主探索,发展学习”这一教学理念,创设教学情境,引导学生自主探索,使学生体会到自己就是活动的发现者、研究者、探索者,充分调动学生学习的积极性,真正发挥学生的主体作用。

一、源于生活导入,使学生感受亲近的数学知识。本课是学生第一次接触不确定现象,本课的教学目标就是“在简单的猜测活动中感受不确定现象,初步体验有些事件的发生是确定的,有些则是不确定的。”使学生初步感受、体会概率知识存在于我们的日常生活中。对于二年级的孩子来说,概率知识太抽象了,怎样使这一知识深入学生的生活,让我们的教学过程更直观呢?这堂课一开始,我设计了老师和学生玩“猜牌”这一游戏情境,简单而有效地突出“可能、不可能、一定”,以至引导学生直奔这堂课的主题“可能性”。二、创设教学情境,让学生在活动中感悟数学在教学过程中,教师为学生充分提供从事教学活动的机会,创设情境,让学生通过“猜牌”“摸球游戏”“小小设计师”等教学活动中,让学生在游戏中玩中学,乐中悟,获得确定性和不确定性的直观感受,从而获得有用的概率基础知识,并用来解释生活现象,更为全面地分析问题。

梯形面积的教案篇十一

五年级上册数学第六单元是图形的面积,这一单元主要学习习近平行四边形面积、三角形面积、梯形面积,规则组合图形的面积和不规则图形的面积的求法。今天我讲的是《梯形的面积》一课,本课在探索活动中学生借助知识的迁移,主动提出了“把梯形转化成学过的图形,并比较转化前后图形的面积”思考问题,主动思考,把一个新的图形面积的计算,转化为已学过的图形面积的计算,从而使问题得到解决。同时将解决生活实际问题转化成求梯形面积的数学问题,呈现多种转化的方法,能够丰富学生对图形的认识,加深对几何基本概念的理解,发展学生的空间观念,提高空间推理和解决问题的能力。

在这堂课的教学中,我依然采用了学生动手拼一拼的活动,让学生自己动手,通过拼图,在头脑中呈现出空间形象。这既能加深学生对面积公式推到的过程,记住面积公式,又能锻炼学生的空间思维,让几何图形在学生的头脑里能够动来动去,为今后的教学打基础。

然而,学生的动不是乱动,我先出示学习目标,再出示学习方法,学生根据学习目标明确这节课需要解决的问题,所要掌握的知识点,然后通过学习方法进行自学。在自学过程中如果遇到难题,可以组内解决,组内解决不了,我们统一由组长提出,同学们共同交流讨论,最后得到总结。

其实,这节课跟学习三角形面积公式那节课所采用的方法是一样的,只不过孩子在拼的过程中产生了不一样的梯形拼出的图形是不一样的情况。这是教师事先没有安排到位导致的,他们有的梯形形状和大小都不一样,在拼的过程中产生了脱节现象。但多数同学做的都很好,用不同种类的梯形拼出的平行四边形,进而推导出梯形的面积公式。

这节课完成情况还算理想,多数同学都能够举一反三,理解梯形面积公式的推导。

梯形面积的教案篇十二

彭山县第二小学              盛光林。

教学内容:人教版九年义务教材小学数学第九册80页至81页“梯形面积的计算”

教学目标 :

1、使学生理解并掌握梯形面积的计算公式,并能正确计算出梯形面积。

2、通过梯形面积计算公式的推导过程,培养学生的实际操作能力和抽象概括能力,发展学生的空间观念。

3、结合教学,使学生受到唯物辩证观的启蒙教育,知道事物是相互联系的、变化的。在一定条件下可以转化。懂得用运动、联系的观点去观察、研究事物。

教学重点、难点和关键:

教学重点:梯形面积的计算公式。教学难点 :梯形面积计算公式的推导过程。教学关键:通过操作实践,将梯形转化为平行四边形,探索梯形与拼成的平行四边形的关系。

教具、学具准备:

教师准备多媒体课件、学生备用梯形硬纸片。

教学过程 :

一、复习引入:

1、复习:

计算下列图形的面积:多媒体出示。

2、引入:

屏幕出现梯形,问:这是什么图形,图上告诉了什么?它的面积是多少?同学们还不会计算。这节课,老师就和同学们一起来研究梯形面积的计算方法。

3、回忆旧知。

我们在学习平行四边形面积时,是怎样推导出平行四边形面积公式的?(多媒体课件演示)。

我们在学习三角形面积时,又是怎样推导出三角形面积计算公式的?(课件演示)。

二、探索解决问题办法,并尝试转化。

1、引导学生提出解决问题方案。

你准备用什么方法把梯形转化为我们学过的图形?

2、学生尝试转化。

刚才同学提出了用割补的方法、用拼摆的方法。那么,怎样来割补呢?

学生上台演示后,教师指出:由于梯形的不规划,刚才的同学没有转化成功,其实是可以用割补的方法来转化的,请大家看一看:多媒体演示割补转化。

那么,用拼摆的方法呢,你准备怎样来拼?

学生上台演示。

3、学生操作、实施转化。

学生以四人小组为单位,拼摆梯形。

请同学们告诉老师:你用两个完全一样的梯形拼成了一个什么图形?

谁来说一说,你是怎样拼的?多媒体课件演示。

三、观察图形,推导公式:

1、观察。

它们的底、高和面积,大小怎样呢?小组讨论。

学生总结汇报后多媒体课件演示。

平行四边形的面积会算吗,这个应该怎样计算?同桌讨论计算方法。算式是什么?

算式中3加5的和求的是什么?乘以4得到什么?再除以2呢?为什么要除以2?

计算面积,学生口述,教师板书。

算式中的3、5、4分别表示梯形的什么,想一想梯形面积的计算方法是什么?

阅读教材,加深理解。

1、基本练习:

2、教学例题。

出示例题并理解题意。

计算面积,一人板演,全班齐练。

3、判断题。

4、抢答题。

5、测量并计算。

五、总结课堂。

梯形面积的教案篇十三

梯形面积的计算是在学生学会计算平行四边形、三角形面积计算的基础上教学的。先复习梯形的有关知识,然后引导学生想,怎样把梯形转化为已学过的图形,从而推导出梯形的面积计算公式。其中理解梯形面积计算公式的推导过程是本节课教学的难点。

在明确梯形的上底、下底和高后,请学生想一想:我们在推导平行四边形、三角形面积计算公式的时候,都用到了什么方法?带领学生回顾以前知识,(把一个平行四边形进行割补转化成一个长方形,推导出平行四边形的面积计算公式;把两个完全一样的三角形拼成一个平行四边形推导出三角形的面积计算公式。)使学生明确都用到了转化的方法。然后启发:我们能否也用转化的方法来推导梯形面积的计算公式呢?本课的复习导入部分处理较好,但在操作部分出现失误!

课前让学生剪下了教材117的三对完全一样的梯形。在让学生进行操作时,事先没有演示,也没有列出操作提纲,只是要求拿出两个完全一样的梯形动手拼一拼,拼成我们已经学过的图形。结果大部分同学很快地拼成了平行四边形,但有几位没有拼成。拼成的'同学有的是通过旋转、平移的方法得到的,有的只是无意中凑巧拼成的;没拼成的同学开始着急了,换了另外一个不同的梯形,显然更不能拼成平行四边形。再换,还是不行!此时,我也开始着急,拿起事先准备好的两个完全一样的梯形,开始演示:如何旋转、如何平移……可无论拼成的还是没拼成的同学,都只顾着忙自个的,没拼成的依旧没拼成;凑巧拼成的同学剩下的两对梯形不会拼了。为接下来找出平行四边形的底与梯形的底之间的关系,(即拼成的平行四边形底是梯形上底和下底之和)再找出梯形的高与拼成的平行四边形的高的关系(即拼成的平行四边形的高是梯形的高)带来很大的难度,不能水到渠成地得出梯形面积与拼成的平行四边形面积之间的关系,(即梯形面积是拼成的平行四边形面积的一半)从而最后得出梯形的面积计算公式及字母公式。

梯形面积的教案篇十四

本节教学内容是梯形的面积,是在学过的平行四边形和三角形的面积的基础上进行教学的。教学目标有两个:

一、在自主探究、合作交流中经历梯形面积的推导过程,掌握梯形面积的计算方法;

二、能利用梯形的面积公式解决实际问题问题。其中,目标一的达成度挺好的。目标一的达成之所以很理想,是因为本节课中我努力做到了以下两点。

一、大胆尝试,自主探究,亲历知识的获取过程。“自主探索”是学生学习数学的主要方式之一,教师把自主探索的机会、时间和空间留给学生,让学生在探究过程中感受问题的存在,从而发现问题,提出问题,并创造性地解决问题。案例2的教学正注重了这一点教师给予了开阔的目标(同学们已经掌握了推导平行四边形、三角形的面积计算公式的方法,你能把梯形转化成已学过的图形,并推倒出梯形的面积计算公式吗?),给予了多元的方法提示(请你们利用准备好的学具,小组合作学习,议一议,剪一剪,拼一拼,可能有意想不到的发现!),学生的思维被激活,亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,从而让学生在探究中不仅获取了知识,而且学会了学习。

二、强化实践,为学生搭建创新的舞台。著名教育家皮亚杰说过:“孩子的智慧生长在手指尖上。”教师应重视学生的动手操作,增强学生的感性认识,主动探索和发现图形的内在联系,为学生搭建一个创新的舞台。案例2的教学中,教师让每一个学生动手操作,把梯形剪拼成已学过的各种平面图形,教会学生用“转化”的方法解决问题,逐步形成这种思考问题的习惯,学生亲历了梯形面积公式的推导过程,获取了多种多样的计算方法,培养了学生灵活的多向创新能力。这节课中,也存在一定的不足,如学生在与老师的配合上还有待改进,其中部分学生的讨论不够积极,有个别学生不会参与讨论,不愿意发表自己的见解,而且气氛也有待改提高,不过学生对动手操作、推导公式倒是很感兴趣。

【本文地址:http://www.pourbars.com/zuowen/16121046.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map