总结可以帮助我们总结经验,提炼出有效的方法和技巧。在写总结时,可以运用具体的事例和数据来支撑自己的观点和结论。接下来将为大家分享一些经典的总结范文,希望对大家有所帮助。
合并同类项的说课稿篇一
今天,七年级的“一课两讲”在我校举行。这次的公开课给我校带来了很好的经验积累,李主任的讲话给我校今后数学教学的发展指明了方向。在此,对今天这两节课,我们七年级备课组谈谈我们的看法。
首先,派潭三中的周老师《合并同类项》这节课,整体给我们的感觉是耳目一新的,课堂上的表现可以充分体现出周老师无限的青春活力以及他在课堂上娴熟的教学基本功。周老师设计的这节课是完全按照他指导学生的学习方法(探究、归纳、练习相结合)展开的,全体学生在周老师的引导下,层层深入地去学习同类项定义、合并同类项,甚至达到更高的学习要求——化简求值。
在每探究一个知识点,就安排好相对应的练习加以巩固、加深理解。在练习设计方面,也从基础到能力提高进行的,从而使全班的学生都得到不同层次的'掌握。可惜,在时间方面,对于我们北部的山区学校,学生的基础大部分较差,而这节课教学容量之大,导致后面练习加深的提高没能在课堂上展现出来。所以,个人认为如果将例4的两道题目安排在另一节巩固加深课来上,这样可能会令大多数的学生有更充分的时间去思考巩固提高题。
增城中学杨东红老师的《合并同类项》一讲又是另一种风味了。前者是青春活力的,那么后者可以说是成熟稳重的。刚开始,可能是来自陌生的环境和初次见到杨老师的缘故,派谭三中这班学生都表现出比较害怕和胆小,上课积极性不高,但杨老师急中生智,用小组比赛的形式,调动学生学习的积极性。这点足以证明杨老师的课堂应急能力之强,教学基本功之扎实。
在整节课的教学中,学生们在杨老师的引导下层层突破教学重点和难点。这节课的教学也是以讲练相结合的形式进行的,但每讲一道题,杨老师是让学生先做,从做中去发现问题,然后重点讲解,从而让学生更好地掌握了容易出错的地方。杨老师的课件制作非常可观、生动,如:先用课件演示“4个苹果+2个苹果=_____个苹果”时,学生很容易算出来,紧接着用字母来表示苹果,4a+2a=__a,后来也用字母代换兔子,是用了类比的教学手段,使学生掌握合并同类项的法则。但不足之处,个人认为杨老师在讲解“同类项”这个概念的引入时,师引导得不是很理想,有点让学生像走进迷宫一样,似是而非,不敢大胆去猜想。从而得出“同类项”概念的,大部分是由师归纳出来的。
整体上去讲,这两节课的讲授是非常成功的,两者都体现了讲练相结合的教学方法,体现了数学课堂的精讲多练的教学特点。在今后的教学之中,我们备课组还会继续努力去探究和钻研课堂教学的有效性,多方面、多渠道去参与教研活动,总结出一套适合我们山区学校学生学习的教学方法,从而提高我们的数学成绩。
合并同类项的说课稿篇二
知识与技能:
理解移项法则,会解形如ax+b=cx+d的方程,体会等式变形中的化归思想。
过程与方法:
1、能够从实际问题中列出一元一次方程,进一步体会方程模型思想的作用及应用价值.
2、经历探索移项法则法的过程,发展观察、归纳、猜测、验证的能力。
情感、态度与价值观:
结合实际问题,探索用移项法则解一元一次方程的方法,进一步认识数学来源于生活,并为生活服务,从而学生学习数学的兴趣和学好数学的信心。
教学重点。
确定实际问题中的相等关系,建立形如ax+b=cx+d的方程,并利用移项和合并同类项的方法解一元一次方程.
教学难点。
确定相等关系并列出一元一次方程,正确地进行移项并解出方程。
教学过程。
一、情景引入:
二、自主学习:
1.解方程:
3x+20=4x-25。
观察上列一元一次方程,与上题的类型有什么区别?
3.新知学习请运用等式的性质解下列方程:
(1)4x-15=9;(2)2x=5x-21。
你有什么发现?
三、精讲点拨。
问题2你能说说由方程到方程的变形过程中有什么变化吗?
移项的定义:一般地,把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项。
移项的依据及注意事项:移项实际上是利用等式的性质1.注意:移项一定要变号。
例1解下列方程:
解:移项,得3x+2x=32-7。
系数化为1,得x=5。
移项时需要移哪些项?为什么?
针对训练:解下列方程:
(1)5x-7=2x-10;(2)-0.3x+3=9+1.2x.
四、合作探究。
列方程解决问题。
思考:如何设未知数?
你能找到等量关系吗?
五、当堂巩固。
1.对方程7x=6+4x进行移项,得,合并同类项,得,系数化为1,得.
2.小新出生时父亲28岁,现在父亲的年龄比小新年龄的3倍小2岁.求小新现在的年龄.
六、课堂小结。
1.本节课主要学习了解一元一次方程的方法:移项,移项的根据是等式的性质1。
2.本节的实际问题的相等关系的依据:表示同一个量的两个式子相等。
3.列方程解实际问题的基本思路。
七、作业布置。
1.必做题:教科书第91页习题3.2第3(3),(4),11题。
2.选做题:
八、板书设计。
将本文的word文档下载到电脑,方便收藏和打印。
合并同类项的说课稿篇三
本节课是一节探究活动课,是在结合学生已有的生活经验,引入用字母表示有理数、正式、同类项以及有理数运算律的基础上,对同类项进行合并的探索、探究。合并同类项是本章的一个知识重点,其法则以及去括号法则应用是整式加减的重点,是以后学习解方程、解不等式的基础,因此学好本节知识是学好后续知识的主要纽带,合并同类项是建立在数的基础上,让学生体会到认识事物是由特殊到一般,又有一般到特殊的过程,从而培养学生的数学思想。因此在讲授这节课时,我采用以下教学过程:
一、复习旧知。让学生判断什么是同类项,思考并回答问题,回忆同类项定义,为本节课做好铺垫。
二、创设情景,激发兴趣,再创情景,引入课题。通过实际问题如:我口袋有四元六角,你口袋有三元二角,则我们俩共有多少元钱等问题引发学生学习积极性,启发探索欲望,加强学科联系,并联系生活,通过学生熟知的、简单的实例切入课题,步步深入,启发学生思维。
三、采用自主探究,合作交流的形式合并同类项,同学们互批互评,培养学生创造性思维,使学生积极地、主动的参与教学活动,感受学习合并同类项的重要性,必要性。
四、通过拓展延伸,进一步引导学生同类项可以进行合并,不是同类项的不能合并,变式训练,巩固提高、拓展,分组竞争,增强合作交流的意识。
通过这节课,我总结出以下几点:
一、采用教学,学生的学习积极性很高。多方面培养学生如:视觉,听觉相互结合,使得学生身心得到全面发展。
二、教学设计比较合理,把数学与生活相联系,通过学生熟知的生活实例,引出合并同类项的法则。
三、教学方法比较灵活,形式多样化。如分组讨论,小组合作,知识抢答等。
四、过分的依赖,重点内容没有在黑板上板书,导致前面的法则以至于一部分学生记不住。忽视了很多小问题,由于知识容量大,增加了后进生的学习难度。今后应加强细节的设计和全面考虑,照顾更多的中差学生。
五、在讨论同类项的法则时,过于慌忙,没有给学生充分的时间去探究深入的交流,就把法则说出来了。合并同类项法则的实质是通过乘法分配律运算,这一点没有给学生提到,应继续给学生深入。
六、另外还需要加强对知识点的认识,比如按某个字母的升降幂的排列,是为了结果的有序,数学的结果需要简洁有序,这样让学生很清楚,有目的的学习效果总是很好的。
针对以上不足之处,我想从以下几点提高自己:
1、在课堂上尽量让学生自己去感受、去体验,让学生多动手,多动口,充分发挥学生的主体作用,把时间还给学生,尽量做到老师少讲,学生多练。
2、多设置练习题,让学生演板,把问题直接暴露在课堂上,可以及时纠正学生做题过程中存在的错误。
3、教学设计要全面,难易适当。既要提高程度好的学生,又要照顾到程度比较差的学生。
4、不过分依赖,及时把重点内容板书在黑板上,使学生在回顾知识点时,应用知识点时,能够一目了然加深学生的印象。
合并同类项的说课稿篇四
听了何老师的这节《合并同类项》受益匪浅,何老师普通话流利准确,教态自然亲切,显出成熟稳重的风味。
何老师刚开始编了一道题:求代数式-7x2+12x+6x2-8x+x2-2x的值.请一位同学报一个关于x的一位或两位整数,老师和另一位同学比赛,看谁先求出正确的答案.师生竞赛的方式,构造问题悬念,充分调动了学生积极参与,激发了学生求知欲望,并自然引出下面的教学内容。
然后观察图片中给出的一些单项式,看一看,把它们分分类;说一说,你这样分的理由,让学生从自己的视点去观察、归纳,进而讨论分析抓住同类项的本质特征,这样可以充分发挥学生的主体作用,同时让学生亲自体验知识获得的过程,享受成功的喜悦。何老师的这节课条理清晰,环节紧凑,面向全体学生,能实现有效分层,题目由浅入深,由易到难,并且何老师非常注重细节,难怪何老师成绩这么突出,这就是所谓的“细节决定成败”,值得我们学习。
下面提几点建议:
1.减少老师的讲,多留些时间让学生去发现去归纳,以及动手解题。
2.可以增加一些开放题。如:任意写出x^y^的三个同类项。
3.应向学生讲清楚合并同类项的原理,就是逆用乘法分配率。
4.导入新课前先以练习题的形式复习一些单项式、多项式的知识以及乘法分配率。
合并同类项的说课稿篇五
早在80年代,美国教育界就提出“以问题解决为学校数学教育中心”的口号,影响了我国基础教育的改革,带着问题学习是学生学习的动力,是学生有所创新的认知情境。
这节课的设计意图是为了要贯彻新教材、新概念,通过游戏发现问题,调动学生对问题探究的热情,使学生主动参与、自主学习,让学生亲身经历,将实际问题抽象成数学概念,并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等方向得到进步和发展。
本节课作为《整式的加减》一章的一个重要知识,以前是给出概念和方法,要求学生在练习中巩固掌握。
为遵循《新课标》的指导思想,使学生认识到一个概念的形成,往往是源于一个数学或解决一个数学问题的需要。本课用接力赛游戏先求代数式的值的运算,作为引入,培养了学生的合作精神。在繁琐枯燥的算术中,去寻找新的解决问题的方法,又体现了学生在学习过程中的勇于创新意识和实践的科学精神,使学生感到合并同类项十分有必要,提高对数学的认识,避免了对抽象概念的生硬讲解,而是将抽象概念具体化,使学生从现象到本质,形成科学的学习态度和方法。
本节课学案是学生对自己学习过程的记录,在倡导学生主动参与、乐于探究、勤于动手的同时,还要求学生注重学习过程的总结、自评方式不但要求学生如实记录学习过程的表现,同时帮助学生正确认识自己,互评使同学之间的交流更加深入,充分体现了互相学习共同进步的思想。
学习要求:
1.知识方面:
使学生明确多项式中同类项的概念,体验如何寻求同类项的根据,并会合并同类项。
生有理数的运算能力,同时同类项的概念又向学生展示了分类讨化的思想。通过求代数式的值逐步形成先化简再代入求值的习惯。
3.情感方面:
通过接力赛小组讨论和小组间的交流,培养学生的协作精神,使学生体会解决数学问题始终要寻找最简捷的方法和表达式。
学习重点。
课形:概念课。
教学模式:互动式教学(小组讨论)。
教学媒体:多媒体辅助教学。
教学过程。
一、引入新课:
1.接力赛:求代数式的值(看谁算得快),要求:每个小组5名同学,每人用上题的结论得出自己的结论。
a=1。
(目的:让学生在合作中体验算法优劣)。
(1)b=4a-2-2a+7a+8。
(2)c=5a-2b+3b-4a-1。
(3)d=4b+c+9c+100。
(4)e=。
(5)。
2.提问学生速算的方法,(学生讨论)引出同类项的问题。
二、新课学习:
1.同类项定义:(书p105)。
在多项式中所含字母相同,相同字母的指数也分别相同的项叫同类项,所有的常数项都是同类项。
教师:现在请同学们结合实例想一想下列问题。
(1)“次数相同的项叫同类项”,对不对?
(2)“所含字母相同的项叫同类项”,对不对?
(3)判定同类项需要几个条件?是什么条件?
(4)“同类项的次数相同”,对不对?要不要加入定义中?
(5)“同类项就是完全相同的项”,对不对?能否用这句话给同类项下定义?
(6)“完全相同的项是同类项”,对不对?
学生:学生分组讨论并发言。
做一做:
例1:指出下列各多项式中的同类项。
(1)。
(2)。
(3)。
例2:若与是同类项,写出这两项。
教师:有理数12可拆分成两个数的和与差的形式,12x呢?学生:回答(问题)。
教师:怎样合并代数式5x+7x.(乘法分配律)。
=12x(有理数加法法则)。
把同类项合并成一项叫合并同类项。合并同类项的方法:
合并同类项时,把同类项的系数相加,所得结果作为系数,字母和字母指数不变。合并同类项的根据:乘法分配律。做一做:例3:
与
是同类,求代数式的值。
若
三、小结:
通过同学们研讨我们发现,一个数学概念的引入往往是运算的需要,或是实际问题的需要。要学好数学知识首先就应养成观察与思考的习惯,其次应逐步形成透过现象看本质的思维品质。
同类项一要满足字母必须相同,二要满足相同字母的指数也必须分别相同,两条缺一不可;合并同类项的方法实际上就是把同类项系数相加且字母和字母指数不变,它的根据是乘法分配律;合并同类项时,先要找出各组同类项,再进行合并,对于非同类项不能合并,保留下来,作为合并后的多项式中的项。
最后要小结的是:在学习的过程中,同学们依据各自的学习经验,在小组交流中充分展示自己的才华发表意见,为我们研究今天所学的知识贡献了力量,同时也体验了学习的乐趣,希望同学们在今后的学习中继续发扬光大。
四、作业:
书p114题:
2、3、4、5、6。
点评:
新课标的实施给我们的教学提出了一个根本性的任务,即如何认识传统的教学模式,如何接轨新课标,传统教学注重双基培养,注重知识形式过程的教学,已经取得了较好的教学效果,从这个意义上讲,执行新课标就应是在继承传统教学方式的优点的基础上的改革。那么改什么呢?它就涉及到对新课标的认识,新理念的出发点是以人为本,改变学生的学习方式,促进其个性发展。为实现这一目标就需要关注学生现有的知识与能力,关注学生的学习过程与方法,关注学生的情感、态度、价值观。
这是一种根本性的变革,在这个变革过程中,凡与之相关的人都会深深地感触到改革的冲击,其中首当其冲的是教学第一线的教师。教师如何执行新课标,除了要在思想上理解新理念外,关键在于教学行为的改变。自踏入课堂始,就应时时处处注意体现新理念,注重学生的感受,用以学生为本的理念规范教学行为,这也是我们评价一节课的起点。
怎样评价101中学田媛老师为大家展示这节“合并同类项”的课,我们认为应从两方面考察和评价。
首先从教学过程的呈现,各个环节的有机联接的整体判断。我们回顾一下这节课的大致过程,田媛老师提出“接力赛”的活动向同学们提供了一个数学学习中“怎样化简”这一最根本的问题,经过同学们的计算与交流发现了症结所在。从而提出问题并着手解决问题,最终确定了“同类项”的概念及“合并同类项”的知识及其应用,可以讲这节课基本上展示了学生学习一个新知识的过程,在这一过程中,让学生体验了如何发现问题,如何关注焦点,如何选择方法,怎样解决问题的全程。
因此我们可以作出一个基本的判断,田媛老师的这节课把改变学生的学习方法作为基本立意,同时注意学生的亲身体验与同学间的交流,展示师生的思维互动与互相激励,从这个意义上讲,不失为一节执行新课标的好课。
第二方面看本节课的特色展示。
在这节课中田媛老师较充分地展示了这样地几个特色:
其一是注重问题性与探索性。
在计算中的简便运算问题就有很强的问题性与探究性,由于题目设计的难度有一定的层次,较适应同学的认知水平,因此能激发同学们的竞争意识,并且便于学生观察与研究。
其二具有创新性和实践性。
接力赛的形式就是一种创新性的活动,如果只具有创新性是不够的,更应具有实践性,在这个问题上这节课的问题设计易于同学操作,因此也就具有了实践性。
其三是知识的形成与学生交流的有机结合过程是由几个活动连结形成的,而每个活动又是过程的一部分。每个活动在认识层次上又不断地深化与提升,一环扣一环,环环相扣。关注学生的感受与体验,关注学生的活动状况是促进学生交流与发展的前提条件与保证。
几点思考。
为此借这个机会谈谈我们的思考:
前面我们已经提及执行新课标必然带来教师行为的变化与改变,这是新课标执行状态的最显著的标志,这是我们思考的首要问题。
另外,任何教学观念的落实对应的是与之相适应的教学模式的应用,而这些教学模式的产生应出在各位教师的教学活动中。因此,要考虑在探求教学模式的过程中不同课型应怎样体现新课标,它应是我们教师的探究活动的主要课题,大家有义务与责任为此做出贡献。从唯物的角度讲,这种模式大致应遵从“展示矛盾引发需要,通过观察揭示矛盾,抽象出数学模型形成数学问题,寻求方法解决问题”。在这个过程中,改变学生的学习方式,关注学生的个性发展是问题的出发点。
最后一个问题是关于教师教学活动的评价与学生的学习情况的评价已成为迫在眉睫的大事。评价活动也需要一些模式的支撑。如何形成易于操作,全面、真实地反映教师情况与学生的学习情况的评价方案也需要教师的支持与实践。当然这其中也包括教师在课堂上对学生的随机的评价方法与方式。从事物发展的角度讲,评价应注重过程性与发展性,充分展示以人为本,以学生个性发展为本的理念。
合并同类项的说课稿篇六
本节课选自新人教版数学七年级上册2、2节,是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题。合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算的基础之上;在合并同类项过程中,要不断运用数的运算。可以说合并同类项是有理数加减运算的延伸与拓广。因此,这节课是一节承上启下的课。
七年级学生刚刚跨入少年期,理性思维的发展还有很有限,他们在身体发育、知识经验、心理品质方面,依然保留着小学生的天真活泼、对新生事物很感兴趣、求知欲望强、具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱。于是我根据学生和中小学教材衔接的特点设计了这节课。
1、知识目标:。
(1)使学生理解多项式中同类项的概念,会识别同类项。
2、能力目标:。
(1)在具体的情景中,通过观察、比较、交流等活动认识同类项,了解数学分类的思想;。
并且能在多项式中准确判断出同类项。
(2)在具体情景中,通过探究、交流、反思等活动获得合并同类项的法则,体验探求规律的思想方法;并熟练运用法则进行合并同类项的运算,体验化繁为简的数学思想。
3、过程与方法:组织学生参与学习、讨论,在合作探究活动中获取知识。
4、情感态度与价值观:激发学生的求知欲,培养独立思考和合作交流的能力,让他们享受成功的喜悦。
根据学生的认知水平、认知能力以及教材的特点,确定以下重、难点:
重点:同类项的概念、合并同类项的法则及应用。
难点:正确判断同类项;准确合并同类项。
(1)教法分析:。
基于本节课内容的特点和七年级学生的心理特征,我在教学中选择互助式学习模式,与学生建立平等融洽的关系,营造自主探索与合作交流的氛围,共同在实验、演示、操作、观察、练习等活动中运用多媒体来提高教学效率,验证结论,激发学生学习的兴趣。(2)学法分析:。
教学过程是师生互相交流的过程,教师起引导作用,学生在教师的启发下充分发挥主体性作用。七年级的学生,从认知的特点来看,学生爱问好动、求知欲强,想象力丰富,对实际操作活动有着浓厚的兴趣,对直观的事物感知欲较强,是形象思维向抽象思维逐步过渡的阶段,他们希望得到充分的展示和表现,因此,在学习上,应充分发挥学生在教学中的主体能动作用,让学生自己通过观察、类比、活动、猜想、验证、归纳,共同探讨,进行小组间的讨论和交流、利用课件和实物自主探索等方式,激发学习兴趣,培养应用意识和发散思维。
1、5+3=,42=、
2、2ab的系数是次数是。
3、组成多项式2xy-3xy2+1的项分别为,,、
4、30米+50米=、复习旧知识,为新知识作铺垫,激发学生的求知欲。
创设情境。
一问题1:
问题2:
(2)生活中处处有分类的问题,在数学中也有分类的问题吗?目的在于引发和提高学生学习的积极性,启发学生的探索欲望,加强学科联系,并注意联系生活,同时为本课学习做好准备和铺垫。
形成概念议一议:。
10a和20a2b2和6b2-9xy和5xy5ab和-13ab有什么共同点?
2、思考:归为同类需要有什么共同的特征?(引导学生看书,让学生理解同类项的定义)。
让学生充分发挥主体作用,从自己的视点去观察、归纳、总结得出同类项的概念。
强化概念。
1、真真假假下列每组式子分别是同类项吗?为什么?
(1)x与y;(2)ab与ab;-3pq与3pq;。
(4)abc与aca与a;(5)ab与abc;。
2、k取何值时,-3xy与-xy是同类项?
3、填充:(1)在()内填上相应字母,使得2()3()2与-x2y3是同类项;。
(2)若和是同类项,则=;使学生牢固掌握同类项的知识,进一步加强对同类项概念的理解。增强应用意识,培养学生的发散思维。
合并同类项的说课稿篇七
1、教材所处的地位及作用:
本节课选自新人教版数学七年级上册22节,是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题。合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算的基础之上;在合并同类项过程中,要不断运用数的运算。可以说合并同类项是有理数加减运算的延伸与拓广。因此,这节课是一节承上启下的课。
2、情分析:
七年级学生刚刚跨入少年期,理性思维的发展还有很有限,他们在身体发育、知识经验、心理品质方面,依然保留着小学生的天真活泼、对新生事物很感兴趣、求知欲望强、具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱。于是我根据学生和中小学教材衔接的特点设计了这节课。
1知识目标:
(1)使学生理解多项式中同类项的概念,会识别同类项。
(3)利用合并同类项法则来化简整式。
2能力目标:
并且能在多项式中准确判断出同类项。
(2)、在具体情景中,通过探究、交流、反思等活动获得合并同类项的法则,体验探求规律的思想方法;并熟练运用法则进行合并同类项的运算,体验化繁为简的'数学思想。
3过程与方法:组织学生参与学习、讨论,在合作探究活动中获取知识。
4情感态度与价值观:激发学生的求知欲,培养独立思考和合作交流的能力,让他们享受成功的喜悦。
根据学生的认知水平、认知能力以及教材的特点,确定以下重、难点:
难点:正确判断同类项;准确合并同类项。
合并同类项的说课稿篇八
1.课标中对本节资料的要求是:正确理解同类项的概念,掌握合并同类项的法则,能进行同类项的合并;本节资料的知识体系是:同类项的概念和合并同类项的法则;本节资料在教材中的地位是:合并同类项是从具体数字发展到代数式的转折点,起到了承前启后的作用,为后面的整式加减做准备;前后教材资料的逻辑关系是前面的学习为了后面的顺利学习。
2.本节核心资料的功能和价值是:同类项的定义的引出,学生学会怎样的整式是同类项,合并同类项的法则的探索,也是一个学习的过程,同时也是为了后面的学习奠定基础。
学情分析。
1.我所上的两个班的学生学习基础不是很好,经过各方面的检查,我发现一部分学生对学习不感兴趣,上课时不够主动地参与课堂,作业只是应付了事,对所学过得知识运用不够熟练,灵活。两个班的学生数学基础不是很均匀,两极分化很严重,为了照顾全班同学都学有所获,采用了分层教学的教学思路,使课堂成为学生获取知识的主阵地。
2.学生认知发展分析:学生此刻的数学基础很不扎实,学习的本事很差,只是完成教师布置的作业,不想去钻研其它的相关题目。
3.学生认知障碍点:学生的计算本事比较差。
4.在学习本节资料之前必须掌握单项式和多项式的知识。
教学目标。
2.掌握合并同类项的法则,能正确进行同类项的合并。
3.灵活运用所学的知识去进行化简求值。
4.探究得出合并同类项的法则,培养学生观察探索、分类、抽象、概括等本事,体会合并同类项的作用。
教学重点和难点。
教学重点:掌握合并同类项的法则,熟练的合并同类项;
教学难点:对同类项概念的理解,灵活运用法则去进行合并同类项。
教学过程。
活动1:探究合并同类项的概念和合并同类项的法则。
活动2:应用同类项法则进行运算。
活动4:谈收获与体会。
活动5:布置作业。
将本文的word文档下载到电脑,方便收藏和打印。
合并同类项的说课稿篇九
教材分析:本节课是在学习了单项式、多项式之后,以同类项的概念、合并同类项的法则及其运用为教学内容。合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有着千丝万缕的联系:合并同类项的法则是建立在数的运算的基础之上;在合并同类项过程中,要不断运用数的运算。可以说合并同类项是有理数加减运算的延伸与拓广。因此,这是一节承上启下的课。同时也是渗透数学思想分类思想的一节课。
教学目标:
知识与技能:在具体情境中了解同类项及合并同类项法则。过程与方法:
1、经历合并同类项法则的概括过程,进一步发展学生的抽象思维能力和概括能力;
2、通过分组合作学习活动,学会在活动中与他人合作,并能与他人交流思维的过程和结果。情感态度与价值观:
1、通过合并同类项法则的概括与合作学习的过程,培养学生从特殊到一般的思维认知规律
2、通过具体情境的探索、交流等数学活动培养学生的团体合作精神和积极参与、勤于思考意识。
教学重难点:
重点:同类项的概念、合并同类项的法则及应用。难点:正确判断同类项;准确合并同类项。
教学过程:
(一)创设情境,激发兴趣
多媒体展示苹果、橘子。问学生怎样分类?
师指出:不仅生活中处处有分类的问题,在数学中也有分类的问题。进入数学问题的探究
(设计目的:寓教于乐,使数学与生活融为一体,有益于学生理解数学、热爱数学,充分调动学习的积极性,为本课学习做好准备。)
(二)观察探究,分组讨论
得出同类项的概念:所含字母相同,并且相同字母的指数也相同的项称为同类项。
所有的常数项也叫同类项。
(设计目的:教师充分发挥学生的主体作用,让学生从自己的视点去观察、归纳,让学生亲自体验知识获得的过程,享受成功的喜悦。)
(三)深入思考,强化概念
思考:
1、同类项的判断依据是什么?有哪几个方面?
2、同类项与系数有关吗?
3、同类项与它们所含字母的顺序有关吗?强化:课件展示课本练习1(设计目的:趁热打铁的简单练习,有利于巩固知识,使学生牢固掌握同类项的知识,增强应用意识。)
(四)再创情境,引出法则
2.合并同类项:把多项式中的同类项合并成一项就叫做合并同类项.3.合并同类项的法则:
同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
(五)例题分析,合作交流
336(设计目的:教师示范解题格式,规范操作,学生再加以运用,注重培养学生规范解题的能力。)
(六)练习巩固,强化目标
(七)小结与评价
通过本节课的学习你有哪些收获?同类项:(1)所含字母相同;(2)相同字母的指数也相同合并同类项法则(1)系数相加作为结果的系数。
(2)字母与字母的指数不变。
(八)作业布置:
课本p76
习题第1、2题
合并同类项的说课稿篇十
教学目标:
(一)知识目标。
(1)了解同类项的概念,能识别同类项;
(2)会合并同类项,明白合并同类项所依据的运算律。
(二)本事目标。
培养学生的观察、分析、归纳的本事,进一步培养学生的思维本事。
(三)情感、态度、价值观。
(1)进取营造亲切和谐的课堂氛围,激励全体学生进取参与数学活动,进一步培养学生团结协助,严谨求实、合作交流、勇于创新的精神。
(2)激发学生探究数学的兴趣,发扬合作学习的精神,培养学生的语言表达本事,并学会与他人合作的本事,在合作中体验成功的喜悦,建立自信心。
教学重点和难点:
难点:正确确定同类项;准确合并同类项。
教学过程:
一、出示问题,引出同类项的概念。
问题:在日常生活中,你发现还有哪些事物也需要分类?能举出例子吗?如:垃圾、零钱、水果及各种产品分类.
2、议一议:归为同类需要有什么共同的特征?
8n和5n3ab和-2ab6xy和-3yx,-7a2b和2a2b5和-3。
3、概念:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
注意:
(1)两同:所含字母相同,相同字母的指数也相同。
(2)两无关:同类项与系数无关,与字母的排列顺序也无关。
(3)几个常数项也是同类项。
4、课堂检测1:下列各组中的两项是不是同类项?为什么?
(1)ab与3ab(2)6b2a与2ab(3)3xy与-xy。
(4)2a与2ab(5)-2.1与3(6)5与b。
问题1:
3ab+5ab=_______理由是________。
-4xy-2xy=_______理由是_______。
-3a+2b=_______理由是_______。
问题2:
不在一齐的同类项能否将同类项结合在一齐?为什么?
例如:试化简多项式3xy-2ab–3+5xy+3ba+5。
解:3xy-2ab-3+5xy+3ba+5--------------找出同类项。
=3xy+5xy-2ab+3ba-3+5----------加法交换律。
=(3xy+5xy)+(-2ab+3ba)+(-3+5)--加法结合律。
=(3+5)xy+(-2+3)ab+2---------乘法分配律逆用。
合并同类项后,所得项的系数等于合并前各同类项的系数之和;合并同类项后,字母以及字母的指数与合并前字母以及字母的指数相同。
同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。(“即一相加,两不变”)。
(1)2ab-3ab+ab。
(2)a–4ab+ab+2ab-5ab+b。
(3)6a-5b+2ab+b-6a。
方法是:(1)系数:各项系数相加作为新的系数。
(2)字母以及字母的指数不变。
注意:
(1)用画线的方法标出各多项式中的同类项,减少运算的错误。
(2)移项时要带着原先的符号一齐移动。
(3)两组同类项之间用“+”号连接。
(4)多项式中仅有同类项才能合并,不是同类项不能合并。
找出同类项,交换律,结合律,分配律逆用,合并。
课堂检测2:(1)3x+x。
(2)2x-7y-5x+11y-1。
(3)4a+3b+2ab-4a-4b。
例题2:求代数式-3x2+5x-x2+x+1-7x的值,其中x=2。
四、课堂小结:经过这节课的学习,你有哪些收获?
合并同类项的说课稿篇十一
同类项合并,是信息整理中常用的技巧。在听课中,合并同类项也能有效帮助我们更好地理解和记忆所学知识,提高学习效率。近日我有幸参加了一次关于合并同类项听课技巧的讲座,今天我将与大家分享我的开云官网app下载安装手机版 。
合并同类项是将相同或相似的事物、人、事态等进行分类,并将其共性汇聚在一起的过程。在听课中,合并同类项可以让我们更好地理解所学知识,尤其是在学习较为抽象的概念时。通过合并同类项,我们可以更好地发掘所学知识的内在关联,从而提高对知识的理解和掌握。
在学习中,将知识点细分,然后进行归类和总结,就能形成一个个同类项。比如,媒体传播学中,同类项可以包括广告、公关、新闻等。在听完一节课后,我们可以将所听的内容进行分类,将不同的知识点分门别类,形成分类目录,然后进行总结和归纳。通过这样的方式,我们不仅能加深印象,还能在需要时快速找到相关知识点。
第四段:不同学科中合并同类项的方式。
不同学科有着不同的合并同类项的方式。在语文中,同类项可以是诗歌、文言文、现代文等;在数学中,同类项可以是多项式、行列式、因式分解等。因此,针对不同学科,我们应该选择适合自己的方法进行合并同类项。在这个过程中,我们不仅要注意归类的准确性,还要注重归类的适用性和实用性,尽力提高自己的综合知识水平。
第五段:结语。
听课时合并同类项,可以帮助我们更好地理解和掌握知识,提高学习效率。这种技巧不仅是学生应该掌握的学习方法,也是教师们进行教学设计的重要技巧。同学们应该在日常学习中多加练习,通过自己的实践来提高这项技巧的熟练度。相信在不断的实践和探索中,我们会越来越熟练地运用合并同类项这个有效的听课技巧。
合并同类项的说课稿篇十二
本节课是人教版七年级数学上册第二单元2.2.2的教学内容,是在学生刚刚学习了同类项的基础上,对同类项进一步的运算———合并同类项。
为了使学生能够在学习中通过探究得出合并同类项的基本方法,我从对教材进行了二次开发,结合学生的学情,由浅入深,对教学进行了优化设计。
由乘法分配律引入,给出几个简单的同类项和差的式子,师生互动探究合并同类项的法则,总结值得注意的地方。对一个多项式里,有几种同类项的,先找再合并。教与学的过程,注重师生互动,例题,巩固练习,层次分明,注重数学思想,数学方法的理解与应用,更注重学生实际的解决问题的步骤,格式,策略与方法。心理学家布鲁纳认为:“学习是主动的`过程,对学生学习的内因的最好激发是对所学材料的兴趣,即主要来自学习活动本身的内在动机,这是直接推动学生主动学习的心理动机。”也就是说当学生有积极的态度和情感时,才能使大脑的活动得到促进,使各种智力因素得到有效的激活,兴趣是思维的原动力,兴趣是最好的老师。
笔者认为,数学的教学活动,要依据实际情况,使学生个体全身心地置身于真实的数学活动中,切身感受数学的奇妙和无所不在,体会做数学的快乐。
合并同类项的说课稿篇十三
2.通过对实例的分析、体会一元一次方程作为实际问题的数学模型的作用.(难点)。
一、情境导入。
1.等式的基本性质有哪些?
2.解方程:(1)x-9=8; (2)3x+1=4.
3.下列各题中的两个项是不是同类项?
(1)3xy与-3xy;(2)0.2ab与0.2ab;。
(3)2abc与9bc;(4)3mn与-nm;。
(5)4xyz与4xyz;(6)6与x.
4.能把上题中的同类项合并成一项吗?如何合并?
二、合作探究。
例1解下列方程:
(1)9x-5x=8;。
(2)4x-6x-x=15.
解析:先将方程左边的同类项合并,再把未知数的系数化为1.
系数化为1,得x=2.
系数化为1,得x=-5.
方法总结:解方程的实质就是利用等式的性质把方程变形为x=a的形式.
探究点二:根据“总量=各部分量的和”列方程解决问题。
解析:遇到比例问题时可设其中的每一份为x,本题中已知黑、白皮块数目比为3∶5,可设黑色皮块有3x个,则白色皮块有5x个,然后利用相等关系“黑色皮块数+白色皮块数=32”列方程.
解:设黑色皮块有3x个,则白色皮块有5x个,根据题意列方程3x+5x=32,解得x=4,则黑色皮块有3x=12(个),白色皮块有5x=20(个).
答:黑色皮块有12个,白色皮块有20个.
方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系,列出方程,再求解.此题的关键是要知道相等关系为:黑色皮块数+白色皮块数=32,并能用x和比例关系把黑皮与白皮的数量表示出来.
三、板书设计。
解方程的步骤:
(2)系数化为1(等式的基本性质2).
2.找等量关系列一元一次方程.
列方程解应用题的步骤:
(1)设未知数;。
(2)分析题意找出等量关系;。
(3)根据等量关系列方程;。
(4)解方程并作答.
本节从复习入手,帮助学生回顾合并同类项的相关知识,为学习用合并同类项解方程做好铺垫.教学中采用引导发现的方法,课堂训练中鼓励自己动手,体现学生在课堂上的主体地位;整个教学过程中充分调动学生学习积极性,培养学生合作学习,主动探究的习惯.
合并同类项的说课稿篇十四
教材分析:
本节课是在学习了单项式、多项式之后,以同类项的概念、合并同类项的法则及其运用为教学内容。合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有着千丝万缕的联系:合并同类项的法则是建立在数的运算的基础之上;在合并同类项过程中,要不断运用数的运算。可以说合并同类项是有理数加减运算的延伸与拓广。因此,这是一节承上启下的课。同时也是渗透数学思想分类思想的一节课。
教学目标:
知识与技能:在具体情境中了解同类项及合并同类项法则。
过程与方法:
1、经历合并同类项法则的概括过程,进一步发展学生的抽象思维能力和概括能力;
2、通过分组合作学习活动,学会在活动中与他人合作,并能与他人交流思维的过程和结果。
情感态度与价值观:
1、通过合并同类项法则的概括与合作学习的过程,培养学生从特殊到一般的思维认知规律。
2、通过具体情境的探索、交流等数学活动培养学生的团体合作精神和积极参与、勤于思考意识。
教学重难点:
重点:同类项的概念、合并同类项的法则及应用。难点:正确判断同类项;准确合并同类项。
教学过程:
(一)创设情境,激发兴趣。
多媒体展示苹果、橘子。问学生怎样分类?
师指出:不仅生活中处处有分类的问题,在数学中也有分类的问题。进入数学问题的探究。
(设计目的:寓教于乐,使数学与生活融为一体,有益于学生理解数学、热爱数学,充分调动学习的积极性,为本课学习做好准备。)。
(二)观察探究,分组讨论。
得出同类项的概念:所含字母相同,并且相同字母的指数也相同的项称为同类项。
所有的常数项也叫同类项。
(设计目的:教师充分发挥学生的主体作用,让学生从自己的视点去观察、归纳,让学生亲自体验知识获得的过程,享受成功的喜悦。)。
(三)深入思考,强化概念。
思考:
1、同类项的判断依据是什么?有哪几个方面?
3、同类项与它们所含字母的顺序有关吗?强化:课件展示课本练习1(设计目的:趁热打铁的简单练习,有利于巩固知识,使学生牢固掌握同类项的知识,增强应用意识。)。
(四)再创情境,引出法则。
2.合并同类项:把多项式中的同类项合并成一项就叫做合并同类项.3.合并同类项的法则:
同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
(五)例题分析,合作交流。
336(设计目的:教师示范解题格式,规范操作,学生再加以运用,注重培养学生规范解题的能力。)。
(六)练习巩固,强化目标。
(七)小结与评价。
通过本节课的学习你有哪些收获?
同类项:
(1)所含字母相同;
(2)相同字母的指数也相同。
(1)系数相加作为结果的系数。
(2)字母与字母的指数不变。
(八)作业布置:
课本p76。
习题第1、2题。
合并同类项的说课稿篇十五
教育教学目标:
理解、掌握同类项的定义,并会根据定义识别同类项;使学生熟练掌握合并同类项法则,并应用合并同类项的方法化简多项式。通过“同类项”概念的学习,继续培养学生运用定义进行判断的能力,通过合并同类项的学习,对学生渗透分类、归纳的数学思想方法。教学重点:同类项的定义,合并同类项式的定义及方法。
教学难点:识别同类项,多字母同类项的判别与合并。
教学流程:
一、情境导入。
1、看书p70――动脑。
二、新知学习。
说明:所有的常数项都是同类项。
比如.前面提到的多项式中,―3与5也是同类项。
说明:对于同类项的概念,有两个相同和两个无关:
两个相同(1)所含字母相同;(2)相同字母的指数分别相同;两者缺一不可;
两个无关:(1)、同类项与系数大小无关;(2)、同类项与它们所含相同字母的顺序无关.例1:指出下列多项式中的同类项:
(1)3x?2y?1?3y?2x?5。
(2)3xy?2xy?221232xy?yx32。
k2例2:k取何值时,3xy与?xy是同类项?
例3:请你在下面的横线上填上适当的内容,使两个单项式构成同类项。
22(1)-3x2y3与2x(2)2m与-5n。
(3)-3a与6a。
例4、如果1a3xy和?yb?1x2是同类项,求多项式2。
133(a?b)2?(a?b)?(a?b)2?(a?b)的值22。
(2)p71――例1。
3、两个多项式相等的概念:p72。
三、课堂练习。
p72――练习1、2、3。
四、本节小结。
1、同类项的概念与识别方法(两相同两无关)。
2、合并同类项的方法(系数相加减,字母和它们的指数不变)。
3、两多项式相等的意义。
五、作业。
合并同类项的说课稿篇十六
本节课是学生在学习了用字母表示数、单项式、多项式以及有理数的基础上,对同类项合并、探索、研究的一个课程。合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算的基础之上;在合并同类项过程中,要不断运用数的运算。即合并同类项是有理数运算的延伸与拓展,是简化数学运算的常用方法,对于解决一些实际问题和进一步学习有着深远的意义。所以,这节课具有承上启下的作用。
学情分析。
新知识的学习应建立在学生的已有认知发展水平上,所以从学生己有的生活知识经验出发,经过观察、思考、讨论,把几个代数式进行分类,从而引出同类项这个概念,理解同类项的定义以及满足同类项的条件。合并同类项是在“乘法分配律”基础上的延伸和拓展,合并同类项是式的运算,可类比“乘法分配律”数的运算来学习。经过引导学生类比数的运算来进行式的运算,利用关于数的分配律对式子进行化简,充分体现“数式通性”。让学生体会由数到式、由具体到一般的思想方法,以及体会数学来源于生活,又作用于生活,从而激发学生学习数学的兴趣。
教学重点和难点。
教学过程。
一、复习单项式、多项式的概念及有理数的运算律,导入新课。
让学生回忆、发言,最终教师加以补充、巩固。
设计意图:复习相关概念及有理数的运算,为合并同类项打基础。
设计意图:知识来源于生活,又服务于生活。分类是日常生活中常见的问题,由分类引出同类项的概念,顺理成章。经过观察、思考、分析、归纳识别同类项的特征,为合并同类项作准备。
“物以类聚,人以群分”,我们常常把具有相同特征的项归为一类。同学们,你们认为上述单项式中哪些项能够归一类为什么可分为几类给出必须的时间,让学生经过观察、思考、交流、归纳得出:3x2y与5x2y可归为一类,-4xy2与2xy2可归为一类,-3与5也可归为一类,共可分为三类。其中3x2y与5x2y中仅有系数不一样,各自所含的字母相同,都是x、y,并且x的指数都是2,y的指数都是1;-4xy2与2xy2也仅有系数不一样,各自所含的字母相同,都是x、y,并且x的指数都是1,y的指数都是2。这是同类项的特征:所含字母相同;相同字母的指数也分别相同,从而引出同类项概念,引出课题,板书课题:合并同类项。
二、讲授新课。
板书:1、同类项的特征:所含字母相同;相同字母的指数也分别相同。
2、同类项概念:所含字母相同,相同字母的指数也分别相同的项,叫做同类项;。
想一想:1、下列各式中具有上述特征吗他们是不是同类项。
(4)4abc与4ac;(5)mn与-mn;(6)23与42。
2、如果3xmy2与4xyn是同类项,则m=,n=。
设计意图:强化同类项的特征,加深对同类项概念的理解,感受收获知识的喜悦。识别同类项是本课的关键,是重点资料之一,是合并同类项的基础和需要。
乐乐说:我买个汉堡包,个鸡翅,杯可乐。
同学们回答了上头的问题,得出共同结论:现实生活中为了方便,往往要对事物进行分类,同时同一类的东西能够合并在一齐。
设计意图:新问题能引起学生的兴趣,激发学生探求新知的欲望,让学生带着问题去探究合并同类项的方法和依据。
探究1:(1)运用有理数的运算定律计算:8n+5n=(8+5)n=13n。
100×2+252×2=(________)×2=×2。
100×(-2)+252×(-2)=(________)×(-2)=×(-2)。
(2)根据(1)中的方法完成下头的运算,并说说其中的道理。
100t+252t=(_________)t=t。
探究2:填空:(1)100t-252t=(_____)t=t。
(2)3x2+2x2=(___)x2=x2。
(3)3a2b-4a2b=(___)a2b=a2b。
设计意图:让学生在独立完成的基础上,观察、分组讨论,经过类比数的运算,探究式的运算。让学生体会有理数的运算定律在整式运算中同样适用,并从中找到合并同类项的方法依据。体验探求规律的思想方法,及合作的愉快、成功的喜悦。
板书:
3、合并同类项:把多项中的同类项合并为一项,叫做合并同类项。
4、合并同类项法则:把同类项的系数相加,字母和字母的指数坚持不变。
小练习:确定下列合并是否正确,错误的改正。
练习:仿照式子2a+3a=(2+3)a=5a计算。
1、2x-3x=2、-2x-3x=。
3、-2m+3m=4、-5y+4y=。
设计意图:让学生在理解和适当记忆合并同类项法则后,尝试进行两项的合并练习,熟悉法则并对合并时的符号有所把握。
活动三:用不一样记号标出下列各多项式中的同类项,并合并同类项:
给出必须的时间让学生思考、讨论、计算,最终师生共同完成解题过程。
设计意图:做标记是为了让学生做到不重不漏,进一步区分不一样的同类项,继而合并同类项,加深对合并同类项方法的理解。
=(4-8)x2+(2+3)x+(7-2)=(-3+2)x2y+(3-2)xy2。
=-4x2+5x+5=-x2y+xy2。
(3)4a2+3b2+2ab-4a2-4b2。
=(4-4)a2+(3-4)b2+2ab。
=-b2+2ab。
如果一个多项式中有同类项,那么我们常常要把同类项合并起来,使得结果简化。
练习:(1)a-3m+2a+2m(2)5x-y-2x+2y。
如a-3m+2a+2m,能有效地降低错误的办法:。
1、还原成加法:原式=a+(-3m)+2a+2m。
=(a+2a)+〔(-3m)+2m〕=3a-m。
2、正在前,负在后:原式=a+2a+2m-3m。
=(a+2a)+(2m-3m)=3a-m。
3、用生活意义去理解:-3m表示减3m,2m表示加上2m,
合起来最终效果即减去m,即-m。
设计意图:经过对学生此类问题的错误预设,明白学生在此要出错,让做对的学生介绍其正确方法,能有效的减少错误,并能提高本节的课堂学习效率,同时能调动学生学习的进取性,也能树立学生的自信心。
活动五:当x=-2时,求多项式3x2+4x-2x2-x+x2-3x-1值。
设计意图:经过学生的观察、讨论、比较,最终得出:这类题目是要先合并多项中的同类项,再代数进去求值,这样就能够使得计算简便。
当x=-2时,原式=2×(-2)2-1=2×4-1=7。
三、小结:
经过同学们的研讨我们发现,一个数学概念的引入往往是运算的需要,或者是问题的需要。要学好数学知识首先就应当养成观察与思考的习惯,其次应逐步构成透过现象看本质的思维品质。
(1)所含字母相同。
(2)相同字母的指数分别相同。
2、仅有同类项才能合并,不是同类项的不能合并;。
3、合并同类项,只合并系数,字母与字母的指数不变;。
4、在求代数式的值时,可先合并同类项将代数式化简,
然后再代入数值计算,这样往往会简化运算过程。
四、作业:课本91页习题3.5第1题全部,第2题的第(1)小题。
板书设计。
(1)所含字母相同。把同类项的系数相加,
(2)相同字母的指数分别相同。字母和字母的指数坚持不变。
5、总结系数异号时的有效降低错误的合并方法:
合并同类项的说课稿篇十七
教学目标:
1、在具体情境中理解同类项的定义。
2、经历观察、类比、思考、探索、交流和反思等数学活动,培养创新意识与合作精神。
3.经过对具体问题的分析及运用分配律,了解合并同类项的法则,能进行同类项的合并。
教学重点、难点:
(1)理解同类项的含义;(2)同类项的合并。
教学过程。
一、创设情境,游戏导入。
-7a2b、-xy、2a2b、0.2x2y3、-3y3x2)请拿到卡片的同学根据卡片上的资料找“朋友”,并和找到的“朋友”一齐站到讲台前面。
生:(8生活动,其他学生观察。)。
生:(观察的学生提出意见)手拿6xy、0.2x2y3两张卡片的同学站在一齐是不正确的;手拿-xy、-3y3x2两张卡片的同学站在一齐也是错误的。6xy的“朋友”是-xy;0.2x2y3和-3y3x2是一对“朋友”。
师:(把大屏幕上的卡片,按上头的分组把“朋友”拖到一行。)为什么要这样分呢?
生:因为6xy、-xy所含的字母相同。
师:6xy和0.2x2y3所含的字母也相同,它们俩是不是“朋友”呢?为什么?
生:不是,因为字母的指数不相同。
师:x3y2与0.2x2y3是不是“朋友”呢?
生:也不是,x3y2中的x指数是3而0.2x2y3中的x指数是2。
师:回答得十分好!也就是说相同字母的指数要相同。我们就把满足这样条件的“朋友”叫做同类项。(板书同类项)。
二、讲解新课。
谁能把同类项满足的条件再重复一遍?
生:1、所含字母相同。2、相同字母的指数相同。
师:(板书上述资料,并提示学生)确定几个式子是否是同类项与代数式的系数无关,与代数式中字母的排列顺序无关。
-3a3;x和y;-125和3。)。
生:(在确定-125和3是不是同类项时有些迟疑。)。
师:(指出)数字和数字也是同类项,能够进行运算。
师:(大屏幕投影代数式:(1)3x-1+5x2-1-2x-6x2。
(2)8x2-9x4+2x-x4-2x+x2。
(3)-xy-y2+3x2+xy+x2-y2)找出上述代数式中的同类项。
(学生交流,教师重点强调找同类项时不要漏掉单项式前面的符号。)。
点评:经过一个小游戏出示数学知识的分类题,让学生根据分类情景进行讨论分析,在教师的引导下发现并归纳出同类项的概念,这样学生掌握起来就比较容易,并让学生经历了由实际问题抽象为代数问题的过程,使本节课的重点资料得以突破,让学生体验到探究成功的乐趣。
三、应用拓展。
师:有一长方形由两个小长方形组成,如图求大长方形的面积。
生1:8n+5n。
生2:(8+5)n。
师:(板书8n+5n=(8+5)n=13n)。
师:8n+5n=(8+5)n好似我们以前学过的什么定律?
生:乘法分配律。
生:5x+3x=(5+3)x=8x5x-3x=(5-3)x=2x。
师:那么你会利用乘法分配律计算-7a2b+2a2b和-xy2+3xy2吗?
生:(计算并交流)。
师:以上计算过程叫合并同类项。观察上述计算过程,你能得出合并同类项的方法吗?
生:(讨论)把系数合起来,字母和字母指数合起来。
师:“合”起来是什么意思?相加?还是相乘?
生:系数是加起来,等号右边的字母和字母的指数与等号左边的是相同的。
师:(总结并板书:把同类项的系数相加,字母和字母的指数不变。)。
师:能否用乘法分配律计算代数式2a+3;2a+3a+1为什么?
生:第一个代数式不能。第二个代数式中2a和3a能够合并为5a,不能和1合并。因为它们不是同类项。
师:(强调:仅有同类项才能进行合并。)。
点评:经过计算由“两个小长方形组成的大长方形的面积”以及“买练习本”,借助乘法分配律的运算过程,采取教师与学生进行交流和学生相互交流、探究的方法,让学生根据代数式变换思维角度,联系系数与字母的变化规律进而得出合并同类项的法则。
四、巩固练习。
师:(出示例题:1、a2-a2+6a22、3a+2b-5a-6b。
3、-4ab+8-2b2-9ab-8)。
师:(总结)要合并同类项首先把代数式中的同类项找出来写在一齐。
生1:板书:3b-3a3+1+a3-2b(1)。
=(3b-2b)-(3a3+a3)+1(2)。
=b-4a3+1(3)。
师:大家共同讨论分析一下有什么不对。
生:由(1)到(2)不是相等的。
师:-(3a3+a3)=(-1)(3a3+a3)=-3a3-a3。
与原代数式不符。应当把代数式中各项相加。
生:(订正为):原式=(3b-2b)+(-3a3+a3)+1=b-2a3+1。
师:当x=2时,代数式3x2+5x-0.5x2+x-1的值如何来求?谈谈你的方法。
生1:把x=2代入3x2+5x-0.5x2+x-1中得:3×22+5×2-0.5×22+2-1=21。
生2:代数式3x2+5x-0.5x2+x-1=(3-0.5)x2+(5+1)x-1,再把x=2代入(3-0.5)x2+(5+1)x-1中得:(3-0.5)×22+(5+1)×2-1=21。
把x=2代入2.5x2+6x-1中得:2.5×22+6×2-1=21。
师:比较三种做法,哪一种方法简单?
五、检测。
师:(回顾反思)同学们这节课你们都学会了哪些新知识?掌握了哪些新的解题方法。
生:(整理交流)1、认识了同类项。2、学会了合并同类项。3、合并同类项的时候带上本身的符号。4、生活中学会了分类整理。
点评:经过典型的例题让学生巩固合并同类项的方法,并掌握合并同类项的技巧。经过变式练习让学生得以迅速提高、拓展,使学生知识技能螺旋式上升。最终的小结培养学生的概括本事、表达本事和逻辑思维的本事,并拓展学生的思维广度。
六、教学反思:
我先采用“找朋友”的一个小游戏导入本节的第一个重点资料——理解同类项。经过一系列的探索活动,使学生充分理解了同类项的概念,在此基础上再进行合并同类项的学习就比较容易了。在探索合并同类项的方法时,我使用了“求大长方形面积”的例子,又设计了学生常见的“买练习本”的问题,让学生从具体的、简单的生活实例中提炼出合并同类项的方法。体现了数学“源于生活又作用于生活”的思想。
本节课我注重从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维本事、情感态度与价值观等多方面得到提高和发展。
【本文地址:http://www.pourbars.com/zuowen/16480676.html】