制定教案可以帮助教师合理安排教学内容和教学方法。在编写教案时,教师需要根据学生的实际情况,合理选择适应的教学方法和教学手段。通过学习范文,教师可以提高教案编写和教学设计的水平。
数学教案-有理数的乘方篇一
1.1正数和负数(2)。
教学目标:
教学重点:
深化对正负数概念的理解。
教学难点:
正确理解和表示向指定方向变化的量。
教学准备:彩色粉笔。
教学过程:
一、复习引入:
学生思考并讨论.
(数0既不是正数又不是负数,是正数和负数的分界,是基准.
二、讲解新课。
度,用负数表示低于海平面的某地的海拔高度。例如,珠穆朗玛峰的海拔高度为8848.43米,吐鲁番盆地的海拔高度为—155米。记账时,通常用正数表示收入款额,用负数表示支出款额。
思考:教科书第4页(学生先思考,教师再讲解)。
三、课堂练习课本p4练习1,2,3,4。
四、课时小结。
引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示.在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定.要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与以前学过的数有很大的区别.
五、课外作业教科书p5:2、4。
板书设计:
数学教案-有理数的乘方篇二
1?理解有理数乘方的概念,掌握有理数乘方的运算;。
2?培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;。
3?渗透分类讨论思想?
2?乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数?
一般地,在an中,a取任意有理数,n取正整数?
应当注意,乘方是一种运算,幂是乘方运算的结果?当an看作a的n次方的结果时,也可以读作a的n次幂。
例1计算:
(1)2,2,2,24;(2)-2,2,3,(-2)4;。
(3)0,02,03,04?
教师指出:2就是21,指数1通常不写?让三个学生在黑板上计算?
引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?
(1)模向观察。
(2)纵向观察。
互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等?
(3)任何一个数的偶次幂都是什么数?
任何一个数的偶次幂都是非负数?
你能把上述的结论用数学符号语言表示吗?
当a0时,an0(n是正整数);。
当a。
当a=0时,an=0(n是正整数)?
a2n=(-a)2n(n是正整数);。
=-(-a)2n-1(n是正整数);。
例2计算:
(1)(-3)2,(-3)3,[-(-3)]5;。
(2)-32,-33,-(-3)5;。
(3),?
让三个学生在黑板上计算?
课堂练习。
计算:
(1),,,-,;。
(2)(-1)20xx,322,-42(-4)2,-23(-2)3;。
(3)(-1)n-1?
让学生回忆,做出小结:
1?乘方的有关概念?2?乘方的符号法则?3?括号的作用?
1?计算下列各式:
(-3)2;(-2)3;(-4)4;;-0.12;。
-(-3)3;3(-2)3;-6(-3)3;-(-4)2(-1)5?
2?填表:
3?a=-3,b=-5,c=4时,求下列各代数式的值:
4?当a是负数时,判断下列各式是否成立?
(1)a2=(-a)2;(2)a3=(-a)3;(3)a2=;(4)a3=.
5*?平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?
6*?若(a+1)2+|b-2|=0,求a20xxb3的值?
数学教案-有理数的乘方篇三
2.知道底数、指数和幂的概念,会求有理数的正整数指数幂;。
3.会用科学记数法表示较大的数.
教学重点。
1.有理数乘方的意义,求有理数的正整数指数幂;。
2.用科学记数法表示较大的数.
教学难点有理数乘方结果(幂)的符号的确定.
教学过程(教师)。
问题引入。
乘方的有关概念。
试一试:
将一张报纸对折再对折……直到无法对折为止.你对折了多少次?请用算式表示你对折出来的报纸的层数.
你还能举出类似的实例吗?
数学教案-有理数的乘方篇四
1、知识目标:利用10的乘方,进行科学记数,会用科学记数法表示大于10的数.。
2、能力目标:会解决与科学记数法有关的实际问题.。
3、情感态度和价值观:正确使用科学记数法表示数,表现出一丝不苟的精神.。
会用科学记数法表示大于10的数.。
正确使用科学记数法表示数.。
用乘方的形式,有时可方便地来表示日常生活中遇到的一些较大的数,如:
太阳的半径约696000千米。
富士山可能爆发,这将造成至少25000亿日元的损失。
光的速度大约是300000000米/秒;
全世界人口数大约是6100000000.。
这样的大数,读、写都不方便,考虑到10的乘方有如下特点:
102=100,103=1000,104=10000,?
例1、用科学记数法记出下列各数:
(1)1000000;(2)57000000;(3)123000000000。
解:(1)1000000=1×106。
(2)57000000=5.7×107。
(3)123000000000=1.23×1011.。
用科学记数法表示一个数时,首先要确定这个数的整数部分的位数.。
1.用科学记数法记出下列各数.。
(1)30060;(2)15400000;(3)123000.。
2.下列用科学记数法记出的数,原来各是什么数?
(1)2×105;(2)7.12×103;(3)8.5×106.。
3.已知长方形的长为7×105mm,宽为5×104mm,求长方形的面积.。
4.把199000000用科学记数法写成1.99×10n3的形式,求n的值.。
课堂练习答案。
2.(1)100000;(2)7120;(3)8500000.。
3.3.5×1010mm.。
4.n的值为11.。
数学教案-有理数的乘方篇五
难点:有理数乘方运算的符号法则?
1、求n个相同因数的积的运算叫做乘方?
2、乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数?
一般地,在an中,a取任意有理数,n取正整数?
应当注意,乘方是一种运算,幂是乘方运算的结果?当an看作a的n次方的结果时,也可以读作a的n次幂。
例1计算:
(1)2,2,2,24;(2)-2,2,3,(-2)4;。
(3)0,02,03,04?
教师指出:2就是21,指数1通常不写?让三个学生在黑板上计算?
引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?
(1)模向观察。
正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零?
(2)纵向观察。
互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等?
(3)任何一个数的偶次幂都是什么数?
任何一个数的偶次幂都是非负数?
你能把上述的结论用数学符号语言表示吗?
当a0时,an0(n是正整数);
当a。
当a=0时,an=0(n是正整数)?
(以上为有理数乘方运算的符号法则)。
a2n=(-a)2n(n是正整数);
=-(-a)2n-1(n是正整数);
a2n0(a是有理数,n是正整数)?
例2计算:
(1)(-3)2,(-3)3,[-(-3)]5;。
(2)-32,-33,-(-3)5;。
(3),?
让三个学生在黑板上计算?
课堂练习。
计算:
(1),,,-,;
(2)(-1)2001,322,-42(-4)2,-23(-2)3;。
(3)(-1)n-1?
让学生回忆,做出小结:
1、乘方的有关概念?
2、乘方的符号法则?3?括号的作用?
1、计算下列各式:
(-3)2;(-2)3;(-4)4;;-0.12;。
-(-3)3;3(-2)3;-6(-3)3;-(-4)2(-1)5?
2、填表:
3、a=-3,b=-5,c=4时,求下列各代数式的值:
4、当a是负数时,判断下列各式是否成立?
(1)a2=(-a)2;(2)a3=(-a)3;(3)a2=;(4)a3=。
5、平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?
6、若(a+1)2+|b-2|=0,求a2000b3的值?
数学教案-有理数的乘方篇六
情感态度与价值观:通过参与数学学习活动,对数学有好奇心和求知欲,形成主动学习态度。
知识重点:理解有理数乘方的意义和表示,会进行乘方运算。
学习难点:理解有理数乘法运算与乘方间的关系,进行正确的乘方运算。
数学教案-有理数的乘方篇七
难点:有理数乘方运算的符号法则?
1?求n个相同因数的积的运算叫做乘方?
2?乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数?
一般地,在an中,a取任意有理数,n取正整数?
应当注意,乘方是一种运算,幂是乘方运算的结果?当an看作a的n次方的结果时,也可以读作a的n次幂。
例1计算:
(1)2,2,2,24;(2)-2,2,3,(-2)4;。
(3)0,02,03,04?
教师指出:2就是21,指数1通常不写?让三个学生在黑板上计算?
引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?
(1)模向观察。
正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零?
(2)纵向观察。
互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等?
(3)任何一个数的偶次幂都是什么数?
任何一个数的偶次幂都是非负数?
你能把上述的结论用数学符号语言表示吗?
当a0时,an0(n是正整数);
当a。
当a=0时,an=0(n是正整数)?
(以上为有理数乘方运算的符号法则)。
a2n=(-a)2n(n是正整数);
=-(-a)2n-1(n是正整数);
a2n0(a是有理数,n是正整数)?
例2计算:
(1)(-3)2,(-3)3,[-(-3)]5;。
(2)-32,-33,-(-3)5;。
(3),?
让三个学生在黑板上计算?
课堂练习。
计算:
(1),,,-,;
(2)(-1)20xx,322,-42(-4)2,-23(-2)3;。
(3)(-1)n-1?
让学生回忆,做出小结:
1?乘方的有关概念?2?乘方的符号法则?3?括号的作用?
1?计算下列各式:
(-3)2;(-2)3;(-4)4;;-0.12;。
-(-3)3;3(-2)3;-6(-3)3;-(-4)2(-1)5?
2?填表:
3?a=-3,b=-5,c=4时,求下列各代数式的值:
4?当a是负数时,判断下列各式是否成立?
(1)a2=(-a)2;(2)a3=(-a)3;(3)a2=;(4)a3=。
5*?平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?
6*?若(a+1)2+|b-2|=0,求a20xxb3的值?
数学教案-有理数的乘方篇八
本节课学生对新知识的掌握情况比较好,课堂气氛活跃,有效地完成了教学目标。通过本课的设计我深深的感到,教师必须要调动学生的主动性,要正确地认识课堂教学中的师生交流,要让学生真正参与课堂,才有效,才是真实的教学,通过富有创意的实践和探究,建构一个生动活泼和富有个性的师生、生生交往的课堂情景,促进每一个学生的充分发展,以提高课堂教学的效率。有理数乘方是初中数学教学的重点之一,也是初中数学教学的一个难点。
因此要从有理数乘方的意义。有理数乘方的符号法则,有理数乘方运算顺序入手。从有理数乘方书写格式,有理数乘方常见错误以及拓展等五个方面来教学。不足之处是在小组交流过程中学生的发言过分地注重于探索的结果,尤其是问题8的探究学习,忽视了学生探索过程的展示。同时教师有些提问限制了学生的思维,不能最大限度的发挥学生自主探究的能力。
数学教案-有理数的乘方篇九
(1)正确理解乘方、幂、指数、底数等概念。
通过对乘方意义的理解,培养学生观察比较、分析、归纳概括的能力,渗透转化思想。
培养探索精神,体验小组交流、合作学习的重要性。
教学重、难点与关键。
1.重点:正确理解乘方的意义,掌握乘方运算法则。
2.难点:正确理解乘方、底数、指数的概念,并合理运算。
3.关键:弄清底数、指数、幂等概念,注意区别-an与(-a)n的意义。
1.几个不等于零的有理数相乘,积的符号是怎样确定的?
几个不等于零的有理数相乘,积的符号由负因数的个数确定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正。
2.正方形的边长为2,则面积是多少?棱长为2的正方体,则体积为多少?
边长为a的正方形的面积是aa,棱长为a的正方体的体积是aaa.
aa简记作a2,读作a的平方(或二次方)。
aaa简记作a3,读作a的立方(或三次方)。
一般地,几个相同的因数a相乘,记作an.即aaa.这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an中,a叫底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。
数学教案-有理数的乘方篇十
1、知道乘方运算与乘法运算的关系,会进行有理数的乘方运算。
2、知道底数、指数和幂的概念,会求有理数的正整数指数幂。
归纳概念。
n个a相乘aaa=,读作:。其中n表示因数的个数。
求相同因数的积的运算叫作乘方。乘方运算的结果叫幂。
例1:计算。
(1)26(2)73(3)(3)4(4)(4)3。
例2:(1)()5(2)()3(3)()4。
【想一想】1.(1)10,(1)7,()4,()5是正数还是负数?
2.负数的幂的符号如何确定?
思考题:1、(a2)2+(b+3)2=0,求a和b的值。
2、计算(2)2009+(2)20xx。
1.某种细菌在培养过程中,细菌每半小时分裂一次(由分裂成两个),经过两个小时,这种细菌由1个可分裂成()。
a8个b16个c4个d32个。
2.一根长1cm的绳子,第一次剪去一半。第二次剪去剩下的一半,如此剪下去,第六次剪后剩下的绳子长度为()。
a()3mb()5mc()6md()12m。
3.(3.4)3,(3.4)4,(3.4)5的从小到大的顺序是。
4.计算。
(1)(3)3(2)(0.8)2(3)02004(4)12004。
(5)104(6)()5(7)-()3(8)43。
(9)32(3)3+(2)223(10)-18(3)2。
5.已知(a2)2+|b5|=0,求(a)3(b)2.
会用科学计数法表示绝对值较大的数。
定义:一般地,一个大于10的数可以写成的形式,其中,n是正整数,这种记数法称为科学记数法。
例题教学。
例1:1972年3月美国发射的先驱者10号,是人类发往太阳系外的第一艘人造太空探测器。截至20xx年12月人们最后一次收到它发回的信号时,它已飞离地球12200000000km。用科学记数法表示这个距离。
例2:用科学记数法表示下列各数。
(1)10000000(2)57000000(3)123000000000。
例3.写出下列用科学记数法表示的数的原数。
2.311053.001104。
1.281038.3456108。
思考:比较大小。
(1)9.2531010与1.0021011。
(2)7.84109与1.011010。
学怎样。
1.用科学记数法表示314160000得()。
2.稀土元素有独特的性能和广泛的应用,我国的稀土资源总储藏量约为1050000000吨,是全世界稀土资源最丰富的国家,将1050000000吨用科学记数法表示为()。
3.人类的遗传物质是dna,dna是很大的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()。
a.3108b.3107c.3106d.0.3108。
4.第五次全国人口普查结果表示:我国的总人口已达到13亿。请用科学记数法表示13亿为。
5.比较大小:
10.91081.11010;1.111089.99107.
6.用科学记数法表示下列各数。
数学教案-有理数的乘方篇十一
一、教学目标:
1、认知目标。
正确理解乘方、幂、指数、底数等概念,在现实背景中理解有理数乘方的意义,会进行有理数乘方的运算。
2、能力目标。
(1).通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化的数学思想。
(2).使学生能够灵活地进行乘方运算。
3、情感目标。
让学生体会数学与生活的密切联系,培养学生灵活处理现实问题的能力。
二、教学重难点和关键:
1、{}教学重点:正确理解乘方的意义,掌握乘方运算法则。
2、教学难点:正确理解乘方、底数、指数的概念,并合理运算,
3、教学关键:弄清底数、指数、幂等概念,区分-an与(-a)n的意义。
三、教学方法。
考虑到七年级学生的认知水平和结构以及思维活动特点,本节课采用多媒体直观教学法,联想比较、发现教学法,设疑思考法,逐步渗透法和师生交流相结合的方法。
四、教学过程:
1、创设情境,导入新课:
这一章我们主要学习了有理数的计算,其实有理数的计算在生活中无处不在。有一种游戏叫“算24点”,它是一种常见的扑克牌游戏,不知道大家有没有玩过?那我们现在约定扑克牌中黑色数字为正,红色数字为负,每次抽取4张,用加、减、乘、除四种运算使结果为24。
师:假如我现在抽取的是黑3红3黑4红5(幻灯片放映图片)如何算24?
师:如果四张都是3呢?
生答:-3-3×3×(-3)=。
生:思考几分钟后,有同学会想出的答案。
师:观察这个式子,有我们以前学过的3次方运算,那它是不是乘法运算?可以告诉大家,它是一种乘方运算,那是不是所有的乘方运算都是乘法运算,它与乘法运算又有怎样的关系?那我们今天就一起来研究“有理数的乘方”,相信学过之后,对你解决心中的疑问会有很大的帮助。(自然引入新课)。
2、动手实践,共同探索乘方的定义。
学生活动:请同学们拿出一张纸进行对折,再对折。
问题:(1)对折一次有几层?2。
(2)对折二次有几层?
(3)对折三次有几层?
(4)对折四次有几层?
师:一直对折下去,你会发现什么?
生:每一次都是前面的2倍。
师:请同学们猜想:对折20次有几层?怎样去列式?
生:20个2相乘。
师:写起来很麻烦,既浪费时间又浪费空间,有没有简单记法?
简记:……。
师:请同学们总结对折n次有几层?可以简记为什么?
2×2×2×2……×2。
shapemergeformat。
n个2。
生:可简记为:
师:猜想:生:
师:怎样读呢?生:读作的次方。
的因数),叫做指数(相同因数的个数)。
注意:乘方是一种运算,幂是乘方运算的结果。看作是的次方的结果时,也可读作的次幂。
数学教案-有理数的乘方篇十二
(1)正确理解乘方、幂、指数、底数等概念。
通过对乘方意义的理解,培养学生观察比较、分析、归纳概括的能力,渗透转化思想。
培养探索精神,体验小组交流、合作学习的重要性。
教学重、难点与关键。
1、重点:正确理解乘方的意义,掌握乘方运算法则。
2、难点:正确理解乘方、底数、指数的概念,并合理运算。
3、关键:弄清底数、指数、幂等概念,注意区别-an与(-a)n的意义。
1、几个不等于零的有理数相乘,积的符号是怎样确定的?
几个不等于零的有理数相乘,积的符号由负因数的个数确定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正。
2、正方形的边长为2,则面积是多少?棱长为2的正方体,则体积为多少?
边长为a的正方形的面积是aa,棱长为a的正方体的体积是aaa.
aa简记作a2,读作a的平方(或二次方)。
aaa简记作a3,读作a的立方(或三次方)。
一般地,几个相同的因数a相乘,记作an.即aaa.这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an中,a叫底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。
数学教案-有理数的乘方篇十三
知识与技能:使学生理解并掌握有理数的乘方,幂,底数,指数的概念及意义;正确进行有理数的乘方运算。
过程与方法:经历探索乘方有关规律的过程,领会重要的数学建模思想,归纳思想,形成数感,符号感,发展抽象思维。
鼓励猜想,倡导参与,学会倾听,建立自信心。
学习重点:理解有理数乘方的意义和表示,会进行乘方运算。
学习难点:幂,底数,指数的概念及其表示。处理好负数的乘方运算。用乘方解决有关实际学习重点问题。
探究归纳法。
1求n个()的运算叫做乘方,乘方的结果叫做()。
2在式子an(n为正整数)中,()叫底数,()叫指数,()叫幂。
3负数的奇次幂是(),负数的偶次幂是(),正数的任何次幂(),0的任何次幂()。
1(--3)4表示的意义是(),,底数是(),指数是(),结果是()。
243的底数是()指数是(),表示的意义是(),结果等于()。
3计算0.0012=();(--?)=()。
4(--2)5读作();---25读作()。
师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。
鼓励学生将测量结果与邻近同学进行比较,找出共同点。
讲授新课。
找一两个学生表述其结论,表述是要注意纠正其语言的规范性。
动画演示:
师:这些性质里那些是矩形的性质?
[学生活动:寻找矩形性质。]。
动画演示:
师:同样在这些性质里寻找属于菱形的性质。
[学生活动;寻找菱形性质。]。
动画演示:
师:这说明正方形具有矩形和菱形的全部性质。
及时提出问题,引导学生进行思考。
师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?
[学生活动:积极思考,有同学做跃跃欲试状。]。
师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。
学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:
“有一组邻边相等的矩形叫做正方形。”
“有一个角是直角的菱形叫做正方形。”
“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”
师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。
1(--3)3=(),--52=()。
2立方等于8的数是(),平方等于16的数是()。
3一个数的平方等于这个数本身,此数为(),一个数的立方等于这个数本身,此数为(),一个数的平方等于这个数的立方,此数为()。
4(--3×5)2=();--(--2)4=()。
5(--1)2012=()。
6下列说法正确的是()。
c一个有理数的平方大于这个数。d一个有理数的平方大于这个数的相反数。
7把--(--?)(--?)(--?)(--?)写成乘方的形式是()。
8下列各对数中,值相等的是()。
9计算下列各题。
(1)(--?)3(2)--(--3)3(3)8×(--?)2。
(4)(--1)100×(--1)3(5)(--?)3×(--16)。
10阅读材料并解决问题。
你能比较两个数20112012和20122011的大小吗?
为了解决这个问题,先把问题一般化,即比较nn+1和(n+1)n(n为大于1的正数)的大小。然后从分析n=1,n=2,,n=3~~这些简单情况入手发现规律,猜想一般结论。
(1)计算比较。
(2)从上面各小题结果归纳,可以猜想什么结论?
(3)根据归纳猜想的结论比较20112012和20122011的大小。
数学教案-有理数的乘方篇十四
教学目标知识技能理解并掌握有理数的乘方、幂、底数、指数的概念及意义;能够正确进行有理数的乘方运算。
数学思考在生动的情境中让学生获得有理数乘方的初步经验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推广的过程,从中感受转化的数学思想。解决问题通过经历探索有理数乘方意义的过程,鼓励学生积极主动发现问题并解决问题。在解决问题的过程中,提高学生分析问题的能力,体会与他人合作交流的重要性。情感态度在经历发现问题,探索规律的过程中体会到数学学习的乐趣,从而培养学生学习数学的主动性和勇于探索的精神,通过故事让学生认识数学在现实生活中的重要性,增进学生学好数学的自信心。重点有理数的乘方、幂、底数、指数的概念及其相互间的关系;有理数乘方的运算方法。难点有理数的乘方、幂、底数、指数的概念及其相互间的关系的理解。
教学流程安排。
活动流程图活动内容和目的活动1复习与回顾。
活动2创设情境引入课题。
活动3学习乘方的有关概念。
活动4应用、巩固乘方的有关概念。
活动5探索幂的符号法则。
活动7讲数学故事。
活动8小结与布置作业。
活动9思考题回顾小学学习过的一些概念,承上启下。
通过创设问题情境,吸引学生的注意力,唤起学生的好奇心,激发学生兴趣和主动学习的欲望,营造一个让学生主动思考、探索的氛围。
通过自主学习,合作学习,培养学生分析问题、解决问题的能力。
巩固有理数乘方的意义,让每一位学生体验学习数学的乐趣,找到自信。体会转化的数学思想。
把问题交给学生,培养学生观察、分析、归纳、概括的能力,体现学生的主体地位。
检验新知的掌握情况,把在幂的理解上容易错的题进行分析、比较,进一步巩固乘方的意义。
通过故事让学生认识数学在现实生活中的重要性,增进学生学好数学的自信心。
梳理知识,学生获得巩固和发展。
有利于学有余力的学生发展他们的数学才能。
教学过程设计。
问题与情境师生行为设计意图活动1。
问题。
1.边长为a的正方形的面积是多少?
2.棱长为a的正方体的体积是多少?
活动2。
出示细胞分裂示意图。
下图是细胞分裂示意图,当细胞分裂到第10次时,细胞的个数是多少?
shapemergeformat。
活动3。
问题1。
思考:
1.什么叫做乘方?
2.什么叫做幂?
3.什么叫做底数、指数?
问题2。
4.在中,底数a表示什么?指数n表示什么?就是几个几相乘?
活动4。
应用新知,巩固提高。
一、填空。
1.在中,15是__数,9是___数,读作_________。
2.的底数是__,指数是___,读作_________。
3.中,-6是___数,12是___数,读作________。
4.的底数是___,指数是__,读作_________。
5.7底数是______,指数是_____。
6.x底数是______,指数是_____。
二、把下列乘法式子写成乘方的形式。
1、2×2×2×2×2=_______。
2、(-1)×(-1)×(-1)×(-1)×(-1)×(-1)=______。
3、×××=_______。
三、把下列乘方写成乘法的形式.
1.=_________________。
2.=_________________。
3.=_________________。
活动5。
问题1。
与有何不同?
问题2。
计算。
(1)(2)(3)。
问题3。
计算:
(1)(2)。
(3)(4)。
(5)(6)。
(7)(8)。
(9)(10)。
你发现了什么规律?
活动6。
问题1。
目标检测。
(1)是___数(2)是___数。
(3)(4)。
(5)(6)。
(7)(8)。
(9)(10)。
(11)(12)。
问题2。
拓展训练。
你能完成下面的计算吗?试一试.
活动7。
问题。
棋盘上的学问。
古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这个大臣的一个要求。大臣说:“就在这个棋盘上放一些米粒吧。第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒、······一直到第64格。”“你真傻!就要这么一点米粒?!”国王哈哈大笑。大臣说:“就怕您的国库里没有这么多米!”
你认为国王的国库里有这么多米吗?
活动8。
小结反思:
1、通过本节课的学习,你有什么收获?你还有什么疑惑?
2、总结五种已学的运算及其结果?
布置作业:
1.教科书47页第1题。
2.收集生活中有关乘方运算的例子及趣闻故事。
数学教案-有理数的乘方篇十五
知识与技能:使学生理解并掌握有理数的乘方,幂,底数,指数的概念及意义;正确进行有理数的乘方运算。
过程与方法:经历探索乘方有关规律的过程,领会重要的数学建模思想,归纳思想,形成数感,符号感,发展抽象思维。
鼓励猜想,倡导参与,学会倾听,建立自信心。
学习重点:理解有理数乘方的意义和表示,会进行乘方运算。
学习难点:幂,底数,指数的概念及其表示。处理好负数的乘方运算。用乘方解决有关实际学习重点问题。
探究归纳法。
1、求n个的运算叫做乘方,乘方的结果叫做。
2、在式子an(n为正整数)中,叫底数,叫指数,叫幂。
3、负数的奇次幂是,负数的偶次幂是,正数的任何次幂,0的任何次幂。
知识点1:有关乘方的概念。
1、(-3)4表示的意义是,,底数是,指数是,结果是。
2、43的底数是指数是,表示的意义是,结果等于。
知识点2乘方的运算。
3、计算0.0012=;(-?)=。
4、(-2)5读作;-25读作。
师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。
鼓励学生将测量结果与邻近同学进行比较,找出共同点。
讲授新课。
找一两个学生表述其结论,表述是要注意纠正其语言的规范性。
动画演示:
师:这些性质里那些是矩形的性质?
[学生活动:寻找矩形性质。]。
动画演示:
师:同样在这些性质里寻找属于菱形的性质。
[学生活动;寻找菱形性质。]。
动画演示:
师:这说明正方形具有矩形和菱形的全部性质。
及时提出问题,引导学生进行思考。
[学生活动:积极思考,有同学做跃跃欲试状。]。
师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。
学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:
“有一组邻边相等的矩形叫做正方形。”
“有一个角是直角的菱形叫做正方形。”
“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”
师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。
数学教案-有理数的乘方篇十六
(1)正确理解乘方、幂、指数、底数等概念。
(3)培养探索精神,体验小组交流、合作学习的重要性。
【教学方法】。
讲授法、讨论法。
【教学重点】。
正确理解乘方的意义,掌握乘方运算法则。
【教学难点】。
正确理解乘方、底数、指数的概念,并合理运算。
【课前准备】。
教师准备教学用课件,学生预习。
【教学过程】。
【新课讲授】。
边长为a的正方形的面积是a·a,棱长为a的正方体的体积是a·a·a.
a·a简记作a2,读作a的平方(或二次方).
a·a·a简记作a3,读作a的立方(或三次方).
一般地,几个相同的因数a相乘,记作an.即a·a……a.这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an中,a叫底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。
例如,在94中,底数是9,指数是4,94读作9的4次方,或9的4次幂,它表示4个9相乘,即9×9×9×;又如(-2)4的底数是-2,指数是4,读作-2的4次方(或-2的4次幂),它表示(-2)×(-2)×(-2)×(-2).
(-2)3的底数是-2,指数是3,读作-2的3次幂,表示(-2)×(-2)×(-2),结果是-8;-23的底数是2,指数是3,读作2的3次幂的相反数,表示为-(2×2×2),结果是-8.
(-2)3与-23的意义不相同,其结果一样。
(-2)4的底数是-2,指数是4,读作-2的四次幂,表示。
(-2)×(-2)×(-2)×(-2),
结果是16;-24的底数是2,指数是4,读作2的4次幂的相反数,表示为。
-(2×2×2×2),其结果为-16.
(-2)4与-24的意义不同,其结果也不同。
()2的底数是,指数是2,读作的二次幂,表示×,结果是;表示32与5的商,即,结果是.
因此,当底数是负数或分数时,一定要用括号把底数括起来。
一个数可以看作这个数本身的一次方,例如5就是51,指数1通常省略不写。
因为an就是n个a相乘,所以可以利用有理数的乘方运算来进行有理数的乘方运算。
例1:计算:
(1)(-4)3;(2)(-2)4;(3)(-)5;。
(4)33;(5)24;(6)(-)2.
解:(1)(-4)3=(-4)×(-4)×(-4)=-64。
(2)(-2)4=(-2)×(-2)×(-2)×(-2)=16。
(3)(-)5=(-)×(-)×(-)×(-)×(-)=-。
数学教案-有理数的乘方篇十七
学习目标:。
3、经历探索有理数乘方的运算,获得解决问题经验.
学习难点:幂、底数、指数的概念极其表示。
教学方法:观察、归纳、练习。
教学过程。
一、学前准备。
1、看下面的故事:从前,有个聪明的乞丐他要到了一块面包。他想,天天要饭太辛苦,如果我第一天吃这块面包的一半,第二天再吃剩余面包的一半,依次每天都吃前一天剩余面包的一半,这样下去,我就永远不要去要饭了!
请你们交流讨论,再算一算,如果把整块面包看成整体1,那第十天他将吃到面包.
2、拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复多次,就能把这根很粗的面条,拉成许多很细的面条.想想看,捏合次后,就可以拉出32根面条.
二、合作探究。
1、分小组合作学习p41页内容,然后再完成好下面的问题。
1)叫乘方,叫做幂,在式子an中,a叫做,n叫做.
2)式子an表示的意义是。
3)从运算上看式子an,可以读作,从结果上看式子an,可以读作.
数学教案-有理数的乘方篇十八
(3),,.。
师:哪位同学能用乘方的一般式说明这个问题呢?
生:的底数是,表示个相乘,是的相反数,这就是与的区别.。
师:引导学生观察(3)题,与两者从意义上截然不同:
(三)变式训练,培养能力。
(出示投影4)。
计算:
(1),,,,;
(2),,,;
(3),,,.。
(四)课堂小结。
师:今天我们一起学习了有理数的乘方.有理数的乘方运算可以利用有理数的.乘法运算来进行.乘方与乘法有联系也有区别:联系是乘方本质是乘法,区别是乘方中积的因数要相同.为了更好地理解这一点,我们看下面的对比:
(出示投影5)。
作乘法运算看作乘方运算看。
2×2×2=8。
因数是2底数是2。
因数的个数为3指数是3。
积是8幂是8。
(五)思考题。
(出示投影6)。
2.已知,则.。
3.计算.。
八、随堂练习。
1.判断题。
(1)中底数是,指数是2()。
(3)()。
(4)()。
(5)()。
(6)若,则()。
(7)当时,()。
(8)平方等于本身的数是0和1()。
2.填空题。
(3)若且,则;
(4)若,则,,;
九、布置作业。
课本第113页4、5.。
十、板书设计。
【本文地址:http://www.pourbars.com/zuowen/16639830.html】