整数和分数的教学设计(通用18篇)

格式:DOC 上传日期:2023-11-30 13:44:05
整数和分数的教学设计(通用18篇)
时间:2023-11-30 13:44:05 小编:梦幻泡

社会发展离不开传统文化的积淀和传承,怎样平衡传统文化与现代教育的关系是一个值得思考的问题。在总结中,要充分发挥自己的主观能动性,敢于创新和突破。这是一些分享的写作经验

整数和分数的教学设计篇一

教学目标:

1、使学生理解一个数除以分数的算理,掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算,并培养学生的推理归纳能力。

2、使学生在探索整数除以分数、分数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。

3、培养学生迁移、概括的能力。

教学重点:

掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算。

教学难点:

理解分数除法的意义,体会数学知识之间的内在联系。

教学准备:

展台。

教学过程:

一、创设情境,激趣导入。

谈话:同学们,你们喜欢布艺手工劳动吗,会做什么呀?看我们布艺小组同学做的书信袋,既环保又实用,多么有创意。

二、自主探索,获取新知。

1、说说你了解到的信息,能提出什么问题?学生找出信息,提出问题。

2、红点问题一:2米布可以做多少个小书信袋?引导学生自己观察。

师:要求2米布可以做多少个小书信袋,就是求2米里面有多少个1/5米。怎样列算式?

师:这个算式表示的意义就是:2里面有几个1/5。

小组讨论,如何计算呢?引导学生用线段图帮助理解。师展示分析过程。“1”里面有5个1/5,2里面就有(2×5)个。也就是10个1/5。也就是2÷1/5=2×5=10(个)。所以结果等于10。

师:那么,5和1/5有什么关系呢?

4、红点问题二:2米布能做几个大书信袋?小组讨论交流,得出结果。2÷2/5=2×5/2=5(个)。

从而我们也可以得出:2除以2/5也就是2乘2/5的倒数。

5、绿点问题。

让学生独立解决,集体交流算式的意义和算法。

小组讨论,归纳总结:一个数除以分数,等于这个数乘分数的倒数。

三、自主练习。

1、自主练习第1题。

练习时,要培养学生认真仔细的学习习惯。教师可适当补充类似的练习,以逐步提高学生的计算水平。

2、自主练习第2题。

让学生独立做在练习本上,然后集体订正。练习时,要让学生解答完第1小题后,讨论数量关系,在明确“燃烧总量除以时间等于每小时的燃烧量”的基础上,再来解答第2小题。这样便于学生通过练习,全面巩固知识。

四、全课小结。

1、今天我们学习了什么新知识?

2、一个数除以分数的计算法则是什么?

3、计算一个数除以分数应注意什么?

整数和分数的教学设计篇二

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。

一、设疑激趣。

(一)下面各题怎样列式?你是怎样想的?

5个12是多少?10个23是多少?25个70是多少?

(概括:整数乘法表示求几个相同加数的和的简便运算)。

(二)计算下面各题,说说怎样算?

++=++=。

说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。

同学之间交流想法:++===。

×3这个算式表示什么?为什么可以这样计算?

教师板书:++=×3=。

为什么只把分子与整数相乘,分母10不和3相乘?

二、提出问题。

(一)出示例1小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

1、读题,说说块是什么意思?

2、根据已有的知识经验,自己列式计算。

三、解决问题。

(一)学生汇报,并说一说你是怎样想的?

方法1:++===(块)。

方法2:×3=++====(块)。

(二)比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的。

区别:一种方法是加法,另一种方法是乘法。

教师板书:++=×3。

(三)为什么可以用乘法计算?

加法表示3个相加,因为加数相同,写成乘法更简便。

(四)×3表示什么?怎样计算?

表示3个的和是多少?

++====,用分子2乘3的积做分子,分母不变。

(五)提示:为计算方便,能约分的要先约分,然后再乘。

四、归纳、概括:

(一)结合=×3=和++=×3=,说明分数乘整数的意义与整数乘法的意义相同,都是表示求几个相同加数的和的简便运算。

(二)分数乘整数计算方法:用分子和整数相乘的积做分子,分母不变。能约分的先约分。

五、拓展应用。

(一)基本练习。

1、改写算式。

+++=()×()。

+++++++=()×()。

2、只列式不计算:3个是多少?5个是多少?

3、计算(说一说怎样算)。

×4×6×21×4×8。

思考:为什么先约分再相乘比较简便?

(二)综合练习。

应用题。

(三)拓展练习。

1、一条路,每天修千米,4天修多少千米?

2、一条路,每天修全路的,4天修全路的几分之几?

六、板书设计。

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

例1、小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

用加法算:++===(块)。

用乘法算:×3=++====(块)。

答:3人一共吃了块。

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

整数和分数的教学设计篇三

在教学工作者开展教学活动前,总归要编写教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。那么优秀的教学设计是什么样的呢?以下是小编帮大家整理的关于《分数乘整数》教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。

(一)下面各题怎样列式?你是怎样想的?

5个12是多少?10个23是多少?25个70是多少?

(概括:整数乘法表示求几个相同加数的和的简便运算)。

(二)计算下面各题,说说怎样算?

++=++=。

说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。

同学之间交流想法:++===。

×3这个算式表示什么?为什么可以这样计算?

教师板书:++=×3=。

为什么只把分子与整数相乘,分母10不和3相乘?

(一)出示例1小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

1、读题,说说块是什么意思?

2、根据已有的知识经验,自己列式计算。

(一)学生汇报,并说一说你是怎样想的?

方法1:++===(块)。

方法2:×3=++====(块)。

(二)比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的。

区别:一种方法是加法,另一种方法是乘法。

教师板书:++=×3。

(三)为什么可以用乘法计算?

加法表示3个相加,因为加数相同,写成乘法更简便。

(四)×3表示什么?怎样计算?

表示3个的和是多少?

++====,用分子2乘3的积做分子,分母不变。

(五)提示:为计算方便,能约分的要先约分,然后再乘。

(一)结合=×3=和++=×3=,说明分数乘整数的意义与整数乘法的意义相同,都是表示求几个相同加数的和的简便运算。

(二)分数乘整数计算方法:用分子和整数相乘的积做分子,分母不变。能约分的先约分。

(一)基本练习。

1、改写算式。

+++=()×()。

+++++++=()×()。

2、只列式不计算:3个是多少?5个是多少?

3、计算(说一说怎样算)。

×4×6×2×14×8。

思考:为什么先约分再相乘比较简便?

(二)综合练习。

应用题。

(三)拓展练习。

1、一条路,每天修千米,4天修多少千米?

2、一条路,每天修全路的,4天修全路的几分之几?

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

例1、小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

用加法算:++===(块)。

用乘法算:×3=++====(块)。

答:3人一共吃了块。

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

整数和分数的教学设计篇四

这是一节由我校苏谊青老师执教的课,该教师一向教学基本功扎实,要求严格,是我们学习的榜样。

这是一节计算课,难点是把假分数化成带分数时,哪个数充当整数?哪个数充当分母?哪个数充当分子?其中学生最容易搞错的就是将分子、分母掉转。在教学的过程中,教师通过说理、示范、让学生说一说等,不厌其烦地引导学生进行思考、练习。教师设计的练习量充足且类型丰富,学生在整节课的学习中,从不懂到懂都是该教师手把手的'教学成果。

教师的教学设计由浅入深、环环相扣,使我受益非浅。以下是我在本节课中最欣赏的亮点:

1、板书设计形象具体、一目了然、有启发性。

2、教师的语言精辟、简练,有一针见血的功效。

3、练习精而活,让学生耳目一新。

4、能提问不同层次的学生,可以及时了解学生对知识点的掌握情况。

总的来说,苏老师的课上得十分好,是我们教学者学习的榜样,希望通过学习她的教学方式、方法使我们的教学水平能更上一层楼,使学生喜欢每一节数学课,期待上每一节数学课。

整数和分数的教学设计篇五

学习目标:

1.初步理解分数乘法与除法之间的联系。

教学重点:

教学难点:

一.创设情景导入。

前几天老师在商场买了3包饼干,每包重100克,你们能提出一些问题吗?…3包饼干一共重多少克?100?3=300(克)根据它改编成2道整数除法算式及问题300÷3=100(克)300÷100=3(包)。

小结:除法就是已知两个因数的积与其中一个因数,求另一个因数的运算。

二.引入新课。

如果把整数改成分数,上面的题又该怎样计算?100×3=3/10(千克)3/10÷3=1/10(千克)3/10÷1/10=3(包)。

通过对比,它们都是已知两个因数的积与其中一个因数,求另一个因数,分数除法的意义与整数除法相同,都是乘法的逆运算。

改写两道除法算式:12×1/215×1/3。

三.出示学习目标:

1.初步理解分数乘法与除法之间的联系。

四.自主学习,合作探究。

现在老师手中有4/5升的果汁,现在要把这杯果汁平均分成2份,每份是多少升?画一画,算一算学生展示计算成果:4/5÷2=4÷2/5=2/5(升)4/5÷2=4/5×1/2=2/5(升)。

通过比较算式,你能发现什么规律?

分数除以整数(0除外),可以用分子除以这个整数,分母不变。也可以乘以这个数的倒数。

如果把果汁平分成3份,又该怎样计算?让学生通过比较发现:第二种方法简单通用。

五.质疑再探。

你还有什么不明白的地方吗?共同探讨六.课堂检测。

练习:用你发现的规律计算下面各题。4/5÷3=。

2/9÷2=。

1/3÷4=。

小结:通过这节课的学习,你有什么收获?分数除以整数的计算方法是怎样的?

整数和分数的教学设计篇六

《假分数化成整数或带分数》是人教版小学数学五年级(下册)第四单元中的内容。本节内容安排了一个例题两小题。这部分内容是在学生掌握了假分数的意义后,进一步学习把假分数化成整数或带分数,有利于以后进行分数计算打下坚实的基础。

(二)教学目标。

根据教材编排特点,我确定以下教学目标:

1、知道带分数是假分数,是整数与真分数合成的数。

3、使学生经历假分数化成整数或带分数的探索过程,进一步发展数感。

4、培养良好的学习习惯,树立学好数学的信心。

(三)教学重、难点。

整数和分数的教学设计篇七

本节内容是在学生掌握了分数乘法和分数除以整数的计算方法基础上继续探索一个数除以分数的计算方法。例2结合整数除法的问题,“每人吃2个,可以分给几人?”激活学生对除法数量关系的回忆,并用这个数量关系列出求吃每人吃1/2个、1/3个、1/4个,可以分给几人的算式,然后通过观察、操作探索出一个数除以几分之一就等于这个数乘以几分之一的`倒数。例3是对一个数除以几分之一方法的拓展。通过在条形图上分一分,让学生直接得到4÷的结果,再利用例2得到的方法算一算,发现结果是相同的。最后,通过对两个例题的比较,归纳出整数除以分数的方法。练一练和练习十一的5——8主要是让学生巩固新学的计算方法,并与分数乘法和前一节课分数除以整数的方法作对比,沟通新旧知识的联系,形成较完整的知识体系。学生学习整数除以分数后,部分中下生出现了这样的问题:

(1)把被除数的整数写成的倒数;

(2)把被除数的整数和除数的分数都写成了倒数。严重受到负迁移影响。在教学中如何克服呢?首先要让学生明确算理:整数除以分数,等于整数乘以这个分数的倒数,实质上是被除数除以除数等于被除数乘以除数的倒数。其次,要加强比较训练:整数除以分数、分数除以整数的题目进行分组练习,以强化加深理解整数除以分数的算理。

将本文的word文档下载到电脑,方便收藏和打印。

整数和分数的教学设计篇八

1、让学生在已有的分数加法的基础上,通过小组合作,自主探究建构,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

2、让学生在合作学习、汇报展示、互动交流中,体验学习带来的喜悦,培养学生的学科兴趣和学习能力。

一、创设情境,提出学习目标。

1、创设情境:同学们,谁敢与老师比一比,看谁列式列得比较快?

比赛题目为:3个3/10相加的和是多少?6个3/10相加的和是多少?

师:同学们的表现真是太棒了?这节课我们就一起来研究有关《分数乘整数》的数学问题?

2、提出学习目标。

让学生先说一说,再出示学习目标:

二、展示学习成果。

1、小组内个人展示。

学生独立自学课本8—9页例1、例2,完成“做一做”(教师相机进行指导,收集学生的学习信息,重在让学生展示不同的思维方法和错例,特别是引导小组内学生之间的交流与探讨)。

2、全班展示。

(1)算法展示。

生1:利用乘法与加法的关系进行计算。

2/15×4=2/15+2/15+2/15+2/15=8/15。

生2:先计算出结果,再进行约分。

5/12×8=5×8/12=40/12=10/3=。

生3:在计算过程中能约分的先约分,再计算。

2×3/4=3/22与4先约分,再计算。

(2)比较三种计算方法,选择最优算法。

通过对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。

(3)错例展示:

错例1:学生把整数与分子进行约分。错例2:学生没把计算结果约成最简分数。

3、学生质疑问难,激发知识冲突。

(1)针对同学的展示,学生自由质疑问难。

分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变;能约分的先约分,再计算。

三、拓展知识外延。

1、完成课本12页练习二第1、2题。

2、生活中的数学。

(1)一个正方形的边长是4/3dm,它的周长是多少dm?

四、总结反思,激励评价。

五、布置作业:

1、列式计算。

(1)3个2/5是多少?

(2)7/12的6倍是多少?

(3)5/14扩大7倍以后是多少?

(4)3/16与24的积是多少。

2、智力冲浪:用12个边长都是dm的'正方形硬纸板可以拼成多少种形状不同的长方形?它们周长分别是多少?(a类同学做)。

整数和分数的教学设计篇九

教学过程:

1、5个12是多少?

用加法算:12+12+12+12+12。

用乘法算:12×5。

问:12×5算式的意义是什么?被乘数和乘数各表示什么?

2、计算:

问:有什么特点?应该怎样计算?

3、小结:

(1)整数乘法的意义,就是求几个相同加数的和的简便运算。被乘数表示相同的加数,乘数表示相同的加数的.个数。

(2)同分母分数加法计算法则是分子相加作分子,分母不变。

教学例1。

出示例1:小新爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

用加法算:(块)。

用乘法算:(块)。

问:这里为什么用乘法?乘数表示什么意思?

得出:分数乘以整数的意义与整数乘法的意义相同,都是求几个相同的和的简便运算。学生齐读一遍。

练习:说一说下面式子各表示什么意思?(做一做第3题。)。

问:那么分数乘以整数方法应该是怎样算?(通过观察例1,得出分数乘以整数的计算法则。)。

1、第2页做一做。

2、练习。

整数和分数的教学设计篇十

教学重点。

教学难点。

教学过程。

一、设疑激趣。

(一)下面各题怎样列式?你是怎样想的?

5个12是多少?10个23是多少?25个70是多少?

(概括:整数乘法表示求几个相同加数的和的简便运算)。

(二)计算下面各题,说说怎样算?

++=++=。

同学之间交流想法:++==33=。

3这个算式表示什么?为什么可以这样计算?

教师板书:++=3=。

二、自主探索。

(一)出示例1。

小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

1.读题,说说块是什么意思?

2.根据已有的知识经验,自己列式计算。

三、交流、质疑。

(一)学生汇报,并说一说你是怎样想的?

方法1:++===(块)。

方法2:3=++====(块)。

(二)比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的.。

区别:一种方法是加法,另一种方法是乘法.。

教师板书:++=3。

(三)为什么可以用乘法计算?

加法表示3个相加,因为加数相同,写成乘法更简便.。

(四)3表示什么?怎样计算?

表示3个的和是多少?

++====,用分子2乘3的积做分子,分母不变.。

(五)提示:为计算方便,能约分的要先约分,然后再乘.。

四、归纳、概括:

(一)结合=3=和++=3=,说一说一个分数乘整数表示什么?

求几个相同加数的和的简便运算.。

用分子和分母相乘的积做分子,分母不变。

五、巩固、发展。

(一)巩固意义。

1.改写算式。

+++=()()。

+++++++=()()。

2.只列式不计算:3个是多少?5个是多少?

(二)巩固法则。

1.计算(说一说怎样算)。

462148。

思考:为什么先约分再相乘比较简便?

2.应用题。

(三)对比练习。

1.一条路,每天修千米,4天修多少千米?

2.一条路,每天修全路的,4天修全路的几分之几?

六、课后作业。

(一)的3倍是多少?的10倍是多少?

(二)一个正方形的边长是米,它的周长是多少米?

(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.。

例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

用加法算:++===(块)。

用乘法算:3=++====(块)。

答:3人一共吃了块.。

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.。

整数和分数的教学设计篇十一

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。

教学重点。

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。

教学难点。

教学过程。

一、设疑激趣。

(一)下面各题怎样列式?你是怎样想的?

5个12是多少?10个23是多少?25个70是多少?

(概括:整数乘法表示求几个相同加数的和的简便运算)。

(二)计算下面各题,说说怎样算?

++=++=。

说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。

同学之间交流想法:++===。

×3这个算式表示什么?为什么可以这样计算?

教师板书:++=×3=。

为什么只把分子与整数相乘,分母10不和3相乘?

二、提出问题。

(一)出示例1小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

1、读题,说说块是什么意思?

2、根据已有的知识经验,自己列式计算。

三、解决问题。

(一)学生汇报,并说一说你是怎样想的?

方法1:++===(块)。

方法2:×3=++====(块)。

(二)比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的。

区别:一种方法是加法,另一种方法是乘法。

教师板书:++=×3。

(三)为什么可以用乘法计算?

加法表示3个相加,因为加数相同,写成乘法更简便。

(四)×3表示什么?怎样计算?

表示3个的和是多少?

++====,用分子2乘3的积做分子,分母不变。

(五)提示:为计算方便,能约分的要先约分,然后再乘。

四、归纳、概括:

(一)结合=×3=和++=×3=,说明分数乘整数的意义与整数乘法的意义相同,都是表示求几个相同加数的和的简便运算。

(二)分数乘整数计算方法:用分子和整数相乘的积做分子,分母不变。能约分的先约分。

五、拓展应用。

(一)基本练习。

1、改写算式。

+++=()×()。

+++++++=()×()。

2、只列式不计算:3个是多少?5个是多少?

3、计算(说一说怎样算)。

×4×6×21×4×8。

思考:为什么先约分再相乘比较简便?

(二)综合练习。

应用题。

(三)拓展练习。

1、一条路,每天修千米,4天修多少千米?

2、一条路,每天修全路的,4天修全路的几分之几?

整数和分数的教学设计篇十二

教学内容:苏教版小学数学第十一册。

教学过程:

课前谈话:

课前活动:帮助学生回顾整数的意义。

师:你是怎么知道的?你会列式吗?

板书:2+22×2。

师:如果响五次呢?多少响呢?怎么算的?

你说呢;好,你也想说。

板书:2+2+2+2+2(几个啦?)2×5。

好接着看,小明统计了一下有100次。

多少响呢?

生:200响。

师:200响。你是怎么算的呢?

生:2×100。

师:可以用加法吗?

生:可以。

生:不可以。

师:奥,是可以的,知识太麻烦了。

好,请同学们看黑板:

二年级的时候,我们就知道:求几个相同加数的和可以用乘法,比较简便。

一、创设情景,教学例1。

师:课前老师和同学们聊到国庆节,国庆节快到了,我们市一小也举行了一系列有意义的活动。

出示图片:瞧!手工组的同学在制作小红花,用来装饰礼品。

大家看漂亮吗?

生:漂亮!

师:想知道他们是怎么做的吗?这些漂亮的红花都是用绸带做的!

他们手里的材料都是1米长的绸带。

而做一朵绸花只需要用米绸带。

请同学们思考:这是1米的绸带,那么米有多长、该如何表示呢?

谁来说说看?

慢慢。

(出示条件,图画)。

生:把一米平均分成10份,这样的3份就是米。

(两个生说)。

师:大家同意吗?说的真好!

请同学们看:

1米长的绸带平均分成10份,做一朵绸花需要这样的3份,就是米。

你看明白了吗?

师:小芳计划做3朵这样的绸花。

请同学们先估计一下这根1米长的够不够?

生:够。

师:你是怎么想的?

生:方法1。

生:方法2。

好,你说!有道理!

师:估的方法有很多种。

同学们的估算能力真不错!

师:刚才同学们说:做一朵绸花要这样的3份,那么3朵在图上该如何表示呢?

(课件同时出示)。

师:小芳做3朵绸花到底要多少米绸带?

看了刚才大屏幕上的演示,你会列出算式吗?

还可以怎样列式?

×3还可以怎么列?

学生列式:

×3(3×)。

++。

师:同学们一下列了3个算式计算这道题,都行吗?

生:行。

师:说说你的想法。

生:

生:

师:奥,当加数都相同的时候,加法可以写成乘法。也就是这里的×3,表示3个相加的和。

师:这三个式子,你会计算哪一个?

师:奥,你说的是乘法,你已经预习过了。

恩,加法,不错!

(生会乘法,表扬其已预习,点下一个)。

(生会加法,细说)。

师:

好的,你来说说看,你是怎么做的?

(生说同时板书、教师口复)。

老师想,你能把过程说详细些吗?

板书:++==(米)。

同分母分数相加,分母不变,分子相加。

师:同学们同分母分数加法学得真好!

师:我们一起来观察一下它们的分子部分,9、你是怎么得来的呢?

生:9=3+3+3;

师:是啊!3个3相加,也可以写成……。

(3×3)。

师:(米)。

师:这里的分母10表示把1米平均分成10分,每朵3份,3朵共3×3、9份,就是(米)。

师:刚才我们计算了加法。那这两个乘法又该如何计算呢?

现在请同学们打开课本到38页,自学这一部分内容;

师:好,看明白了吗?

生:明白了。

师:谁来说说×3是怎么计算的呢?

生:×3=++===(米)。

师:为什么可以相等呢?

生:×3就表示3个相加。

师:很好,刚学的知识就会运用了。

×3就表示3个相加的和。

师:请同学们一起看大屏幕,(课件出示:×3=++===(米))。

刚才我们是借助分数连加的过程解决的×3。我们以后在计算的时候中间的.连加过程可以省略不写,直接用乘法来做。

(将黑板上的过程部分用黄粉笔虚线框出)。

(课件出示:×3==(米))。

师:(指大屏幕)写成×3==。

师:这里的分母10表示什么?

3×3呢?

生:

师:那么3×怎么计算呢?大家一起算一算?

生:

师:谁来说一说你是怎么算的?

生说老师板演。

师:你们是这样做的吗?

生:是的。

师:同学们学的真快!

(二)尝试解决,优化方法、总结。

师:刚才小芳做了3朵,现在小华做5朵这样的绸花,一共用几分之几米绸带?怎样列式?自己试一试。

生:×5。

师:你能说说你这样列式的理由吗?

生:做一朵绸花要米,5朵就是5个米相加,可以用乘法×5表示。

师:是啊!5个相加也就是×5。

师:×5还可以写成5×;

师:你会计算吗?大家一起来算算看;

生做练习题;

师:(夸)这位同学写的很工整;

你真仔细;

这个小组的同学都很认真;

师找两例学生板演;

展示两种不同的写法:5×==和5×===;

书写规范;

师:(甲)我想请你做回小老师,给大家讲一讲,你是怎么计算的?

师:(乙)这位同学请你先等一下;

生:(……)。

师:(……)。

这里的分母不变,10就是把1平均分成了10分。

5乘3呢?

一朵是3份,5朵就是5乘3,15份;

最后要化成最简分数。

你还有没有要特别提醒大家的?

生:(……)。

师:(先约分;)。

这位同学是先约分,再乘,而且书写认真,谢谢你做了个好好的示范。

师:你们都做对了吗?

师:好请同学们看一下电脑的演示:

书写规范,约分。

计算结果要写成最简分数;

约分时请同学们注意:写的工整一些,约下来的结果要写在原来数字的上面、或下面。

师:我们也可以这样算:

先约分再计算;

使的过程很简洁,不容易出错。

师:好,这两到应用题都解答完了,还有一个答。

师:今天我们学习的乘法跟以前的有什么不一样?

生:有分数。

师:这就是我们今天学习的分数与整数相乘。

出示课题:分数与整数相乘。

请仔细观察,屏幕上的分数乘整数,他们到底是怎么乘的?

请同学们分组讨论一下。

(讨论)。

(巡查)。

师:谁来汇报你们小组的结果?

(老师帮忙总结)。

师:(学生说,看例子;)。

师:听了同学们的汇报,李老师把分数乘整数的方法概括了一下,来看大屏幕:

(计算法则)。

齐读;

二、运用方法,巩固练习。

师:学习了新知识,我们来练一练。

读题,理解题意。

师:请同学们在自己的作业纸上做一做。

(生做,师巡查)。

师:都完成了吗?我们请几个同学上来展示一下。

师:就是几格?

生:3格。

师:4个,你是怎样涂的呢?

师:说说你是怎么算的?

生:也就是;

师:你列的算式也很规范。好样的!

(提示能约分的要先约分。)。

师:下面我们来一个小小的比赛,看谁计算规范,正确率高;

神算手;

出示题目;

师:我们一起来看一看正确的过程和结果,完全正确的请举手。

师:大部分同学达到了神算手水平,刚才老师收集了一些不准确或不规范的例子。

刚才老师收了几个同学的练习纸,他们有这样的几道题出了问题,我们一起来帮帮他们。

(附件)。

师生发现问题、解决问题;

师:在学习中我们要善于发现问题、并积极思考去解决他们,我们班同学在这一点上表现,老师很满意!

三、联系生活,提升认识。

生:中秋节。

师:对的。在这举国欢庆、合家团员的美好日子里。

我们市一小的同学计划到福利院去看望那里的老人,给那些爷爷、奶奶带去喜庆与欢乐。

你想一起去吗?

生:想!

师:先看看他们都做了哪些准备:

我们小组负责环境布置,需要准备一些小彩旗,长方形彩旗长2分米,宽分米。

我们小组准备的是月饼,与爷爷奶奶一起欢度节日,月饼礼盒12个,平均每盒重千克。包装这些月饼礼盒,平均每盒用装饰彩带米。

师:根据这些资料:你能提出那些问题。

伟大的科学家爱因斯坦曾经说过,提出问题比解决问题更重要!

请同学们发挥自己的聪明才智;

生:

1、一个彩旗的面积是多少平方分米?(你的这个问题有价值)。

2、这些礼品盒共用装饰彩带多少米?(你观察的很仔细)。

3、这些礼品盒共重多少千克?(这个问题比较实在)。

师:同学们按小组交流一下,我们一起来解决这些问题!逐个解决。

师:同学们,这一节课我们学习了新知识、运用新知识,非常了不起的是同学们能自己提出问题,并积极思考解决了他们。你们是真正的学习的小主人,是值得大家学习的好榜样!

整数和分数的教学设计篇十三

在折一折、涂一涂、算一算等活动中理解分数除以整数的实际意义;探索并理解分数除以整数的计算方法,能正确地进行计算。

(二)过程与方法。

结合具体的问题情境,经历分数除法计算方法的探究、推导过程,运用转化的思想领会计算方法的由来。

(三)情感态度和价值观。

在数学学习过程中培养分析能力、知识的迁移能力、推理能力。

二、教学重难点。

教学重点:探究并得出分数除以整数的计算方法,能比较熟练地进行计算。教学难点:对分数除以整数的算理的理解。

三、教学准备。

多媒体课件,折纸。

四、教学过程。

(一)引入操作情境,尝试计算教学教材第30页例1。

教师:把一张纸的平均分成2份,每份是这张纸的几分之几?

教师:你会列式吗?(启发学生列出算式。)。

教师:你会计算吗?请你试一试,然后在组内交流一下你的想法。预设结果:

1.把平均分成2份,就是把4个平均分成2份,1份就是2个,就是;用算式表示是:。

2.把平均分成2份,每份就是的,就是;用算式表示是:。

【设计意图】该阶段的学生已经有一定的自主探究能力,所以采用先让学生尝试的方法,有意识地唤醒学生对旧知的回忆,让学生从已有的知识经验入手,把自己和同伴的真实想法进行交流,充分体现学生的认知基础,有助于理解分数除以整数的算理。

(二)借助直观,实现沟通。

涂上阴影,然后再把阴影部分平均分成2份。)。

预设:学生可能会做出如下两种图示:

教师引导学生交流:这两种图示分别对应着上面哪种算法?指导学生阅读教材第30页,将“图”和“式”对照起来进行分析和说理。

结合图(1),引导学生说理:把x平均分成2份,就是把4个平均分成2份,1份就是2个,就是。

结合图(2),引导学生说理:把x平均分成2份,每份就是的,就是。

教师:同学们说得很好!把一个数平均分成几份,实际上就是求这个数的几分之一是多少。也就是说,分数除法和分数乘法有着密切的联系,分数除法可以转化为分数乘法来计算。

【设计意图】分数除法计算方法的探索与理解,历来是教学的一个难点。结合分数的意义和直观图来沟通分数除法和分数乘法的联系,是得出分数除以整数一般算法的关键步骤,也是理解算理的基础。根据小学生的思维特点,采用手脑并用、数形结合的策略,在教师的指导下进行有效的操作,有意识地将“图”和“式”对照起来进行分析和说理,帮助学生建立图形语言和数字语言的联系,有效地降低难点。通过操作,直观地体会分数除以整数的实际意义。在恰当的时机,引导学生进行文本阅读,整体感知算法的推导过程。

(三)体验冲突,发现一般规律。

教师:把一张纸的平均分成3份,每份是这张纸的几分之几呢?

请你折一折、画一画,自己看图写出计算结果。想一想,你会选择哪一种折法呢?

教师:你会用刚才的方法说明计算结果吗?

预设:通过前面的操作和交流,学生应该能领悟到分子不能被除数整除该选择哪种图示,并能说清:把平均分成3份,每份就是的,即。

教师引导学生折一折、画一画,或者根据教材第30页图示进行填空,写出计算结果。教师:通过刚才的折纸操作和上面的算式,你发现了什么规律?预设结果:

1.分数除以整数,如果分子能被除数整除,那么计算方法是分子除以除数的商作为分子,分母不变;如果分子不能被除数整除,那么转化为求这个数的几分之一来计算。

2.把一个数平均分成几份,就是求这个数的几分之一是多少,也就是都可以转化成乘法来计算,相比这种方法适用的范围更广。

教师:同学们说得很好!看来分数除法可以转化为以前我们学过的分数乘法来计算。

【设计意图】通过交流,诱导学生经历由特殊到一般的探索过程,从中悟出分数除以整数的算理:把一个数平均分成几份,就是求这个数的几分之一是多少。初步体会新旧知识之间、方法之间的转化与统一,比较自然地渗透转化的思想。

(四)应用规律,尝试练习。

教师:请你独立思考并完成教材第30页“做一做”。

【设计意图】对关键步骤进行针对性训练,使学生进一步理解分数除以整数的实际意义,即:把一个数平均分成几份,就是求这个数的几分之一。进一步体会把分数除法转化为乘法具有普适性。

(五)巩固练习,熟练算法。

1.教师:请你完成教材第34页练习七第。

1、2题。

先尝试独立填空,然后组织交流,让学生明白分数除法和分数乘法的互逆关系。

2.教师:请你完成教材第34页练习七第4题。

左边的三个算式的分子都是3的倍数,所以可以用分子除以3,也可以转化为乘法;右边一组的分子都不是3的倍数,只能用一般算法。通过进一步的比较和练习,体会算法的灵活性和一般方法的普适性。

3.教师:下面让我们一起来解决一个实际问题,请你完成教材第34页练习七第3题。

引导学生可以画图来验证自己的计算结果,也可转化为小数来验证自己的计算结果,培养学生的反思意识。

(六)全课总结,交流收获。

教师:今天我们共同学习了什么知识?你有什么收获?

整数和分数的教学设计篇十四

结合具体事例,经历自主解决问题、学习分数乘整数的计算方法的过程。

理解分数乘整数的计算方法,会计算分数乘整数的乘法。

体验用乘法解决连加问题的价值,激发学习新知识的愿望。

正确运用先约分,再相乘的方法进行计算。

一、复习铺垫。

1、让我们先来做几道口算题,你能直接口算出结果吗?

出示:

3/8+1/8=1/3+1/5=7+9=。

1/4+1/4+1/4=2/9+2/9=3+3+3+3+3+3=。

2、学生口答。

3、最后一题你是怎么口算的?还可以怎样口算?——引导学生说出用乘法3×5或5×3来计算。

4、师小结:是啊,求几个相同加数的和的简便运算可以用乘法。

质量问题。

教师口述问题,让学生用自己喜欢的方法解决。

交流学生计算的方法和结果。

2/5+2/5+2/52/5×3。

=2+2+2/5=2*3/5。

=6/5(千克)=6/5(千克)。

3、比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的。

区别:一种方法是加法,另一种方法是乘法。

教师板书:2/5+2/5+2/5=2/5×3。

为什么可以用乘法计算?

加法表示3个2/5相加,因为加数相同,写成乘法更简便.。

2/5×3表示什么?怎样计算?

表示3个2/5的和是多少?

6、提示:为计算方便,能约分的要先约分,然后再乘.。

三、归纳、概括:

分数乘整数,用分子和分母相乘的.积做分子,分母不变。

试一试。

让学生独立观察图并列式计算。交流时,说一说是怎样列式的,怎样算的。

练一练。

这节课的教学任务主要有两点,就是掌握分数乘整数的意义,以及掌握分数乘整数的计算法则,在整数乘法上,分数乘整数的意义学生比较易于掌握,我利用它的意义改写成,进而从,这一环节,我特别注重引导学生,观察板书,并及时给予提示,所以学生的分数乘整数的计算方法掌握得不错。但是不足的是,学生在约分时,有部分学生没有约分完,以后要不断训练学生约分的方法。

整数和分数的教学设计篇十五

人教版《义务教育课程标准实验教科书·数学》六年级上册第10页例3,第11页例4。

【理论依据】。

力。

【教材分析】。

《分数乘分数》属于数与代数领域,是六年级上册第二单元《分数乘法》的教学内容。本节课是本单元的第二节课,是学生在掌握分数与整数相乘的基础上进行的,由于分数乘分数的意义是分数乘整数意义的扩展,且计算算理较难理解,这部分内容是本节课教学的重点也是难点。教材第10页例3从实际问题引入,用工作粉刷墙壁的图创设问题情境,给出条件,提出问题。

从解决“几分之一与几分之一相乘”到“两。

个一般分数相乘”,力图让学生经历一个由浅入深、由易到难的探究过程。为突破重难点,教材用操作(涂色)的方法引导学生探索计算方法,让学生根据操作的过程与结果推导出计算方法,经历算理的推导过程。教材第11页例4从蜂鸟飞行的实际问题引入。通过计算,使学生明确分数乘分数计算也应该先约分再乘,这样计算比较简便,并掌握怎样先约分。教材接着提出“5分钟飞行多少千米?”的问题,这是分数乘整数的计算,前面已经学过,这里一方面把分数乘法的两种形式集中呈现,加强它们之间的对比与联系;另一方面提出分数和整数相乘怎样约分的问题,使学生知道分数的分母与整数可以直接约分。

【学生分析】。

(1)理解分数乘分数意义和算理。(3)掌握分数乘分数的计算方法。

(2)会用分数乘法的有关知识解决生活中的基本数学问题。

2、过程与方法。

3、情感、态度与价值。

(1)体验分数乘分数计算方法的探索性,经历知识生成的过程,激发学习数学的兴趣。

(2)体会数学知识间的内在联系,感受数学知识和方法的应用价值,提高学好数学的信心。

【教学重点】。

多媒体课件【学具准备】。

1张长10厘米,宽8厘米的长方形纸条。【教学过程】。

整数和分数的教学设计篇十六

(概括:整数乘法表示求几个相同加数的和的简便运算)。

(二)计算下面各题,说说怎样算?

++=++=。

同学之间交流想法:++==3××3=。

×3这个算式表示什么?为什么可以这样计算?

教师板书:++=×3=。

(一)出示例1小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

1.读题,说说块是什么意思?

2.根据已有的知识经验,自己列式计算。

(一)学生汇报,并说一说你是怎样想的?

方法1:++===(块)。

方法2:×3=++====(块)。

(二)比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的.。

区别:一种方法是加法,另一种方法是乘法.。

教师板书:++=×3。

(三)为什么可以用乘法计算?

加法表示3个相加,因为加数相同,写成乘法更简便.。

(四)×3表示什么?怎样计算?

表示3个的和是多少?

++====,用分子2乘3的积做分子,分母不变.。

(五)提示:为计算方便,能约分的要先约分,然后再乘.。

(一)结合=×3=和++=×3=,说一说一个分数乘整数表示什么?

求几个相同加数的和的简便运算.。

用分子和分母相乘的积做分子,分母不变。

(一)巩固意义。

1.改写算式。

+++=()×()。

+++++++=()×()。

2.只列式不计算:3个是多少?5个是多少?

(二)巩固法则。

1.计算(说一说怎样算)。

×4×6×21×4×8。

思考:为什么先约分再相乘比较简便?

2.应用题。

(三)对比练习。

1.一条路,每天修千米,4天修多少千米?

2.一条路,每天修全路的,4天修全路的几分之几?

(一)的3倍是多少?的10倍是多少?

(二)一个正方形的边长是米,它的周长是多少米?

(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.。

例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

用加法算:++===(块)。

用乘法算:×3=++====(块)。

答:3人一共吃了块.。

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.。

1、依据知识的迁移,进行很必要的铺垫,利用知识间的联系,精心设计复习题,为教学重点服务服务,使学生顺利掌握“分数乘整数的意义与整数乘法意义相同”。同时复习分数加法,为推导公式进行铺垫。

2、重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识的让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动,活泼,发挥小组的团结协作作用。

整数和分数的教学设计篇十七

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。

设疑激趣。

(一)下面各题怎样列式?你是怎样想的?

5个12是多少?10个23是多少?25个70是多少?

(概括:整数乘法表示求几个相同加数的和的简便运算)。

(二)计算下面各题,说说怎样算?

++=++=。

说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。

同学之间交流想法:++==3××3=。

×3这个算式表示什么?为什么可以这样计算?

教师板书:++=×3=。

1。读题,说说块是什么意思?

2。根据已有的知识经验,自己列式计算。

三、交流、质疑。

(一)学生汇报,并说一说你是怎样想的?

方法1:

方法2:

(二)比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的。

区别:一种方法是加法,另一种方法是乘法。

教师板书:

(三)为什么可以用乘法计算?

加法表示3个相加,因为加数相同,写成乘法更简便。

(四)×3表示什么?怎样计算?

表示3个的和是多少?

用分子2乘3的积做分子,分母不变。

(五)提示:为计算方便,能约分的要先约分,然后再乘。

四、归纳、概括:

(一)结合=×3=和++=×3=,说一说一个分数乘整数表示什么?

求几个相同加数的和的简便运算。

用分子和分母相乘的积做分子,分母不变。

五、巩固、发展。

(一)巩固意义。

1。改写算式。

2。只列式不计算:3个是多少?5个是多少?

(二)巩固法则。

1。计算(说一说怎样算)。

思考:为什么先约分再相乘比较简便?

2。应用题。

(三)对比练习。

1。一条路,每天修千米,4天修多少千米?

2。一条路,每天修全路的,4天修全路的几分之几?

六、课后作业。

(一)的3倍是多少?的10倍是多少?

(二)一个正方形的边长是米,它的`周长是多少米?

(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

例1。小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

用加法算:

用乘法算:

答:3人一共吃了块。

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

整数和分数的教学设计篇十八

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。

引导学生总结分数乘整数的计算法则。

一、设疑激趣。

(一)下面各题怎样列式?你是怎样想的?

5个12是多少?10个23是多少?25个70是多少?

(概括:整数乘法表示求几个相同加数的和的简便运算)。

(二)计算下面各题,说说怎样算?

++=++=。

说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。

同学之间交流想法:++==3××3=。

×3这个算式表示什么?为什么可以这样计算?

教师板书:++=×3=。

1、读题,说说块是什么意思?

2、根据已有的知识经验,自己列式计算。

三、交流、质疑。

(一)学生汇报,并说一说你是怎样想的?

方法1:

方法2:

(二)比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的。

区别:一种方法是加法,另一种方法是乘法。

教师板书:

(三)为什么可以用乘法计算?

加法表示3个相加,因为加数相同,写成乘法更简便。

(四)×3表示什么?怎样计算?

表示3个的和是多少?

用分子2乘3的积做分子,分母不变。

(五)提示:为计算方便,能约分的要先约分,然后再乘。

四、归纳、概括:

(一)结合=×3=和++=×3=,说一说一个分数乘整数表示什么?

求几个相同加数的和的简便运算。

(二)分数乘整数怎样计算?

用分子和分母相乘的积做分子,分母不变。

五、巩固、发展。

(一)巩固意义。

1、改写算式。

2、只列式不计算:3个是多少?5个是多少?

(二)巩固法则。

1、计算(说一说怎样算)。

思考:为什么先约分再相乘比较简便?

2、应用题。

(三)对比练习。

1、一条路,每天修千米,4天修多少千米?

2、一条路,每天修全路的,4天修全路的几分之几?

六、课后作业。

(一)的3倍是多少?的10倍是多少?

(二)一个正方形的边长是米,它的周长是多少米?

(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?

七、板书设计。

分数乘整数。

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

例1。小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

用加法算:

用乘法算:

答:3人一共吃了块。

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

【本文地址:http://www.pourbars.com/zuowen/16707474.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map