小学解方程教案(精选21篇)

格式:DOC 上传日期:2023-12-01 07:47:18
小学解方程教案(精选21篇)
时间:2023-12-01 07:47:18     小编:飞雪

教案可以使教师更加系统地组织教学,确保教学过程具有条理性和逻辑性。那么我们该如何编写一份优秀的教案呢?首先,我们需要对教学目标进行明确,确立学生需要掌握的知识、能力和情感目标。其次,针对教学内容,我们要进行科学的选择和安排,确保内容的系统性和连贯性。此外,在选择教学方法上,我们要根据学生的实际情况和教材特点灵活运用多种教学方法,以激发学生的学习兴趣和主动性。最后,在教学过程中,我们要注重引导学生思考,激发他们的创新思维和学习动力,促进他们的全面发展。以下是小编为大家收集的教案范文,仅供参考,大家一起来看看吧。

小学解方程教案篇一

一、创设情境。

1.(课件出示)学校买来个9足球,每个a元,买来b个篮球,每个58元。

2.让学生根据出示的信息,提出数学问题。

学生可能提出以下问题。

(1)9个足球多少钱?

(2)b个篮球多少钱?

(3)篮球的单价比足球的单价多多少钱?

(4)篮球和足球一共多少钱?

3.学生说出怎样表达这些问题的结果。(教师板书)。

4.引导学生观察黑板上的式子,看一看有什么特点?

二、系统整理。

1.提问:我们除了学过用字母标示数量关系外,还学过用字母表示什么?

(让学生以小组为单位,合作整理学过的运算定律和计算公式。)。

2.引导学生交流小组整理的结果。教师板书。

a+b=b+av=sh。

a+(b+c)=(a+b)+cv=abh。

a×b=b×cs=ab。

a×(b×c)=(a×b)×cs=ah。

a×(b+c)=a×b+a×c……。

运算定律计算公式。

3.在书写数字与这字母相乘、字母与字母相乘时,应注意什么?

完成84页上做一做的内容。

4.启发学生谈一谈,用字母表示数、表示数量关系有什么作用?

5.在用字母表示数的过程中,我们黙认“x”表示什么样的数?

6.让学生填空:含有未知数的等式叫做()。

求“x”值的过程叫做()。

7.让学生说说解方程的依据是什么?

8.学生解方程并订正结果。

9.通过列方程和解方程,可以解决很多生活中的实际问题。下面请同学们看屏幕。

11.学生独立解决问题,教师课堂巡视,了解学生解决问题情况。

12.班内交流结果。并让学生将解题过程演板。

13.谈一谈在用方程解决问题的过程中,应注意什么?

三、归纳小结。

1.让学生说一说这节课我们对哪项知识做了复习和整理?

2.师:有一部分同学在解题的过程中,不习惯用方程解,老师建议大家,为了更好的与中学接轨,要多尝试用方程解,而且你一定会领悟到方程得简明和方便。

四、实践应用。

1.完成85页练习十五的习题。

2.填空。

(1)小华每分钟跑a米,6分钟跑()米。

(2)三个连续的偶数,中间一个是m,另外两个是()和()。

(3)用字母表示三角形的面积计算公式是()。如果a=4厘米,b=3厘米,则三角形的面积是()。

(4)老王今年a岁,小林今年(a-18)岁,再过18年,他们相差()岁。

(5)一堆煤,有a吨,烧了6天。平均每天烧b吨,还剩()吨。

2、判断。

(1)含有未知数的式子叫方程。()。

(2)方程一定是等式,等式一定是方程。()。

(3)6x=0是方程。()。

(4)因为a×6可以写成a·6,所以7×6可以写成7·6。()。

3、下面的式子中,哪些是方程?

(1)5x(2)6x+1=6。

(3)15-3=12(4)4x+1。

4、解方程。

2x+9=27x-0.5=8+0.3x=14。

8x-3×9=3722.3x+11x=66.6x-x=12。

(要求学生以竞赛的形式进行计算)。

5、趣味数学城。

(1)、一只青蛙一张嘴,两只眼睛四条腿。

两只青蛙两张嘴,四只眼睛八条腿。

三只青蛙三张嘴,六只眼睛十二条腿。

四只青蛙四张嘴,八只眼睛十六条腿。

n只青蛙()张嘴,()只眼睛()条腿。

小学解方程教案篇二

教学例题(课件显示)玩下一项游乐项目,先去买票,票价6元,买两张,还剩38元,你知道这次妈妈又给了小明多少钱吗?想一想,这组信息中蕴含着怎样的关系呢?学生汇报。师肯定学生发言。下面,我们就用列方程的方法来解决这个问题吧!你们认为应该怎样做?学生猜想。师:现在,请同学们用自己找出的数量关系,根据刚才讨论的结果来列方程解决这个问题吧?。学生汇报,老师板书。归纳步骤.师:学到这,请同学们回顾并讨论一下,刚才我们用列方程的方法解题时经过了哪些步骤?学生充分讨论后汇报。师:看看数学专家是怎么归纳的呢?(出示投影)肯定学生,赞扬学生。

小学解方程教案篇三

一、教学目标:

1、结合具体情境,类比等式变形的过程抽象出等式的性质,了解等式性质是解方程的依据。

2、会用等式性质解形如x+5=12的简单方程。

3、培养观察、分析概括的能力。

二、课时安排:

1课时。

三、教学重点:

能用等式的性质解简单的方程。

四、教学难点:

了解等式的性质。

五、教学过程。

(一)导入新课。

(板书:大象的体重=石头的重量)。

师:曹冲之所以聪明,就在于他“运用了数量之间的等量关系来解决问题”的策略。今天我们也要用他这个策略解决以下问题。

检查预习。

(二)讲授新课。

探究一:学习等式性质。

1、师操作:在天平两侧各放一个5克砝码。

提问:你能用一个等式表示天两边关系吗?

提问:如果在天平一边加上一个砝码,天平会怎样?要是天平不平衡,怎么办?

提问:你还能用一个等式表示吗?

教师呈现其他天平直观图,鼓励学生观察并写出等式。

全班交流,

教师总结概括出等式性质。

等式两边都加上同一个数,等式仍然成立。

师操作在刚才的基础上一个一个减砝码。

提问:你能用等式来表示吗?

提问:如果在天平一边去掉一个砝码,天平会怎样?要是天平不平衡,怎么办?

提问:你还能用一个等式表示吗?

教师呈现其他天平直观图,鼓励学生观察并写出等式。

全班交流,

教师总结概括出等式性质。

等式两边都减去同一个数,等式仍然成立。

3、教师小结:我们刚才用天平演示的等式两边同时加上或者减去同一个数,等式仍然成立,这是等式的性质。这也是我们今天解方程的依据。

(三)重点精讲。

探究二:学习解方程。

师板书x+2=10问:用天平如何表示?

问:如何用刚才的知识解方程?(两边都减去2)。

1、师根据学生回答板书并画出天平图。

2、师在解题示范时要注重“解”和“等于号”的书写要求。

3、交代检验方法。

4、学生试着解方程。

y-7=1223+x=45。

组内交流收获和疑惑。

小组汇报。

教师总结板书:根据等式的性质解方程。

(五)随堂检测。

1、请你画图或举例说说下面这句话的意思:等式两边都加上(或减去)同一个数,等式仍然成立。

2、看图列方程,并解方程。

3、解方程。

(1)x–19=2。

(2)x-12.3=3.8。

4、看图列方程,并解方程。

5、看图列方程,并解方程。

6、看图列方程,并解方程。

板书设计。

x+5=7x-5=7。

解:x+5-5=7-5解:x-5+5=7+5。

x=2x=12。

等式的两边同时加上或者减去同一个数,等式仍然成立。

小学解方程教案篇四

教学目标:

(1)使学生理解方程概念,感受方程思想。

(2)经历从生活情景到方程模型的建构过程。

(3)培养学生观察、描述、分类、抽象、概括、应用等能力。

教学过程:

1.出示实物天平。

(实物天平比较小,用屏幕上的天平来模拟实验。)。

(说明两边的重量可能有三种不同的关系。)。

用式子描述重量之间的相等关系。

3.一场篮球比赛,红、蓝两队打得还挺激烈的,你能来描述两队的情况吗?

用式子表示两队比分的关系。

用式子来表示比分的三种关系。

4.创设四个情景。

(1)每个情景中数量之间有什么关系?

(2)你能用关系式清晰地来描述吗?

刚才我们对情景的描述得到了很多式子。

200+200=400182318+2318+2318+=23。

280100120425+=7022y+720=1050。

1.学生尝试第一次分类。

可能有几种不同的分法。

(1)看是否是等式。

(2)看是否含有未知数。

2.学生尝试第二次分类。

得到四组不同的式子。

3.描述每一组的特征。

4.引导概括方程概念。

含有未知数的等式叫方程。

1.演示动态平衡。有等量关系,能用方程表示。

2.出示情景(没有等量关系,不能用方程表示。)。

出示情景120元正好买2个玩具企鹅。(有等量关系,能用方程表示)。

3.通过今天这节课,你学到了什么呢?

1.周老师从无锡到徐州来上课。

(1)线段图。

(2)我乘火车从无锡站开出,每小时行千米,7小时到达徐州站。无锡站到徐州站的铁路长525千米。

(3)到了徐州站,我买了3枝圆珠笔,每枝元,付出20元,找回2元。

2.情景图。

本届奥运会上,中国台北队获得了枚金牌,中国队获得了32枚,日本队获得y枚。男孩说:中国台北队金牌数的16倍正好等于中国队的金牌数。女孩说:日本队的金牌数等于中国台北队的8倍。

3.开放题。

小芳集邮共260张,小明集邮共300张。怎样才能使两人的集邮张数一样多(用方程表示)。

方程的意义教学设计的说明。

在新课程背景下,学生概念的形成应具有更大的涵盖面、影响力和迁移性,由此通过自我理解、生成、连接,形成自己的知识系统。本课《方程的意义》的教学设计,基于对数学概念及概念教学的再把握,相对于传统的教学,有了比较大的变化。这是我们的尝试,也是一种思考和探索。

整体的把握:

数学概念不仅是局部的,而且是全局的;不仅是静态的,而且是动态的;不仅是学科的,而且是儿童的。所以对方程概念及其教学应从多个层面加以把握:

形式层面含有未知数的等式(是关系的一种)。这是一种静态的结论。

发现层面经历方程模式的生成过程,它来源于现实又回到现实,寻找等量关系并用方程来表示。这是一个动态的过程。

直观具体层面举出正例或反例。

直觉层面一种数学的意识、一种方程的感觉。

这样才能形成一个有力的认知结构(其中包含知识结构、方法结构和经验结构)。

目标的把握:

经历从现实问题到方程概念建立的过程,(方程是从现实生活到数学的一个提炼过程,一个用数学符号提炼现实生活中特定关系的过程。)体会方程是刻画现实世界的数学模型。

渗透方程思想的三个方面:设立未知量,将其当作已知数,参与到问题中事实的表达;建立等量关系,用方程表示(方程是说明两件事情是等价的);区别未知量与己知量,只要经过运算,就可用已知数表示未知量。

过程的把握:

统揽全局基础上的局部聚集,突出知识胚胎的生成。学生的认识不是线性发展的,而是整体式推进的。各个部分知识的拼装不可能产生真正意义上的有生命的知识,只有胚胎式的整体推进才能领略到知识生命的意蕴。所以概念教学须克服原有的分割式、部分式教学,突出知识胚胎的生成。传统教学注重从部分到整体,形成一个结构。现代教学应更重视从整体到部分再到整体,形成更有意义和活力的结构。

本课方程概念的教学,力图围绕目标形成一个包括知识技能、思维方式和方程思想的整体结构,在其后的教学中再对方程的各个部分进行深化,形成所谓同心圆结构的知识生成模型,这是儿童认识的规律,也许可以解决数学教学中知识太散的问题。

经历问题情景数学模型解释与应用的全过程。从问题情景数学模型展开数学化和结构化的过程。再从数学模型解释与应用展开结合现实寻找意义的过程。方程整体概念生成必须经历这样的过程,才能使目标的各个部分协调地组合在一起,产生一种数学的意识和方程的观念。

参考文献:

(2)林永伟、叶立军编著.《数学史与数学教育》第65页.方程产生历史的启示意义。

(3)《全日制义务教育数学课程标准(实验稿)》北京师范大学出版社。

小学解方程教案篇五

教师要使学生加深对方程及相关概念的认识,掌握解简易方程的步骤和方法,能正确地解简易方程。以下是小编整理的小学五年级数学解简易方程教案,希望可以提供给大家进行参考和借鉴。

教学目标:

1、使学生进一步认识用字母表示数及其作用,能正确地用含有字母的式子表示数量及数量关系、计算公式,培养学生抽象,概括的能力。

2、使学生加深对方程及相关概念的认识,掌握解简易方程的步骤和方法,能正确地解简易方程。

教学重点:

能够熟练地理解字母表示数,数量关系。

教学难点:

教学过程:

一、揭示课题。

我们在复习了整数、小数的概念,计算和应用题的基础上,今天要复习解简易方程,(板书课题)通过复习,要进一步明白字母可以表示数量、数量关系和计算公式,加深理解方程的概念,掌握解简易方程的步骤、方法,能正确地解简易方程。

二、复习用字母表示数。

1、用含有字母的式子表示。

(1)求路程的数量关系。

(2)乘法交换律。

(3)长方形的面积计算公式。

2、做“练一练”第1题。

让学生做在课本上。指名口答结果,老师板书,结合提问怎样求式子的值的。

3、做练习十四第1题。

指名学生口答。选择两道说说是怎样想的。

1、复习方程概念。

提问:什么是方程?你能举出方程的例子吗?(老师板书出方程的例子)这里用字母表示等式里的什么?指出:字母还可以表示等式里的未知数。含有未知数的等式就叫方程。(板书定义)。

2、做“练一练”第2题。

(1)做“练一练”第3题第一组题。

(2)做“练一练”第3题后两组题。

指名两人板演,其余学生分两组,分别做其中的一组题。集体订正,并让学生说说每组两题有什么不同,解方程的过程有什么不同。强调一定要先看清题,按运算顺序能先算的就先算出来,然后根据四则运算之间的关系求出方程的解。

(3)做“练一练”第4题。

让学生列出方程。指名口答方程,老师板书。提问列方程的等量关系是什么。

四、课堂小结。

今天复习了哪些知识?你进一步明确了什么内容?

五、布置作业。

课堂作业;完成“练一练”第4题解方程;练习十四第2题,第3题后三题,第4题。

家庭作业;练习十四第3题前三题、第5题。

教材内容:

教材简析:

本节课是在学生已经学过用字母表示数和数量关系,掌握了求未知数x的方法的基础上学习的。通过学习使学生理解方程的意义、方程的解和解方程等概念,掌握方程与等式之间的关系,掌握解方程的一般步骤,为今后学习列方程解应用题解决实际问题打下基础。

教学目标:

(1)使学生理解方程的意义、方程的解和解方程的概念,掌握方程与等式之间的关系。

(2)掌握解方程的一般步骤,会解简单的方程,培养学生检验的习惯,提高计算能力。

(3)结合教学,培养学生事实求是的学习态度,求真务实的科学精神,养成良好的学习习惯。渗透一一对应的数学思想。

教学重点:

理解方程的意义,掌握方程与等式之间的关系。

教具准备:

天平一只,算式卡片若干张,茶叶筒一只。

教学过程:

一、创设情境,自主体验。

本课以游戏导入,通过创设学生感兴趣的学习情境,以激趣为基点,激发学生强烈的求知欲望。让学生在操作、观察、交流等活动中感知平衡,自主体验,积累数学材料,为更好地引入新课,理解概念作铺垫。并且无论是生活中有趣的平衡现象,还是天平称东西的实际状态,都无不放射出科学的光芒,它们带给学生的不仅仅是兴趣的激发,知识的体验,更有潜在的科学态度和求真求实的精神。

二、突出重点,自主探索。

理解方程的意义,掌握方程与等式之间的关系是本课教学的重点,让学生通过列式观察,自主探索,分析比较,逐次分类,讨论举例等一系列活动去理解方程的意义,掌握方程与等式之间的关系。使学生把知识探究和能力培养溶为一体,锻炼了学生科学的思维方法,使学生学得主动,学得投入。同时层层深入的设疑和引导也渗透了教师对学生科学思维的鼓励和培养,使学生在探索与实践中不断亲历求知的过程,如剥茧抽丝般汲取知识的养分。

三、自学思考,获取新知。

在教学解方程和方程的解的概念时,通过出示两道自学思考题。

(1)什么叫方程的解?请举例说明。

(2)什么叫解方程?请举例说明。”改变了以示范、讲解为主的教学方式,让学生带着问题通过自学课本,将枯燥乏味的理论概念转化为具体的例子加以阐明,既培养了学生独立思考的能力,也解决了数学知识的抽象性与小学生思维依赖于直观这一矛盾。

正是基于以上考虑,在教学解方程的一般步骤和检验方法时,也采用了让学生通过自学来掌握检验的方法及规范书写格式。

四、使用交流,注重评价。

要探索知识的未知领域,合作学习不失为一条有效途径。新的教学理念使合作学习的意义更加广泛,有生生合作、师生合作等等。生生合作有助于相互验证、集思广益。师生合作体现在“师导”,尤其在学生思维受阻,关键知识点的领会上,在本课中,有多处让同桌互说互评互查的过程,合作的力量必将促使学生认知水平的提高,自评与互评相结合的评价方式也将更好的有利于学生端正学习态度,掌握科学的学习方法,促进良好的学习习惯的形成。

教材内容:

《解简易方程》是九年义务教育中六年制小学数学教材第九册第四单元第二节内容。

教材简析:

本节课的主要内容是方程的定义,方程的性质和利用方程性质解方程。

从知识结构上看:本节课是在学生学习了一定的算术知识(如整数,小数的四则运算及其应用),已初步接触了一些代数知识(如用字母表示数及其运算定律)的基础上,进一步学习的关键。本节课的内容又为后面学习解方程和列方程解应用题做准备。这为过渡到下节的学习起着铺垫作用。

从认知结构上看:本节课在初等代数中占有重要地位,中学生在学习代数的整个过程中,几乎都要接触这方面的知识,是教材中必不可少的组成部分,是一个非常重要的基础知识,所以它又是本章的重点内容之一。

教学目标:

(1)知识目标:根据等式的性质,使学生初步掌握解方程及检验的方法,并理解解方程及方程的解的概念。

(2)能力目标:培养学生的分析能力应用所学知识解决实际问题的能力,掌握解方程的一般步骤,会解简单的方程。

(3)情感目标:通过教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。帮助学生养成自觉检验的学习习惯,培养学生的分析能力和应用能力,渗透代数的数学思想和方法。

教学重点:

根据上面的分析不难看出《解简易方程》这节课在整个教材中将起到承上启下的作用,特别是利用方程性质解未知数,它是后续知识发展的起点,学生对未知数的理解对今后一元一次方程,一元二次方程的学习起着决定作用,另一方面,对于学生来说,弄清方程和等式的异同,正确设未知数,找出等量关系是很困难的所以我认为这节课的重点及难点是:理解方程的解和解方程的含义和掌握解方程的方法。

教学学情:

大部分学生对数学学习的积极性比较高,能从已有的知识和经验出发获取知识,抽象思维水平有了一定的发展。基础知识掌握牢固,具备了一定的学习数学的能力。在课堂上能积极主动地参与学习过程,具有观察、分析、自学、表达、操作、与人合作等一般能力,在小组合作中,同学之间会交流合作,自主探讨。但有个别学生基础知识差,上课不认真听讲,不能自觉的完成学习任务,需要老师督促并辅导。

教法学法:

在教学中,学生往往更习惯运用算术方法解题,这是因为他们之前长期用算术的思路思考问题,再学列方程时,往往会受到干扰。因此在教学中要注意过渡和对比,克服干扰,多让学生体会列方程解题的优越性。而在整节课的设计上,我想着重突出这么几点。

1、通过创设有效的情境串,激发学生兴趣,调动学生积极性,引发学生的数学思考,帮助学生突破重点、难点。根据题目中信息的叙述方式,通过顺向思考列出数量关系。由于是刚接触方程,列出文字性的数量关系对于学生正确地列出方程是很重要的。

2、坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。借助小组合作、自主探究等形式,因势利导、适时调控、努力营造师生互动、生动活泼的课堂氛围,实现预设的教学目标。

教学过程:

一、。复习铺垫。

(1)抛出问题。

师:同学们我们上节课学了方程的意义,你还记得什么叫方程吗?

(生:含有未知数的等式叫方程。)。

【设计意图】让学生回忆旧知识,巩固旧知识,引出方的解、解方程的定义。结合引导复习的方法,激发学生的学习兴趣。

(2)判断下面哪些是方程。

师:你能判断下面哪些是方程吗?

(1)a+24=73(2)4x36+17(3)234÷a12。

(4)72=x+16(5)x+85(6)25÷y=0.6。

(生:1、4、6是方程。)。

师:说说你的理由?

(生:它含有未知数,而且是等式)。

【设计意图】在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式教法,课堂讨论法。巩固方程的性质,承接后面利用方程的性质解方程的应用。

二、探究新知。

1、方程的解和解方程。

(1)看图写方程。

师:说的真好,那么请同学观察这幅图(p57主题图)从图中你知道了什么?

(生:我知道杯子重100克,水重x克,合起来是250克。)。

师:你能根据这幅图列出方程吗?

生:100+x=250.(板书)。

【设计意图】运用知识迁移,结合直观图例,应用方程的性质,让学生自主探索列出方程。

(2)求方程中的未知数。

师:那么方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?(交流后汇报)。

学生可能出现的回答。

生2:根据数的组成100+150=250,所以x=150.

生3:100+x=250=100+150,所以x=150.

生4:假如在方程左右两边同时减去100,那么也可得出x=150.……。

【设计意图】这样的提问,有多种回答,锻炼学生的发散性思维,有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。

(3)验证方程中的未知数,引出方程的解和解方程两个概念。

师:同学们用不同的方法算出x=150,那么它对不对呢?

生:对,因为x=150时方程左边和右边相等。

师:这时我们说“x=150”是方程“100+x=250”的解,刚才我们求x的过程就叫做叫解方程。(板书:方程的解、解方程)请同学在书中找到这两个概念(使方程左右两边相等的未知数的值叫做方程的解,解出方程的解的过程叫解方程。)并齐读。

【设计意图】学生齐读的时候,把解方程和方程的解的概念板书在黑板上,并且在学生读的过程中学生可以加深印象。

(4)辨析方程的解和解方程两个概念。

师:你们能说出“方程的解”和“解方程”有什么区别么?讨论一下,然后汇报。

生:方程的解是未知数的值,它是一个数,而解方程是求未知数的过程,是一个计算过程,它的目的是求出方程的解。

【设计意图】通过组内交流,让学生自己总结出“方程的解”和“解方程”的区别,提高学生总结归纳的能力和小组合作精神。

2、例1解析。

师:(出示例1图)图上画的是什么?你能列出方程吗?

生:x+3=9(板书:x+3=9)。

(1)引导学生思考怎样解方程。

师:怎样解这个方程?我们可以借助天平(电脑显示)。

师:我们解方程的目的是求想x,怎样使天平一边只剩x呢?

生:天平两边同时减去3个球。(电脑显示)。

师:天平两边还平衡吗?怎样反映在方程上呢?

生:方程两边同时减3。(结合学生回答板书)。

师:为什么同时减3而不是其它数呢?

生:方程两边同时减3就可以使方程一边只剩x。

(2)检验方程的解。

师:x=6是不是方程的解呢?

生:是,因为x=6使方程左边是6+3=9,右边是9,左右两边相等,所以x=6是方程x+3=9的解。

师:以后解方程时,我们要养成检验的习惯,力求计算准确。

【设计意图】自学思考汇报交流既有利于每个学生的自主探索,保证个性发展,也有利于教师考察学生思维的合理性和灵活性,考察学生是否能用清晰的数学语言表达自己的观点。

(3)强调解方程的格式步骤。

解方程要注意:(1)先写“解”,等号要对齐。

(2)做完后要注意检验。

【设计意图】再一次强调,可以让学生加深印象,掌握解方程的正确格式和步骤,再今后的解题中不会出现格式错误的问题。

3、巩固练习。

师:你会学老师这样解方程吗?

请同学们解方程x+3.2=4.6,x+19=30。

先独立完成,再招学生板书练习集体订正。

【设计意图】在理解例1的解法后再完成本题,巩固对同种题型解题方法的认知,使学生对知识掌握的更牢固。

4、小组讨论怎样解方程x-2=15,x-1.8=4。

师:刚才的题同学们都做的非常好,那么下面的题你们会解么?(出示题目:x-2=15,x-1.8=4)请同学们小组讨论怎样解方程x-2=15,x-1.8=4并说出你这样做的根据。

学生小组讨论并解出上面两道方程,并板书、汇报自己的解题过程。

师:在这个过程中哪些是解方程,哪些是方程的解。

生:我们计算的过程是解方程,而x=17和x=5.8是方程的解。

【设计意图】通过学生自主学习探究出不同类型方程的解法,让学生享受到自学的乐趣,明白解这类方程就是要在方程的左右两边同时加上或者减去一个相同的数,让方程的左右两边仍然相等。与此同时再复习巩固下方程的解和解方程的概念。

三、实践应用。

1、填空。

(1)含有()的()叫方程。

(2)使方程左右两边相等的()叫方程的解。

(3)求()叫做解方程。

(4)x-15=20这个方程的解是()。

指名学生口头回答。

2、解下列方程。

x+0.3=1.8x-1.5=4。

x-6=7.6x+5=32。

学生独立完成并集体订正。

3、列方程解决问题。

学生独立列方程解答,集体订正。

【设计意图】巩固本节课所学习的内容,检查学生的掌握情况。

四、全课小结。

师:这节课你有什么收获?

课后请同学们思考生活中哪些问题可以运用解方程和知识帮我们解决问题,把你想到的和同伴一起分享。

小学解方程教案篇六

1、用分式方程的数学模型反映现实情境中的实际问题。

2、用分式方程来解决现实情境中的问题。

(二)能力训练要求。

1、经历运用分式方程解决实际问题的过程,发展抽象概括、分析问题和解决问题的能力。

2、认识运用方程解决实际问题的关键是审清题意,寻找等量关系,建立数学模型。

(三)情感与价值观要求。

1、经历建立分式方程模型解决实际问题的过程,体会数学模型的应用价值,从而提高学习数学的兴趣。

2、培养学生的创新精神,从中获得成功的体验。

小学解方程教案篇七

本课以游戏导入,通过创设学生感兴趣的学习情境,以激趣为基点,激发学生强烈的求知欲望。让学生在操作、观察、交流等活动中感知平衡,自主体验,积累数学材料,为更好地引入新课,理解概念作铺垫。并且无论是生活中有趣的平衡现象,还是天平称东西的实际状态,都无不放射出科学的光芒,它们带给学生的不仅仅是兴趣的激发,知识的体验,更有潜在的科学态度和求真求实的精神。

二、突出重点,自主探索。

理解方程的意义,掌握方程与等式之间的关系是本课教学的重点,让学生通过列式观察,自主探索,分析比较,逐次分类,讨论举例等一系列活动去理解方程的意义,掌握方程与等式之间的关系。使学生把知识探究和能力培养溶为一体,锻炼了学生科学的思维方法,使学生学得主动,学得投入。同时层层深入的设疑和引导也渗透了教师对学生科学思维的鼓励和培养,使学生在探索与实践中不断亲历求知的过程,如剥茧抽丝般汲取知识的养分。

三、自学思考,获取新知。

在教学解方程和方程的解的概念时,通过出示两道自学思考题。

(1)什么叫方程的解?请举例说明。

(2)什么叫解方程?请举例说明。”改变了以示范、讲解为主的教学方式,让学生带着问题通过自学课本,将枯燥乏味的理论概念转化为具体的例子加以阐明,既培养了学生独立思考的能力,也解决了数学知识的抽象性与小学生思维依赖于直观这一矛盾。

正是基于以上考虑,在教学解方程的一般步骤和检验方法时,也采用了让学生通过自学来掌握检验的方法及规范书写格式。

四、使用交流,注重评价。

要探索知识的未知领域,合作学习不失为一条有效途径。新的教学理念使合作学习的意义更加广泛,有生生合作、师生合作等等。生生合作有助于相互验证、集思广益。师生合作体现在“师导”,尤其在学生思维受阻,关键知识点的领会上,在本课中,有多处让同桌互说互评互查的过程,合作的力量必将促使学生认知水平的提高,自评与互评相结合的评价方式也将更好的有利于学生端正学习态度,掌握科学的学习方法,促进良好的学习习惯的形成。

小学解方程教案篇八

教学内容:

教科书第12~13页,“回顾与”、“练习与应用”第1~4题。

教学目标:

1、通过回顾与,使学生进一步加深等式与方程的意义,等式的性质的理解。帮助学生理清知识的脉络,建立合理的认知结构。

2、通过练习与运用,使学生进一步掌握方程的方法和一般步骤,会列方程解决简单实际问题。

教学过程:

一、回顾与。

1、谈话引入。

本单元我们学习了哪些内容?

你能说说什么是等式的性质吗?什么是方程?什么是解方程呢?

在小组中互相说说。

2、组织讨论。

(1)出示讨论题。

(2)小组交流,巡视指导。

(3)汇报交流。

你是怎么获得这个知识的?我们在学习这个知识时运用了什么方法?

(等式与方程都是等式;等式不一定是方程,方程一定是等式。)。

(含有未知数的等式是方程。)。

(等式性质:)。

(求方程中未知数的值的过程叫做解方程。)。

同学们对这一单元的知识点掌握得很好,我们不仅要理解概念和意义,还要会熟练地运用。

二、练习与应用。

1、完成第1题。

(1)独立完成计算。

(2)汇报与展示,说说错误的原因及改正的方法。

2、完成第2题。

(1)学生独立完成。

(2)你用怎样的方法连线的?(解方程求出未知数的值;把x的值代入方程。)。

3、完成第3题。

(1)列出方程,不解答。

(2)你是怎样列的?怎么想的?大家同意吗?

(3)完成计算。

4、完成第4题。

单价、数量、总价之间有怎样的数量关系?

指出:抓住基本关系列方程,y也可以表示未知数。

三、课堂。

通过回顾与,大家共同复习了有关方程的知识,你还有什么疑问吗?

小学解方程教案篇九

1、理解等式的基本性质一,并能较熟练地运用它解形如x+a=b的方程。

2、能较为熟练地运用形如x+a=b的方程解决简单的实际问题。

3、初步理解方程的解、解方程的含义,会检验给出的未知数的值是不是某方程的解。

4、培养学生规范书写和自觉检验的好习惯。

1、对等式的基本性质一的理解和运用。

2、掌握解形如x+a=b的方程的依据、步骤和书写格式。

3、能较为熟练地运用形如x+a=b的方程解决简单的实际问题。

1、掌握解形如x+a=b的方程的依据、步骤和书写格式。

2、较为熟练地运用形如x+a=b的方程解决简单的实际问题。

后,怎样求x呢?在学生渴望解决这一问题的内在需求的驱使下,展开合作探索活动。

在教学等式的基本性质时,可利用实物演示,通过提问:怎样变换,能使天平仍然保持平衡呢?,以引导学生思考,启发学生把两组图的内容归纳成一句话。这样,及时引导学生超脱实例的具体性,实现必要的抽象概括。

这时就可以让学生自己思考、探索x的值的求法,然后在小组讨论后汇报。学生在陈述自己的想法时,不仅要说出自己是怎样推算的,还要请学生说出这样推算的理由。在这一过程中,要特别强调解方程的每一步得到的都是等式,而不是递等式。

教学中还要重视对学生书写的要求,初学时,可要求学生等号对齐。方程两边同时减去一个数的计算过程,开始练习时也要求学生写出来,待熟练之后再简写。无论是解方程还是检验,都要从一开始就强化书写规范,以发挥首次感知先入为主的强势效应,促进良好的书写习惯的形成。

最后引出方程的解和解方程的概念时,要强调:方程的解是一个数,而解方程是一个过程,帮助学生理解、区别这两个概念。

模式方法:观察――实验――讨论――交流――概括结论。

作业设计:自主练习1-3题。

1、教学时,要充分利用天平,让学生通过观察、实验、讨论、交流,帮助学生理解等式的基本性质一。

2、教学时,要关注学生的算术思维向方程思维的转变。

3、在检验的问题上,要注重引导学生由算术法的验算向方程法的检验转变。

4、教学时,要加大引领力度,充分发挥教师的作用。一要做好学生解决问题的思维方式的引领,进一步拓宽学生解决问题的渠道,提高学生解决问题的能力。二是对解方程以及列方程解决问题的思路、步骤及格式的引领。

本次教研活动,使老师们更加清楚地了解学生已有的知识基础,较为准确地把握教学的重点和难点。设计较为实际的教学环节,降低学生学习的难度,同时也为教师在教学中围绕重点、突破难点指明了方向。

小学解方程教案篇十

教学内容:

教材第88---90页。

教学目标:

1、结合情境,了解方程的意义;

2、会用方程表示简单的等量关系;

3、在列方程的过程中,体会方程与现实世界的密切联系。

教学重难点:

1、了解方程的意义;

2、会用方程表示简单情境中的`等量关系。

教学准备:

情境图、课件、卡片(等式、不等式、方程….)。

教学过程:

一、课前谈话,设疑导入。

1、为什么学习方程?

2、方程是什么?

二、带着问题自主学习,合作交流,建立方程概念。

问题一:为什么学方程?

(一)出示天平,建立等量概念:

左边=右边。

(二)出示情境图分组学习(如书88页称药丸、称月饼、倒水)。

1、小组合作,看图找出等量关系,用式子表示出来。

2、小组汇报,并将式子板书在黑板上。

问题二:什么是方程?

根据小结板书:含有未知数的等式叫方程。

1、读一读:

师:你认为这句话中哪些词语比较重要,试着用声音传达给大家。

2、圈一圈:

师:根据这句话找一找,黑板上的式子哪些是方程呢?把它们圈出来吧。

3、写一写:

师:在数学世界里只有这几个方程了吗?你还能写几个呢?(无数个)(学生独立完成板书在黑板上)。

4、试一试:

含有未知数的式子就是方程吗?举个例子。

等式一定是方程吗?举例。

5、游戏巩固:听口令做动作。

游戏目的:使学生更清楚地认识方程的两个要素:未知数和等式。

游戏规则:请几位学生手拿卡片听口令,如:发令者说:“等式”跳一跳,拿着等式卡片的人就要跳一跳,其他的人不能动。

三、课堂小结:

1、这节课你有什么收获?

2、第89页练一练第1、2题。

四、布置作业。

小学解方程教案篇十一

教科书p17第9~15题。思考题。

1.通过练习,使学生进一步掌握列方程解决实际问题的思考方法,提高列方程解决问题的能力。

2.在练习中,使学生进一步感受方程的思想方法和应用价值,获得成功的体验,进一步树立学好数学的自信心,产生对数学的兴趣。

掌握列方程解决实际问题的基本思考方法。

根据情境,学生自己提出问题、解决问题。

一、基本练习。

1.先设要求的数为x,再列出方程。(口答且不解答)。

(1)一个数的12倍是84,求这个数。

(2)2.9比什么数少1.5?

(3)什么数与2.4和是6?

2.根据题意说出等量关系式并列方程。

(1)果园里有124棵梨树和桃树,梨树是桃树棵数的3倍。桃树梨树各有多少棵?

(2)书架上层有36本书,比下层少8本。书架下层有多少本书?

提问:每一题的数量关系式分别根据哪一个条件列的?

师生交流。

二、指导练习。

1.p17第9题。

(1)引导学生说一说数量关系式。

天鹅只数+丹顶鹤只数=960。

(2)根据关系式列方程。

x+2.2x=960。

2.p17第10题。

(1)引导学生说一说数量关系式。

六年级植树棵数-五年级植树棵树=24。

(2)根据关系式列方程。

1.5x-x=24。

3.p17第13题。

(1)引导学生说一说数量关系式。

历史故事总价+森林历险记总价=83。

(2)根据关系式列方程。

7x+124=83。

三、综合练习。

1.p17第11~12题。

(1)学生先说一说数量关系式。

(2)根据关系式列方程。

(5)集体评讲。

四、思考题。

(1)引导学生说一说等量关系式。

速度差追击时间=路程差。

甲路程-乙路程=路程差。

(280-240)x=400。

280x-240x=400。

五、课堂小结。

今天这节课是练习课,有谁来简单总结一下呢?还有什么问题吗?

板书设计:

列方程解决实际问题练习课。

天鹅只数+丹顶鹤只数=960六年级植树棵数-五年级植树棵树=24。

x+2.2x=9601.5x-x=24。

历史故事总价+森林历险记总价=83速度差追击时间=路程差甲路程-乙路程=路程差。

7x+124=83(280-240)x=400280x-240x=400。

小学解方程教案篇十二

第12册p92—93“练习与实践”7—9题。

1.使学生进一步理解商品打折出售的含义,进一步掌握分析数量关系的方法,熟练掌握列方程解答稍复杂的百分数实际问题的方法,理解不同形式的打折问题之间的联系,并能熟练解答。注重知识间的联系与融会贯通。

2.在分析问题、解决问题的活动中,发展学生的数学思考能力,提高用方程表示数量关系的能力,进一步积累解决问题的经验,增强数学应用意识。

3.让学生在学习和游戏中获得成功体验,提高学生的学习兴趣和爱好。

课件。

第二课时。

1.出示习题。一种图书打八折后售价是20元,这种图书原价是多少元?

2.学生练习、交流、检验。

3.练习p93第7、8两题。指导学生理解“降价10%”的含义。第8题提醒学生注意:两种衬衫的原价是相同的,但由于打的折扣不同所以现在售价是不同的;所花的108元是两种衬衣现价的和。

4.练习p93第9题。

学生通过自主探索和合作探索发现规律,并运用规律求出所框的4个数。

小学解方程教案篇十三

了解一元二次方程的概念;一般式ax2+bx+c=0(a0)及其派生的概念;应用一元二次方程概念解决一些简单题目.

1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.

2.一元二次方程的一般形式及其有关概念.

3.解决一些概念性的题目.

4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.

1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.

2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.

学生活动:列方程.

如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________.

整理、化简,得:__________.

问题(2)如图,如果,那么点c叫做线段ab的黄金分割点.

如果假设ab=1,ac=x,那么bc=________,根据题意,得:________.

整理得:_________.

如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.

整理,得:________.

老师点评并分析如何建立一元二次方程的数学模型,并整理.

学生活动:请口答下面问题.

(1)上面三个方程整理后含有几个未知数?

(2)按照整式中的多项式的规定,它们最高次数是几次?

(3)有等号吗?或与以前多项式一样只有式子?

老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.

因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.

一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a0).这种形式叫做一元二次方程的一般形式.

一个一元二次方程经过整理化成ax2+bx+c=0(a0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.

分析:一元二次方程的一般形式是ax2+bx+c=0(a0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.

解:去括号,得:

移项,得:4x2-26x+22=0。

其中二次项系数为4,一次项系数为-26,常数项为22.

例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.

分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a0)的形式.

解:去括号,得:x2+2x+1+x2-4=1。

移项,合并得:2x2+2x-4=0。

其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.

教材p32练习1、2。

例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.

分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+170即可.

证明:m2-8m+17=(m-4)2+1。

∵(m-4)20。

(m-4)2+10,即(m-4)2+10。

不论m取何值,该方程都是一元二次方程.

本节课要掌握:

(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.

小学解方程教案篇十四

1.渗透数学中的语感训练,使学生能熟练找出问题中相等关系的量,根据其数量关系列出方程。

2.使学生掌握应用等式的性质解两步解的方程。

3.注重联系生活实际,获得成功体验。

学生能熟练根据其数量关系列出方程。

注重联系生活实际,获得成功体验。

找出下列句中的数量关系。

松树和杨树一共56棵。

学校的建筑面积是总面积的一半。

底楼高3.4米,其余三层平均每层高2.8米,这幢楼高多少米?

小亮现在的身高比出生时的3倍高0.04米。

三瓶墨水的价钱比一个文件夹便宜2.8元。

1.练习二第9题。

指名板演,其余生独立完成在自备本上后集体校对。

说说注意点和解两步方程的步骤。

2.练习二第10题。

先要求学生只列出方程,校对所列方程根据的等量关系后再解方程。

3.练习二第11题。

生理解题意,找出数量关系,独立列方程解答,集体交流。

4.练习二第12题。

生理解题意,并独立完成在自备本上。校对,说说题目的意思,注意要求两问。

5.练习二第13题。

生理解题意,让学生找准对应的量,提醒学生有2问。集体交流。

6.练习二第14题。

生独立完成后校对,其中12题的物品有“文件夹”和“墨水”,各一个与12瓶,总价25.10元。

7.练习二第15题。

学生利用公式独立列式计算,集体交流时让学生说说是怎样计算的?

师:今天在解方程的过程中,你有哪些进步?

补充习题。

小学解方程教案篇十五

教学内容:

p53――54练习十一1,2,3。

教学目标:

1、通过观察天平演示,使学生初步理解方程的意义;

2、使学生能够判断一个式子是不是方程,并能解决简单的实际问题;

3、培养学生观察、描述、分类、抽象、概括、应用等能力。

教学重点:

判断一个式子是不是方程;初步理解方程的意义。

课前准备:

课件,习题板。

教学过程:

一、复习旧知,激趣导入。

同学们,我们上节课学了用含有字母的式子表示一些数量关系,现在老师要考考你们,已知我们学校有88位同学,再加上所有老师,你能用一个式子来表示师生一共有多少人吗?(板书:88+x)。学得真不错,今天我们要进一步来研究这些含有未知数的式子所隐藏的数学奥秘,想知道吗?请你用饱满的姿态告诉老师!

二、出示学习目标。

1、初步理解方程的意义,会判断一个式子是否是方程。

2、按要求用方程表示出数量关系,培养学生观察、比较、分析概括的能力。

(一)认识天平。

(二)新课学习。

自学指导(一)。

自学p53,分别说一说图1,图2,,显示的信息。

图1天平两边平衡,一个空杯重100克。

图2在空杯里加一杯水后天平不平衡了。

再看图3说说图3显示的信息。

天平1杯子和里面的水比200克法码重。

天平2杯子和里面的水比300克法码轻。

请用算式表示图3数量关系。

天平1、100+x200。

天平2、100+x300。

再看图4说说图4显示的信息,请用算式表示图4数量关系。

100+x=250。

观察比较下列算式说说你的发现。

观察比较。

100+x200。

100+x300。

100+x=250。

前面两个算式两边不相等,后面一个算式两边是相等的。

教师总结:像这样两边相等的算式我们把它叫做等式。(板书)。

写出几个等式。

请学生把这里的等式分类,并说说你们是如何分类的?

20+30=50。

20+χ=100。

50×2=100。

14―8=6。

3y=180。

78×3=234。

100+2y=3×50。

学生汇报后让学生说出分类的理由。(有的含有未知数,有的没有未知数)。

教师总结:含有未知数的等式,称为方程。(板书)。

请大家写出几个方程。

四、小结:回答什么是方程?

小学解方程教案篇十六

教学内容:教科书第13~14页,“练习与应用”第5~7题,“探索与实践”第8~9题及“与反思”。

教学目标:

1、通过练习与应用,使学生进一步掌握列方程解决实际问题的方法与步骤,提高列方程解决实际问题的意识和能力。

2、通过小组合作,进一步培养学生探索的意识,发展思维能力。

3、通过与反思,使学生养成良好的学习习惯,获得成功体验,增强学好数学的信心。

教学过程:

一、练习与应用。

1、谈话引入这节课我们继续对列方程解决实际问题进行练习。板书课题。

2、指导练习。独立完成5~7题。展示交流。集体评讲。你是根据什么等量关系列出方程的?在解方程时要注意什么?(步骤、格式、检验)。

二、探索与实践。

1、完成第8题。理解题意,完成填写。小组中交流第一个问题。汇报自己发现。把得到的和分别除以3,看看可以发现什么?可以得出什么结论?独立解答第二个问题。你是怎么解答第二个问题的?指导解答第三个问题。试着连续写出5个奇数,看看有什么发现?怎样求n的值呢?5个连续偶数的和有这样的规律吗?试试看。

三、与反思。

在小组中说说自己对每次指标的理解。自我反思与。说说自己的优点与不足。

四、阅读“你知道吗”可以再查找资料,详细了解。

五、课堂这节课我们复习了哪些内容?你有了哪些收获?

小学解方程教案篇十七

教学目标:

1.知识与技能:结合具体的问题,使同学们学会用解方程和用方程解决具体的问题。

2.过程与方法:结合课本内容和实际问题来使同学们形成用方程解决问题的观念。

3.情感态度价值观:在学习方程解决问题的过程中培养同学们对于学习数学的兴趣,培养同学们克服困难的品质,培养同学们探索新知的勇气和信心。

教学过程:

一、回顾与交流。

1.复习方程概念。

什么是方程?你能举出方程的例子吗?(老师板书出方程的例子)这里用字母表示等式里的什么?指出:字母还可以表示等式里的未知数。含有未知数的等式就叫方程。(板书定义)。

判断下面是不是方程:

3x+5。

6+8=14。

6x=15。

7x+315。

(通过这个教学使学生充分理解方程的定义)。

让学生先独立解课本p61.t1.两道解方程的题目再让学生说说是怎样解的。

通过这里的两道练习复习小学所学习的解方程的方法(即根据等式的性质来解。)。

复习61页第二题。

首先让学生找出这三个题的等量关系,让学生分小组讨论讨论,在小组内说一说怎样找的等量关系。然后请学生在班内汇报一下。再请三位同学演板,并请演板的同学解释自己的做法。

(在这个过程中,让学生首先学会找出题目的等量关系,再根据等量关系去列方程,使学生养成用方程解决问题的时候,要懂得方程是根据等量关系列出的。)。

集体订正:解(1)方程是怎样想的,检查解方程时每一步依据什么做的。(2)方程与(1)有什么不同,解方程时有什么不同?师生共同小结解方程的一般步骤(略)。怎样检验方程的解对不对?增加找数量关系练习。

1.六一班有50人,其中男生有28人,女生有多少人?

2.六一班有22名女生,男生比女生的2倍少16人,男生有多少人?

首先让学生独立找出题目中的等量关系,然后让同桌2人互相说一说,然后再解答。

二、巩固与应用。

引导学生做课本巩固练习题。

1.解方程。组织学生独立完成,然后让学生上去讲一讲解题的方法。

2.看图列出方程,并求出方程的解。首先让学生在小组内说一说解决的方法,再请学生汇报交流。

3.看图理解题意,引导学生分析数量关系,再列方程解答。请学生演板,演板后组织学生讨论。

4.理解文字题,根据数量关系列出方程并求解。请学生找出题中的等量关系,再让学生完成。

三、总结提高。

通过这节课的学习,你解决了那些问题,还有那些困惑?

(通过学生的汇报,查漏补缺,找出这节课可能没有涉及到的问题加以解决。)。

四、习题设计。

1.课本62页第5题。这里的两个小题,第1小题是用字母表示,学生要想用字母表示出来,必须先找出题目的等量关系。第2小题是用方程解决问题,除了要找出等量关系外还要列出方程并解答。

2.课本62页第6题。这是一道拓展性的习题,是数与形的结合,通过这道题的练习,除了锻炼学生用方程解决问题的能力,同时也复习了有关几何的知识。

小学解方程教案篇十八

1、知识与技能。

(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;

(2)能正确利用直线的点斜式、斜截式公式求直线方程。

(3)体会直线的斜截式方程与一次函数的关系.

2、过程与方法。

在已知直角坐标系内确定一条直线的几何要素——直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生通过对比理解“截距”与“距离”的区别。

3、情态与价值观。

通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。

直线的点斜式方程和斜截式方程。

问题。

设计意图。

师生活动。

1、在直线坐标系内确定一条直线,应知道哪些条件?

使学生在已有知识和经验的基础上,探索新知。

学生回顾,并回答。然后教师指出,直线的方程,就是直线上任意一点的坐标满足的关系式。

2、直线经过点,且斜率为。设点是直线上的任意一点,请建立与之间的关系。

培养学生自主探索的能力,并体会直线的方程,就是直线上任意一点的坐标满足的关系式,从而掌握根据条件求直线方程的方法。

学生根据斜率公式,可以得到,当时,即(1)教师对基础薄弱的学生给予关注、引导,使每个学生都能推导出这个方程。

3、(1)过点,斜率是的直线上的点,其坐标都满足方程(1)吗?

使学生了解方程为直线方程必须满两个条件。

学生验证,教师引导。

问题。

设计意图。

师生活动。

(2)坐标满足方程(1)的点都在经过,斜率为的直线上吗?

使学生了解方程为直线方程必须满两个条件。

学生验证,教师引导。然后教师指出方程(1)由直线上一定点及其斜率确定,所以叫做直线的点斜式方程,简称点斜式(pointslopeform).

4、直线的点斜式方程能否表示坐标平面上的所有直线呢?

使学生理解直线的点斜式方程的适用范围。

学生分组互相讨论,然后说明理由。

5、(1)轴所在直线的方程是什么?轴所在直线的方程是什么?

(2)经过点且平行于轴(即垂直于轴)的直线方程是什么?

(3)经过点且平行于轴(即垂直于轴)的直线方程是什么?

进一步使学生理解直线的点斜式方程的适用范围,掌握特殊直线方程的表示形式。

教师学生引导通过画图分析,求得问题的解决。

6、例1的教学。(教材93页)。

学会运用点斜式方程解决问题,清楚用点斜式公式求直线方程必须具备的.两个条件:(1)一个定点;(2)有斜率。同时掌握已知直线方程画直线的方法。

教师引导学生分析要用点斜式求直线方程应已知那些条件?题目那些条件已经直接给予,那些条件还有待已去求。在坐标平面内,要画一条直线可以怎样去画。

7、已知直线的斜率为,且与轴的交点为,求直线的方程。

引入斜截式方程,让学生懂得斜截式方程源于点斜式方程,是点斜式方程的一种特殊情形。

学生独立求出直线的方程:

(2)。

再此基础上,教师给出截距的概念,引导学生分析方程(2)由哪两个条件确定,让学生理解斜截式方程概念的内涵。

8、观察方程,它的形式具有什么特点?

深入理解和掌握斜截式方程的特点?

学生讨论,教师及时给予评价。

问题。

设计意图。

师生活动。

9、直线在轴上的截距是什么?

使学生理解“截距”与“距离”两个概念的区别。

学生思考回答,教师评价。

体会直线的斜截式方程与一次函数的关系.

学生思考、讨论,教师评价、归纳概括。

11、例2的教学。(教材94页)。

掌握从直线方程的角度判断两条直线相互平行,或相互垂直;进一步理解斜截式方程中的几何意义。

教师引导学生分析:用斜率判断两条直线平行、垂直结论。思考(1)时,有何关系?(2)时,有何关系?在此由学生得出结论:

且;

12、课堂练习第95页练习第1,2,3,4题。

巩固本节课所学过的知识。

学生独立完成,教师检查反馈。

13、小结。

使学生对本节课所学的知识有一个整体性的认识,了解知识的来龙去脉。

14、布置作业:第106页第1题的(1)、(2)、(3)和第3、5题。

巩固深化。

学生课后独立完成。

例3.如果直线沿x轴负方向平移3个单位,再沿y轴正方向平移1个单位后,又回到原来的位置,求直线l的斜率.

作业布置:第100页第1题的(1)、(2)、(3)和第3、5题。

课后记:。

小学解方程教案篇十九

教科书第12~13页,“回顾与整理”、“练习与应用”第1~4题。

1、通过回顾与整理,使学生进一步加深等式与方程的意义,等式的性质的理解。帮助学生理清知识的脉络,建立合理的认知结构。

2、通过练习与运用,使学生进一步掌握方程的方法和一般步骤,会列方程解决简单实际问题。

一、回顾与整理

1、谈话引入。本单元我们学习了哪些内容?你能说说什么是等式的性质吗?什么是方程?什么是解方程呢?在小组中互相说说。

2、组织讨论。

(1)出示讨论题。

(2)小组交流,巡视指导。

(3)汇报交流。

你是怎么获得这个知识的?我们在学习这个知识时运用了什么方法?

3、小结。同学们对这一单元的知识点掌握得很好,我们不仅要理解概念和意义,还要会熟练地运用。

二、练习与应用

1、完成第1题。

(1)独立完成计算。

(2)汇报与展示,说说错误的原因及改正的方法。

2、完成第2题。

(1)学生独立完成。

(2)你用怎样的方法连线的?(解方程求出未知数的值;把x的值代入方程。)

3、完成第3题。

(1)列出方程,不解答。

(2)你是怎样列的?怎么想的?大家同意吗?

(3)完成计算。

4、完成第4题。单价、数量、总价之间有怎样的数量关系?指出:抓住基本关系列方程,y也可以表示未知数。

三、课堂总结

通过回顾与整理,大家共同复习了有关方程的知识,你还有什么疑问吗?

小学解方程教案篇二十

四年级(下册)用字母表示数教学含有字母的式子,学生初步学会了写式子的方法。五年级(下册)方程教学了方程的意义、用等式的性质解一步计算的方程,学生能够列方程解答简单的实际问题。本单元继续教学方程,要解类似于axb=c、axbx=c的方程,并用于解决稍复杂的实际问题。教学内容的编排有以下特点。

第一,把解方程和列方程解决实际问题的教学融为一体,同步进行,这是和以前教材的不同编排。在例1里,解2x-22=64这个方程是新知识,用它解答实际问题也是新知识。在例2里,解方程x+3x=290是新授内容,解决的实际问题也是新授内容。这两道例题,既教学解方程的思路与方法,又教学列方程的相等关系和技巧。这样编排,能较好地体现数学内容和现实生活的联系。一方面分析实际问题里的数量关系,抽象成方程,形成知识与技能的教学内容;另一方面,利用方程解决实际问题,使知识技能的教学具有现实意义,成为数学思考、解决问题、情感态度有效发展的载体。

第二,突出思想方法,通过举一反三培养能力。全单元编排的两道例题、两个练习,涵盖了很宽的知识面。先看解方程。例 1教学ax-b=c这样的方程,练习一里还要解ax+b=c、a+bx=c这些形式的方程。从例题到习题,虽然方程的结构变了,但应用等式的性质解方程是不变的。也就是说,解方程的策略是一致的,知识与方法的具体应用是灵活的。再看列方程。例1把一个数比另一个数的2倍少22作为相等关系,练一练和练习一里陆续出现一个数比另一个数的几倍多几、三角形的面积计算公式以及其他的相等关系。实际问题变了,寻找相等关系是解题的关键步骤始终不变。在例2和练习二里也有类似的安排。无论教学解方程还是列方程,例题讲的是思想方法,以不变的思想方法应对多变的实际情况,有利于形成解决问题的策略,培养创新精神和实践能力。

全单元内容分成三部分,例1和练习一教学一般的分两步解的方程;例2和练习二教学特殊的需两步解的方程;整理与练习回忆、整理、应用全单元的教学内容,反思、评价教学过程和效果。

两道例题里的方程都要分两步解,通过第一步运算,把稍复杂的方程转化成五年级(下册)里教学的简单方程,使新知识植根于已有经验和能力的基础上。化复杂为简单、变未知为已知是人们解决新颖问题的常用策略。这两道例题突出转化的过程,不仅使学生掌握解稍复杂的方程的方法,还让他们充分体验转化思想,发展解决问题的策略。

1. 从各个方程的特点出发,使用不同的转化方法。

解形如axb=c的方程,一般根据等式两边同时加上或减去同一个数,结果仍然是等式的性质化简。例1在列出方程2x-22=64以后,教材里写出了解这个方程的第一步: 2x-22+22=64+22。教学要让学生理解为什么等号的两边都加上22,体会这样做是应用了等式的性质,感受这样做的目的是把稍复杂的方程化简。过去教材里强调把ax看成一个数,是为了应用加、减法中各部分的关系解方程,新教材应用等式的性质解方程,突出转化的思想和方法。

解形如axbx=c的方程,一般应用运算律或相应的知识化简。axbx可以改写成

(ab)x,这已经在四年级(下册)用字母表示数时掌握了,现在只要计算ab,就能实现化简原方程的目的。教学时仍然要让学生理解为什么可以这样改写,以及这样改写的目的。

2. 转化后的简单方程,教法不同。

例1让学生算出2x=?,并求出x的值。这是因为学生具有解2x=86这个方程的能力。教学这样安排,是把转化思想和方法放在突出位置上,促进新旧知识的衔接,有效地使用教学资源。把求得的x的值代入原方程进行检验,在五年级(下册)已经教学。例1提出检验的要求,不仅是培养良好的习惯,还要通过结果是正确的,确认解稍复杂方程的策略和方法是正确的。

例2把原方程化简成4x=290,没有让学生接着解。教材写出x=72.5并继续算出3x=217.5,是因为72.5米和217.5米是实际问题的两个答案。学生以往解答的问题,一般只有一个问题,这道例题有两个问题,需要完整呈现解题过程,在步骤、书写格式上作出示范,便于学生掌握。另外,检验的思路也有拓展。由于题目的.特点,不能局限于对解方程的检验,还要联系实际问题里的数量关系,检验算得的陆地面积和水面面积是不是一共290公顷,水面面积是不是陆地面积的3倍。教学时要注意到这一点,既保障解方程是正确的,更保障列出的方程符合实际问题里的数量关系。

3. 加强解方程的练习。

前面曾经说到,例1和例2都有列方程和解方程两个教学内容,列出的方程必须正确地解,才可能得到正确的答案。因此,两个练习的第1题都安排了解方程。练习一在例1解方程的基础上向两个方向扩展,一是引出了a+bx=c、ax-b=c等结构与例题不完全相同的方程,二是把小数及运算纳入了方程。只要体会了例题里解方程的转化思想和转化方法,会进行小数四则计算,就能够适应这两个方面的扩展。要注意的是,小学阶段不要求解形如a-bx=c的方程。因为解这个方程,如果等式的两边都减a,就会出现-bx=c-a,不但等号左边是负数,而且右边c比a小;如果等式的两边都加bx,就出现a=c+bx,这些都是现在难以解决的问题。练习二在例2解方程的基础上带出形如ax-bx=c的方程,解方程涉及的除法计算都控制在三位数除以两位数以及相应的小数除法范围内,学生一般不会有困难。

还有一点要提及,整理与练习中安排小组讨论像3.4x+1.8=8.6、5x-x=24这样的方程各应怎样解,表明教材十分重视引导学生组建认知结构。如果既从两个方程的特点回顾解法的不同,又从策略角度进行整理,对学生是有好处的。练习中出现的方程15x2=60,是为应用三角形面积公式解决实际问题服务的。

列方程解决实际问题要找到相等关系,方程是依据相等关系列的。其实,某个实际问题为什么选择列方程的方法解答,或者为什么选择列算式的方法解答,经常是由相等关系决定的。所以,两道例题的教学,都是先找出相等关系。

相等关系是一种数学模型,它把数量关系表达成等式。列算式解决实际问题要分析数量关系,这时的分析着眼于挖掘已知条件之间的联系,沟通已知与未知的联系,通常把条件作为一个方面,问题作为另一个方面,因而用已知数量组成的算式求得问题的答案。实际问题里的相等关系也是数量间的关系,它的最大特点是将已知与未知有机联系起来,通过已知数量和未知数量共同组成的等式,反映实际问题里最主要的数量关系。学生在五年级(下册)初步感受了相等关系,能找出简单问题的相等关系。本册教学寻找较复杂问题的相等关系,就应充分利用学生已有的知识经验。

1. 灵活开展思维活动,找出相等关系。

较复杂的问题之所以复杂,在于它的数量关系错综复杂。例1里大雁塔的高度比小雁塔的2倍少22米,其中既有倍数关系,也有相差关系,是两种关系的复合。例2里已知颐和园水面面积与陆地面积一共290公顷,还已知水面面积大约是陆地面积的3倍,这是两个并列的条件。因此,寻找复杂问题的相等关系,要梳理数量关系,分清主次和先后。

寻找相等关系没有固定的模式照搬、照套,教材从实际问题的结构特点和学生的思维发展水平出发,灵活设计寻找相等关系的教学方法。学生在二年级(下册)已经能解决类似红花有10朵,求红花朵数的2倍少4朵是几朵的问题,对几倍少几这样的数量关系已有初步的理解。因此,例1要求学生找出大雁塔与小雁塔高度之间的相等关系,让他们利用已有的倍数概念和相差概念,通过推理,把比小雁塔的2倍少22米改写成数学式子小雁塔高度2-22,从而得到相等关系。例1为什么提出还可以怎样列方程,这是由于同一个几倍少几的关系,可以写出不同的相等关系式,如小雁塔的高度2-大雁塔的高度=22、小雁塔的高度2=大雁塔的高度+22等。在小组里交流想法是尊重学生的思考,允许学生按自己的想法解题。要注意的是,这里不是要求学生一题多解。要组织学生对各种解法进行比较,体会它们在概念上是一致的,仅是表现形式不同;还要引导学生体会例题里呈现的等量关系,得出答案时的思考比较顺,从而自觉应用这样的等量关系。对于学生中未出现的相等关系,不必提及,以免搞乱思路。

怎样合理利用例2里的两个并列的已知条件?教材选择了线段图。先在表示水面面积的线段上填3x,再在线段图的右边括号里填290,在图上感受水面面积和陆地面积之间的倍数关系和相并关系。然后通过填空写出等量关系,体会水面面积和陆地面积一共290公顷是这个实际问题里的等量关系。

2. 加强写式练习,进一步把握数量关系,为列方程打基础。

含有字母的式子是方程的重要组成部分,根据数量关系列方程时,都要写出含有字母的式子。是否具有用字母表示数的意识,能否顺利写出含有字母的式子,对列方程解答实际问题是至关重要的。因此,教材加强写式的练习。

练习一第2题写出表示梨树棵数的式子3x+15,表示鳊鱼尾数的式子4x-80,都是解答几倍多几、几倍少几实际问题所需要的基本技能。安排写式练习,使学生进一步理解数量关系,养成顺着梨树比桃树的3倍多15棵、鳊鱼比鲫鱼的4倍少80尾这些数量关系的表述进行思考,并转化成数学式子的习惯,从而选择最适当的相等关系解决实际问题。所以,这道练习题既是写式训练,也是思路引导。

练习二第2题是和倍、差倍问题的专项训练。根据黄花x朵和红花朵数是黄花的3倍,先写出红花有3x朵,用含有字母的式子表示红花的朵数,再用x+3x(或4x)表示两种花一共的朵数,用3x-x(或2x)表示红花比黄花多的朵数,发展联想能力。联想到的式子,正是方程里等号左边的部分,这道题也在写式训练的同时,进行思路引导。

3. 列方程解答新颖的问题,拓展等量关系。

本单元安排两节练习课,分别教学练习一第6~13题、练习二第6~11题。着重解答一些与例题不同的实际问题,找到这些问题的等量关系是教学重点,也是难点,对发展数学思考非常有益。

练习一第7题起拓展等量关系的作用。第(1)小题画出了三角形,学生看到图上的高和底,就能想到三角形的面积计算公式,于是把底高2=三角形的面积作为解题时的等量关系。第(2)小题利用熟悉的括线表示19.8元的意思,形象显示了3枝铅笔的钱+1个文具盒的钱=一共的钱是问题里的等量关系。教材的意图是通过这些题打开思路,让学生体会不同的问题里有不同的等量关系,两个部分数之和往往是可利用的等量关系。这就为继续解答第8、9、12题作了有益的铺垫。至于第13题,把两种温度的换算公式作为等量关系。公式在题中已经揭示,只要在它上面体会已知华氏温度求摄氏温度,列方程解答比较好。反之,已知摄氏温度求华氏温度,依据公式能直接列出算式。

例2和练一练分别是典型的和倍、差倍问题,已知的总数或相差数是等量关系的生长点。练习二第7~11题的题材和例题不同,且各有特点。但是,等量关系的载体仍然是已知的总数与相差数。第7题用线段图配合展示题意,便于学生发现小丽走的米数+小明走的米数=两地相距的米数这一等量关系,并把这个经验迁移到解答后面的习题中去。

小学解方程教案篇二十一

教科书第12~13页,“回顾与整理”、“练习与应用”第1~4题。

1、通过回顾与整理,使学生进一步加深等式与方程的意义,等式的性质的理解。帮助学生理清知识的脉络,建立合理的认知结构。

2、通过练习与运用,使学生进一步掌握方程的方法和一般步骤,会列方程解决简单实际问题。

一、回顾与整理。

1、谈话引入。本单元我们学习了哪些内容?你能说说什么是等式的性质吗?什么是方程?什么是解方程呢?在小组中互相说说。

2、组织讨论。

(1)出示讨论题。

(2)小组交流,巡视指导。

(3)汇报交流。

你是怎么获得这个知识的?我们在学习这个知识时运用了什么方法?

3、小结。同学们对这一单元的知识点掌握得很好,我们不仅要理解概念和意义,还要会熟练地运用。

二、练习与应用。

1、完成第1题。

(1)独立完成计算。

(2)汇报与展示,说说错误的原因及改正的方法。

2、完成第2题。

(1)学生独立完成。

(2)你用怎样的方法连线的?(解方程求出未知数的值;把x的值代入方程。)。

3、完成第3题。

(1)列出方程,不解答。

(2)你是怎样列的?怎么想的?大家同意吗?

(3)完成计算。

4、完成第4题。单价、数量、总价之间有怎样的数量关系?指出:抓住基本关系列方程,y也可以表示未知数。

三、课堂总结。

通过回顾与整理,大家共同复习了有关方程的知识,你还有什么疑问吗?

亲情方程式作文。

九年级上册化学方程式课件。

提高学生化学方程式学习效率初探论文。

对不确定系数化学方程式的探讨论文。

虚位移原理到拉格朗日方程-物理学毕业论文。

【本文地址:http://www.pourbars.com/zuowen/16860408.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map