新闻是一种通过报道事实和观点来传递信息和引起公众关注的媒体形式。写总结时要尽量客观公正,对自己的优点和缺点都要有清醒的认识。以下是总结撰写的一些技巧和要点,供您参考和借鉴。
函数的概念说课稿篇一
教学目标:
1、进一步理解的概念,能从简单的实际事例中,抽象出关系,列出解析式;
2、使学生分清常量与变量,并能确定自变量的取值范围.
3、会求值,并体会自变量与值间的对应关系.
4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的的自变量的取值范围的求法.
5、通过的教学使学生体会到事物是相互联系的.是有规律地运动变化着的.
教学重点:了解的意义,会求自变量的取值范围及求值.
教学难点:概念的抽象性.
教学过程:
(一)引入新课:
上一节课我们讲了的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的.
生活中有很多实例反映了关系,你能举出一个,并指出式中的自变量与吗?
1、学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系.
2、为迎接新年,班委会计划购买100元的小礼物送给同学,求所能购买的总数n(个)与单价(a)元的关系.
解:1、y=30n。
y是,n是自变量。
2、,n是,a是自变量.
(二)讲授新课。
刚才所举例子中的,都是利用数学式子即解析式表示的.这种用数学式子表示时,要考虑自变量的取值必须使解析式有意义.如第一题中的学生数n必须是正整数.
例1、求下列中自变量x的取值范围.。
(1)(2)。
(3)(4)。
(5)(6)。
分析:在(1)、(2)中,x取任意实数,与都有意义.
(3)小题的是一个分式,分式成立的条件是分母不为0.这道题的分母是,因此要求.
同理(4)小题的也是分式,分式成立的条件是分母不为0,这道题的分母是,因此要求且.
同理,第(6)小题也是二次根式,是被开方数,。
解:(1)全体实数。
(2)全体实数。
(3)。
(4)且。
(5)。
(6)。
小结:从上面的例题中可以看出的解析式是整数时,自变量可取全体实数;的解析式是分式时,自变量的取值应使分母不为零;的解析式是二次根式时,自变量的取值应使被开方数大于、等于零.
注意:有些同学没有真正理解解析式是分式时,自变量的取值应使分母不为零,片面地认为,凡是分母,只要即可.教师可将解题步骤设计得细致一些.先提问本题的分母是什么?然后再要求分式的分母不为零.求出使成立的自变量的取值范围.二次根式的问题也与次类似.
但象第(4)小题,有些同学会犯这样的错误,将答案写成或.在解一元二次方程时,方程的两根用“或者”联接,在这里就直接拿过来用.限于初中学生的接受能力,教师可联系日常生活讲清“且”与“或”.说明这里与是并且的关系.即2与-1这两个值x都不能取.
函数的概念说课稿篇二
我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数。
1、6、(板书)。
这类函数之所以重点介绍的原因就是它是实际生活中的一种需要。比如我们看下面的问题:
由学生回答:x与x之间的关系式,可以表示为x。
问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了x次后绳子剩余的长度为x米,试写出x与x之间的函数关系。
由学生回答:x。
在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量x均在指数的位置上,那么就把形如这样的函数称为。
1、定义:形如x的函数称为。(板书)。
教师在给出定义之后再对定义作几点说明。
2、几点说明x(板书)。
(1)x关于对x的规定:
教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若x会有什么问题?如x,此时x,x等在实数范围内相应的函数值不存在。
若x对于x都无意义,若x则x无论x取何值,它总是1,对它没有研究的必要。为了避免上述各种情况的发生,所以规定x且x。
(2)关于的定义域x(板书)。
教师引导学生回顾指数范围,发现指数可以取有理数。此时教师可指出,其实当指数为无理数时,x也是一个确定的实数,对于无理指数幂,学过的有理指数幂的"性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以的定义域为x。扩充的另一个原因是因为使她它更具代表更有应用价值。
(3)关于是否是的判断(板书)。
刚才分别认识了中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是,请看下面函数是否是。
(4)x,x。
(5)x。
学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是,其中(3)x可以写成x,也是指数图象。
最后提醒学生的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质。
3、归纳性质。
作图的用什么方法。用列表描点发现,教师准备明确性质,再由学生回答。
函数。
1、定义域x:
2、值域:
3、奇偶性x:既不是奇函数也不是偶函数。
4、截距:在x轴上没有,在x轴上为1。
对于性质1和2可以两条合在一起说,并追问起什么作用。(确定图象存在的大致位置)对第3条还应会证明。对于单调性,我建议找一些特殊点。,先看一看,再下定论。对最后一条也是指导函数图象画图的依据。(图象位于x轴上方,且与x轴不相交。)。
在此基础上,教师可指导学生列表,描点了。取点时还要提醒学生由于不具备对称性,故x的值应有正有负,且由于单调性不清,所取点的个数不能太少。
此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据。连点成线时,一定提醒学生图象的变化趋势(当x越小,图象越靠近x轴,x越大,图象上升的越快),并连出光滑曲线。
二、图象与性质(板书)。
1、图象的画法:性质指导下的列表描点法。
2、草图:
当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且x,取值可分为两段)让学生明白需再画第二个,不妨取x为例。
此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单。即x=x与x图象之间关于x轴对称,而此时x的图象已经有了,具备了变换的条件。让学生自己做对称,教师借助计算机画图,在同一坐标系下得到x的图象。
最后问学生是否需要再画。(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如x的图象一起比较,再找共性)。
由于图象是形的特征,所以先从几何角度看它们有什么特征。教师可列一个表,如下:
以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满。
填好后,让学生仿照此例再列一个x的表,将相应的内容填好。为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质。
3、性质。
(1)无论x为何值,x都有定义域为x,值域为x,都过点x。
(2)x时,x在定义域内为增函数,x时,x为减函数。
(3)x时,x,xx时,x。
总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质。
三、简单应用x(板书)。
1、利用单调性比大小。x(板书)。
一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题。首先我们来看下面的问题。
例1、x比较下列各组数的大小。
(1)x与x;x(2)x与x;。
(3)x与1x。(板书)。
首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同。再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小。然后以第(1)题为例,给出解答过程。
解:x在x上是增函数,且x。(板书)。
教师最后再强调过程必须写清三句话:
(1)x构造函数并指明函数的单调区间及相应的单调性。
(2)x自变量的大小比较。
(3)x函数值的大小比较。
后两个题的过程略。要求学生仿照第(1)题叙述过程。
例2。比较下列各组数的大小。
(1)x与x;x(2)x与x;。
(3)x与x。(板书)。
先让学生观察例2中各组数与例1中的区别,再思考解决的方法。引导学生发现对(1)来说x可以写成x,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说x可以写成x,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决。(教师可提示学生的函数值与1有关,可以用1来起桥梁作用)。
最后由学生说出x1,1。
解决后由教师小结比较大小的方法。
(1)x构造函数的方法:x数的特征是同底不同指(包括可转化为同底的)。
(2)x搭桥比较法:x用特殊的数1或0。
四、巩固练习。
练习:比较下列各组数的大小(板书)。
(1)x与xx(2)x与x;。
(3)x与x;x(4)x与x。解答过程略。
五、小结。
2、的图象和性质。
3、简单应用。
六、板书设计。
函数的概念说课稿篇三
一、说课内容:
九年级数学下册第27章第一节的二次函数的概念及相关习题(华东师范大学出版社)。
二、教材分析:
1、教材的地位和作用。
这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解数形结合的重要思想。而本节课的二次函数的概念是学习二次函数的'基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:
(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.
(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.
3、教学重点:对二次函数概念的理解。
4、教学难点:抽象出实际问题中的二次函数关系。
三、教法学法设计:
1、从创设情境入手,通过知识再现,孕伏教学过程。
2、从学生活动出发,通过以旧引新,顺势教学过程。
3、利用探索、研究手段,通过思维深入,领悟教学过程。
四、教学过程:
(一)复习提问。
1.什么叫函数?我们之前学过了那些函数?
(一次函数,正比例函数,反比例函数)。
2.它们的形式是怎样的?
(y=kx+b,ky=kx,ky=,k0)。
【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k0的条件,以备与二次函数中的a进行比较.
(二)引入新课。
函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。
例1、(1)圆的半径是r(cm)时,面积与半径之间的关系是什么?
解:s=0)。
解:y=x(20/2-x)=x(10-x)=-x2+10x(0。
解:y=100(1+x)2。
=100(x2+2x+1)。
=100x2+200x+100(0。
教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?
(三)讲解新课。
以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。
二次函数的定义:形如y=ax2+bx+c(a0,a,b,c为常数)的函数叫做二次函数。
1、强调形如,即由形来定义函数名称。二次函数即y是关于x的二次多项式(关于的x代数式一定要是整式)。
2、在y=ax2+bx+c中自变量是x,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r0)。
3、为什么二次函数定义中要求a?
(若a=0,ax2+bx+c就不是关于x的二次多项式了)。
4、在例3中,二次函数y=100x2+200x+100中,a=100,b=200,c=100.
5、b和c是否可以为零?
由例1可知,b和c均可为零.
若b=0,则y=ax2+c;。
若c=0,则y=ax2+bx;。
若b=c=0,则y=ax2.
注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式.
判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.
(1)y=3(x-1)2+1(2)s=3-2t2。
(3)y=(x+3)2-x2(4)s=10r2。
(5)y=22+2x(6)y=x4+2x2+1(可指出y是关于x2的二次函数)。
(四)巩固练习。
1.已知一个直角三角形的两条直角边长的和是10cm。
(1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;。
(2)设这个直角三角形的面积为scm2,其中一条直角边为xcm,求s关。
于x的函数关系式。
【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。
2.已知正方体的棱长为xcm,它的表面积为scm2,体积为vcm3。
(1)分别写出s与x,v与x之间的函数关系式子;。
(2)这两个函数中,那个是x的二次函数?
【设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。
五、评价分析。
本节的一个知识点就是二次函数的概念,教学中教师不能直接给出,而要让学生自己在分析、揭示实际问题的数量关系并把实际问题转化为数学模型的过程中,使学生感受函数是刻画现实世界数量关系的有效模型,增加对二次函数的感性认识,侧重点通过两个实际问题的探究引导学生自己归纳出这种新的函数二次函数,进一步感受数学在生活中的广泛应用。对于最大面积问题,可给学生留为课下探究问题,发展学生的发散思维,方法不拘一格,只要合理均应鼓励。
函数的概念说课稿篇四
函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。本章节9个课时,函数这一章在开云KY官方登录入口 数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而开云KY官方登录入口 阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。
二、教学目标。
理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。
通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。
通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。
三、重难点分析确定。
一、教学基本思路及过程。
本节课《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课(借助小黑板)从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用,也为进一步学习函数这一章的其它内容提供了方法和依据。
二、学情分析。
一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。
函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度,加上学生数学基础较差,理解能力,运算能力等参差不齐等。
三、教法、学法。
1、本节课采用的方法有:
直观教学法、启发教学法、课堂讨论法。
2、采用这些方法的理论依据:
我一方面精心设计问题情景,引导学生主动探索,另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程,充分体现“教师为主导,学生为主体”的教学原则。
函数的概念说课稿篇五
教学目标:
1、进一步理解的概念,能从简单的实际事例中,抽象出关系,列出解析式;
2、使学生分清常量与变量,并能确定自变量的取值范围.
3、会求值,并体会自变量与值间的对应关系.
4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的的自变量的取值范围的求法.
5、通过的教学使学生体会到事物是相互联系的.是有规律地运动变化着的.
教学重点:了解的意义,会求自变量的取值范围及求值.
教学难点:概念的抽象性.
教学过程:
(一)引入新课:
上一节课我们讲了的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的.
生活中有很多实例反映了关系,你能举出一个,并指出式中的自变量与吗?
1、学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系.
2、为迎接新年,班委会计划购买100元的小礼物送给同学,求所能购买的总数n(个)与单价(a)元的关系.
解:1、y=30n。
y是,n是自变量。
2、,n是,a是自变量.
(二)讲授新课。
刚才所举例子中的,都是利用数学式子即解析式表示的.这种用数学式子表示时,要考虑自变量的取值必须使解析式有意义.如第一题中的学生数n必须是正整数.
例1、求下列中自变量x的取值范围.。
(1)(2)。
(3)(4)。
(5)(6)。
分析:在(1)、(2)中,x取任意实数,与都有意义.
(3)小题的是一个分式,分式成立的条件是分母不为0.这道题的分母是,因此要求.
同理(4)小题的也是分式,分式成立的条件是分母不为0,这道题的分母是,因此要求且.
同理,第(6)小题也是二次根式,是被开方数,。
解:(1)全体实数。
(2)全体实数。
(3)。
(4)且。
(5)。
(6)。
小结:从上面的例题中可以看出的解析式是整数时,自变量可取全体实数;的解析式是分式时,自变量的取值应使分母不为零;的解析式是二次根式时,自变量的取值应使被开方数大于、等于零.
注意:有些同学没有真正理解解析式是分式时,自变量的取值应使分母不为零,片面地认为,凡是分母,只要即可.教师可将解题步骤设计得细致一些.先提问本题的分母是什么?然后再要求分式的分母不为零.求出使成立的自变量的取值范围.二次根式的问题也与次类似.
但象第(4)小题,有些同学会犯这样的错误,将答案写成或.在解一元二次方程时,方程的两根用“或者”联接,在这里就直接拿过来用.限于初中学生的接受能力,教师可联系日常生活讲清“且”与“或”.说明这里与是并且的关系.即2与-1这两个值x都不能取.
将本文的word文档下载到电脑,方便收藏和打印。
函数的概念说课稿篇六
教材采用北师大版(数学)必修1,函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。本章节9个课时,函数这一章在开云KY官方登录入口 数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而开云KY官方登录入口 阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。
二、教学目标。
理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。
通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。
通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。
三、重难点分析确定。
一、教学基本思路及过程。
本节课《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课(借助小黑板)从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用,也为进一步学习函数这一章的其它内容提供了方法和依据。
二、学情分析。
一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。
函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度,加上学生数学基础较差,理解能力,运算能力等参差不齐等。
三、教法、学法。
1、本节课采用的方法有:
直观教学法、启发教学法、课堂讨论法。
2、采用这些方法的理论依据:
我一方面精心设计问题情景,引导学生主动探索,另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程,充分体现“教师为主导,学生为主体”的教学原则。
函数的概念说课稿篇七
理解任意角的概念;理解终边相同的角的意义;了解弧度的意义,并能进行弧度与角度的互化.
理解任意角三角函数(正弦、余弦、正切)的定义;初步了解有向线段的概念,会利用单位圆中的三角函数线表示任意角的正弦、余弦、正切.
终边相同的角的意义和任意角三角函数(正弦、余弦、正切)的定义.
一、问题.
1、角的概念是什么?角按旋转方向分为哪几类?
2、在平面直角坐标系内角分为哪几类?与终边相同的角怎么表示?
3、什么是弧度和弧度制?弧度和角度怎么换算?弧度和实数有什么样的关系?
4、弧度制下圆的弧长公式和扇形的面积公式是什么?
5、任意角的三角函数的定义是什么?在各象限的符号怎么确定?
6、你能在单位圆中画出正弦、余弦和正切线吗?
7、同角三角函数有哪些基本关系式?
二、练习.
1.给出下列命题:
(1)小于的角是锐角;
(2)若是第一象限的角,则必为第一象限的角;
(3)第三象限的角必大于第二象限的角;
(4)第二象限的角是钝角;
(5)相等的角必是终边相同的角;终边相同的角不一定相等;
(6)角2与角的终边不可能相同;
2.设p点是角终边上一点,且满足则的值是。
4.若则角的终边在象限。
5.在直角坐标系中,若角与角的终边互为反向延长线,则角与角之间的关系是。
6.若是第三象限的角,则-,的终边落在何处?
例1.如图,分别是角的终边.
(1)求终边落在阴影部分(含边界)的所有角的集合;
(2)求终边落在阴影部分、且在上所有角的集合;
(3)求始边在om位置,终边在on位置的所有角的集合.
例2.
(1)已知角的终边在直线上,求的值;
(2)已知角的终边上有一点a,求的值。
例3.若,则在第象限.
1、若锐角的终边上一点的坐标为,则角的弧度数为.
2、若,又是第二,第三象限角,则的取值范围是.
3、一个半径为的扇形,如果它的周长等于弧所在半圆的弧长,那么该扇形的圆心角度数是弧度或角度,该扇形的面积是.
4、已知点p在第三象限,则角终边在第象限.
5、设角的终边过点p,则的值为.
6、已知角的终边上一点p且,求和的值.
1、经过3小时35分钟,分针转过的角的弧度是.时针转过的角的弧度数是.
2、若点p在第一象限,则在内的取值范围是.
3、若点p从(1,0)出发,沿单位圆逆时针方向运动弧长到达q点,则q点坐标为.
4、如果为小于360的正角,且角的7倍数的角的终边与这个角的终边重合,求角的值.
函数的概念说课稿篇八
堂真正成为学生展示自我的舞台。充分利用合作交流的形式,能使教师发现学生分析问题解决问题的独到见解以及思维的误区,以便指导今后的教学。但在复习与练习的过程中,我发现学生存在着这样几个问题。
1、某些记忆性的知识没记住。
3、学生的识图能力、读题能力与分析问题、解决问题的能力较弱。
4、解题过程写得不全面,丢三落四的现象严重。
1、根据实际情况,对于中考升学有希望的学生利用课余时间做好他们的思想工作。并对他们进行面对面的单独辅导,增强他们的自信心,以此来提高他们的数学成绩。
2、结合自己的学习经验对他们进行学法指导和解题技巧的指导。
3、根据不同的学生情况,搜集典型题让他们单独做,并给予及时的辅导与矫正。
4、与其它任课教师联手一起想对策,指导学生读题的方法与分析问题,解决问题的方法。
5、无论是做练习还是考试之前,都告诉学生要认真仔细的读题,从图形中获取信息。
函数的概念说课稿篇九
函数是开云KY官方登录入口 数学的重要研究问题,贯穿整个开云KY官方登录入口 数学的学习。然而同学们对初中的函数概念的理解根深蒂固。要使他们接受从集合角度所定义的函数概念很难。本身这个概念很抽象,叙述起来很冗长,同学们读了一遍又一遍始终不解其意,我便采用启发式教学,就像学习语文一样,让大家总结函数的本质为:“函数是一种对应关系”再启发得到:“函数是两个非空数集之间的对应关系”,又得到“函数是两个非空数集之间满足一对一或多对一的对应关系”,再加上细节性的定语。大多数同学顿时觉得茅塞顿开,明白清楚。我又加之几个实例判断是否为函数并分解其理由,同学们更加清楚明了。
通过这个概念的学习,我从中得到启示:要使学生数学思维生动活泼对抽象概念的学习不能照本宣科,必须对知识重组,揭示概念的`本质,使学生乐于学习它,并运用它。
这是我这节课后的一点小反思,也算是以后授课的一点小启示。
函数的概念说课稿篇十
作为一个计算机科学专业的学生,学习函数的概念在日常学习中频繁出现。函数是计算机科学中的基本概念之一,它可以说代表了程序的核心和基础。在学习和使用函数的过程中,我有幸深入了解了函数的概念,与之相关的特点以及它在编程中的应用等方面。通过这次学习,我对函数有了更深刻的理解并体会到了它的重要性。下面将通过以下五个方面来分享我对函数的概念的开云官网app下载安装手机版 。
函数是计算机科学中的一个重要概念,它是一段代码的封装,可以接受输入参数并返回一个结果。在编程中,我们可以将函数看做是一个工厂,按照我们需求将输入转化成期望的输出。通过函数的抽象,我们可以将复杂的问题分解成更小的部分,使得代码更容易被理解和组织。使用函数还可以提高代码的复用性和可维护性,我们可以多次调用同一个函数而不需要重复写同样的代码。因此,掌握函数的基本概念对于编程能力的提升和编写高效代码来说是至关重要的。
第二段:函数的特点。
函数有三个主要的特点,分别是输入参数、返回值和可组合性。输入参数是指函数接受的输入,它们可以是任意类型的数据,同时也可以没有输入参数。函数根据输入参数的不同,可以返回不同的结果。返回值是函数处理完输入参数之后得到的结果,我们可以使用这个结果进行下一步的操作。而可组合性则是指函数之间可以相互组合,通过一个函数的输出作为另一个函数的输入来实现更复杂的功能。函数的特点使得我们可以通过合理的组织和使用函数来编写出更加高效和灵活的代码。
第三段:函数在编程中的应用。
函数在编程中有着广泛的应用。首先,函数可以用于封装重复的代码。在编程中,我们经常会遇到同样的代码需要多次使用的情况,如果每次都重复写这些代码,不仅效率低下,而且还增加了代码的冗余性。通过使用函数,我们可以将这些重复的代码封装起来,提高代码的复用性,并且使得代码更易于理解和维护。其次,函数可以用于实现特定的功能。例如,计算一个数的平方、求两个数之和等,这些功能都可以通过编写相应的函数来实现,并且可以多次调用。最后,函数还可以用于编写更为复杂的程序。通过将一个程序分解成多个函数,每个函数负责一个特定的功能,我们可以更好地组织和管理程序。函数的应用丰富多样,在编程中起到了至关重要的作用。
第四段:函数对编程能力提升的作用。
掌握函数的概念和使用方法,对于编程能力的提升有着显著的作用。首先,函数可以提高编程效率。通过合理地封装和使用函数,可以减少代码的冗余性,提高代码的复用率,从而减少编写代码的时间和精力。其次,函数使得代码更易于理解和维护。通过将程序分解成多个函数,每个函数负责一个特定的功能,我们可以更好地理解和维护程序,降低开发和维护的难度。最后,函数还可以提高程序的组织性和可扩展性。通过函数的抽象特性,我们可以将复杂的问题分解成多个小的部分,每个部分负责特定的功能。这样既提高了代码的组织性,又便于后期的扩展。
在学习函数的过程中,我体会到了函数在编程中的重要性和灵活性。学习函数不仅是学习计算机科学的基础,更是掌握编程能力的关键。通过函数的学习,我不仅进一步理解了编程语言的结构和逻辑,还对如何利用函数来提高编程效率和代码的可维护性有了更深刻的认识。在未来的学习和实践中,我会进一步加深对函数的理解,并在编程中充分发挥函数的作用,提高自己的编程能力。
通过对函数的概念、特点以及在编程中的应用等方面的学习,我对函数有了更深刻的理解并体会到了它的重要性。函数是编程的基础和核心,掌握函数的概念和使用方法对于编程能力的提升至关重要。通过函数,我们可以更好地组织和管理代码,提高编程效率和代码的可维护性,并且使得代码更易于理解和扩展。函数的学习心得将引导我在未来的学习和实践中更好地利用函数来提高编程能力,创造更加高效和优雅的代码。
函数的概念说课稿篇十一
函数是开云KY官方登录入口 数学中一个非常重要的内容之一,它贯穿整个开云KY官方登录入口 阶段的数学学习,乃到一生的数学学习过程。其重要性主要体现在:
1、函数本身源于在现实生活,例如自然科学乃至于社会科学中,具有广泛的应用。
2、函数本身是数学的重要内容,是沟通代数、几何、三角等内容的桥梁。亦是今后进一步学习高等数学的基础和方法。
3、函数部分内容蕴涵大量的重要数学方法,如函数的思索,方程的思想,分类讨论的思想,数形结合的思想,化归的思想,换元法,侍定系数法、配方法等。这些思想方法是进一步学习数学和解决数学问题的基础,是我们教学过程中应注意重点讲解学生重点掌握的部分。
然而函数这部份知识在教学中又是一大难点这主要是因为概念的抽象性,学生理解起来相当不容易,接受起来就更难这又是由于函数这部份知识的主要思想特点体现于一个“变”字。即研究的主要是“变量”与“变量”之间的关系,要求用变量的眼光,运动变化的关点去看侍和接触相关问题,这与初中学习知识的以静态观点为中习的思维特点有较大差异,所以函数成了高一新生进入开云KY官方登录入口 首先到的一条拦路虎,有些学生开云KY官方登录入口 毕业了,对函数这个概念也没有理解透澈。
实际上,在学习函数这部份知识中,函数概念是最重要的,也就是最难的地方,突破了它后面的学习就容易了。现行的数学教材,其主要内容表现的都是数学知识的技术形式。函数的概念亦是如此,不管是传统定义也好,还是近代定义也好,表现出来的都是抽象数学形式,在数学的教学中,学习形式化的表达是一项基本要求,但是不能只限于形式表达,要强调对数学本质的认识,否则会将生动活泼的数学思维活动淹没在形式化的海洋里。对数学知识的教学要返璞归真,努力揭示数学概念、法则,结论发展过程和本质。对越是抽象的数学概念,越是如此。所以函数概念的教学更忌照本宣科,要注意对知识进行重组。努力去提示函数概念的本质,使学生真正理解它,觉得它有用,而乐于学习它。
函数的概念说课稿篇十二
1、x理解的定义,初步掌握的图象,性质及其简单应用。
2、x通过的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法。
3、x通过对的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣。
函数的概念说课稿篇十三
函数是研究现实世界变化规律的一个重要模型,对函数的学习一直以来都是中学阶段的一个重要的内容。函数的概念是学习后续“函数知识”的最重要的基础内容,而函数的概念又是一个比较抽象的,对它的理解一直是一个教学难点,学生对这些问题的探索以及研究思路都是比较陌生的,因此,在教学过程中,注意通过对以前学过的“变量之间的关系”的回顾与思考,力求提供生动有趣的问题情境,激发学生的学习兴趣;并通过层层深入的问题设计,引导学生进行观察、操作、交流、归纳等数学活动,在活动中归纳、概括出函数的概念;并通过师生交流、生生交流、辨析识别等加深学生对函数概念的理解。
函数是初中阶段数学学习的一个重要内容,学生又是第一次接触函数,充分考虑学生的接受能力,从生动有趣的问题情景出发,通过对一般规律的探索过程,从实际问题中抽象出一次函数和正比例函数的概念.又通过具有丰富的现实背景的例题,进一步理解一次函数和正比例函数的概念,为下一步学习《一次函数图像》奠定基础,并形成用函数观点认识现实世界的能力与意识.
函数的概念说课稿篇十四
学习培训提供的视频,结合本节课的上课经历,我反思如下:
备课要多研究课本,研究课本的题目设置,备课前还要翻看海南省五年来高考题,以做到和编书者出题者步调一致。比如新课改后课本多是举例引入或得出概念、公式、定理,淡化逻辑证明,而高考更多是考基础性常规题,那么老实备课的时候就要注意重视应用,淡化理论。
我个人的问题是上课思路容易混乱,喜欢用口头禅,爱重复啰嗦生怕学生不懂,随口加一些不严格的内容。那么解决方法就是(1)备课的时候,通过举例和好玩的生活实例直接引入核心内容,从直观上接受重点“任意x唯一y”,尽可能简化解释,多做具体示例;(2)上课时铺开课本和备课本,是不是扫两眼,禁止临时加话。(3)在备课基础上,上课讲完备课的内容即可,在各内容之间加一句简单的承上启下的连接就行了。
我认为学习是学生的权利,而不是我强迫学,所以之前我从不管学生讲话玩手机睡觉。但是后面发现居然有一大片睡觉,而且我明明很有激情,讲着讲着我就困了。于是我采用了请班长科代表记名,每堂课交名单给我,期末汇总上交德育处的方法,正好12月12日学校在升旗时,发布了一个自动退学处分,学生都是害怕开除的,所以后面每节课,只有个别自我放弃的学生睡觉了。上课一眼扫下去,都坐得端端正正,我就有更多表演的欲望和随机应变的串场内容。
数学对海南学生来说,难是肯定的,所以极易疲惫。老师要充满爱的去搞笑,娇嗔耍宝装萌讲笑话,或者夸张发音,故意带口音,跟学生一唱一和瞎说,都可以带来学生一笑。长期还会融洽师生关系,得到学生的喜爱。
对一个老师来说,不管你的课堂多么生动活泼,这只是形式,核心还是在知识点够不够精简好记,重点难点学生是很轻松地懂了,还是说模模糊糊脑袋都懵了,这全在于老师在备课和上课上下的功夫,在于老师自己想透了没,找到合适的讲授或类比方法没。突破完全在一瞬间一个简单的道理,千万不要把师生都绕进去。
每章结束后,我会和学生一起在书皮上把本章核心知识点简洁总结,方便翻看。不重要的`不需要记忆,我会直接告诉学生。
最后,把一本课本和高考强调的核心知识点总结成好记的数字:比如必修1是7。比如必修2是71221k。
函数的概念说课稿篇十五
函数作为数学中的重要概念,在我们学习数学的过程中扮演着重要的角色。它不仅在数学理论中起到了桥梁的作用,还在实际问题的解决中发挥了重要的作用。而在我对函数的学习过程中,我深深地感受到了函数的重要性,并从中有所收获。下面我将分享我对函数的概念的开云官网app下载安装手机版 。
在学习过程中,我逐渐理解了函数的概念。函数本质上是一种特殊的关系:对于给定的输入,总会有唯一的输出。我们可以将函数看作是一个黑盒子,它接收输入,进行特定的操作,并给出输出。通过这种机制,我们就能够将复杂的问题化简成简单的部分,并对每个部分进行研究。这种思维方式使得解决问题变得更加简单明了。
第三段:函数在数学理论中的应用。
函数的概念在数学理论中起到了重要的作用。函数是整个数学体系中的一个基础概念,它是一切数学理论的基石。从数学的角度来看,我们可以利用函数来研究各种数学问题,如数列、极限、微积分等。函数让我们能够更好地理解和掌握数学知识,并通过函数的特性和性质来解决具体的数学问题。经过学习,我发现函数的概念是学习数学的关键,只有完全掌握了函数的概念,才能在数学理论和实际问题中取得更好的成绩。
第四段:函数在实际问题中的应用。
函数的概念不仅仅局限于数学理论,它在实际问题的解决中也发挥了重要的作用。无论是自然科学还是社会科学,都需要使用函数来描述和解释现象和问题。例如,物理学中的运动问题、经济学中的供求关系、生物学中的生物生长等都可以通过函数来进行建模和分析。函数的应用使得我们能够更好地理解和解决实际问题,从而提高我们的学习和研究水平。
第五段:结尾。
总结起来,函数的概念对于我们的学习和思维方式都有着重要的影响。通过对函数的学习,我不仅对数学理论有了更深入的理解,还学会了将复杂的问题进行分解和处理。函数的应用使得我们能够更好地解释和解决实际问题,提升我们的学习和研究水平。因此,我们应该重视对函数概念的学习,并不断深化对函数的理解和应用。只有这样,我们才能在数学领域和实际问题的解决中取得更好的成绩。
函数的概念说课稿篇十六
(1)x是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究。
(2)x本节的教学重点是在理解定义的基础上掌握的图象和性质。难点是对底数x在x和x时,函数值变化情况的区分。
(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。
函数的概念说课稿篇十七
在开云KY官方登录入口 数学中,函数概念的教学是我们教师的一个难题。听了老师的讲座,给我带来了新的思路,也为解决这个难题提供了很好的指导。
虽然对函数概念本质理解并非一次就能实现,它有一个循序渐进、逐步完善,通过多角度多章节的学习,学生才能有一个较完整的深刻理解。但我们在学生刚接触函数概念时就应让学成从多角度去思考,去理解。
第一,从初开云KY官方登录入口 数学中对函数定义的比较中,让学生能从初中的描述性概念把函数看成变量之间的依赖关系到开云KY官方登录入口 用集合与对应的语言定义函数,从而达到函数概念的提升,从而更好地解决如y=3这样的常数函数概念的解释。
第二要用好课本,用课本教,而非教课本。充分利用好课本中函数概念的背景教学,通过三个实例:炮弹发射;大气层臭氧问题,恩格尔系数问题培养学生观察问题提出问题的探究能力,培养学生抽象概括逐步学会数学表达和交流。
第三充分发挥函数图像的集合直观作用,加强数形结合思想。数形结合,几何直观的数学思想方法对学生理解函数概念以及性质十分重要。通过让学生作图观察图像充分认识函数概念的整体性。我觉得这种方法在开云KY官方登录入口 阶段是贯彻始终的。只有让学生充分学好图像认识好图像,能看懂图像,能解释图像,那么对解决花束问题将起着十分重要的作用。
【本文地址:http://www.pourbars.com/zuowen/16885492.html】