圆柱表面积教案大全(12篇)

格式:DOC 上传日期:2023-12-02 05:39:11
圆柱表面积教案大全(12篇)
时间:2023-12-02 05:39:11 小编:笔舞

教案的组织结构应该合理,能够清晰地体现教学内容和教学步骤。教案应该明确教学目标,让学生知道自己将要学到什么。探索创新教学的教案分享,帮助教师提升教学质量和学生学习效果。

圆柱表面积教案篇一

(1)请同学们拿出圆柱来看一看,想一想圆柱的表而包括哪几个部分,然后告诉大家。指名学生拿出圆柞,边指边说明它的表面包括哪几个部分。

(2)教师演示。

出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的对不对。揭下圆柱表面的纸,贴在黑板上,再与圆柱对比说明各个部分,明确圆柱表面包括一个侧面和两个相等的圆。

(3)得出公式。

2.教学例2。

出示例2,学生读题。提问:这道题分哪几步来算?你们会做吗?指名一人板演,其余学生做在练习本上。集体订正,让学生说说每一步的具体含义,是怎样算的。

3.组织练习。

做练一练第1题。指名两人板演,其余学生做在练习本上。集体订正,说说这两题计算时有什么不同的地方,为什么?指出:计算圆柱的表面积,要注意题里的条件,正确列出算式计算。

4.教学例3。

出示例3,学生读题。提问:这道题实际是求什么?这里求表面积与例2有什么不同,为什么?(只要用侧面积加一个底面积)指名学生板演,其余学生做在练习本上。集体订正,追问为什么只加一个底面积。强调不用四舍五入法及其理由,说明用进一法,并让学生说明结果的近似值,板书订正。

5.组织练习。

(1)下面的数用进一法保留整数,各是多少?(口答)。

162.329.43.842.6。

(2)做练一练第2题。让学生做在练习本上。指名口答前两步各求什么,怎样算的。(老师板书算式)提问:第三步要怎样算,为什么只加一个底面积。

圆柱表面积教案篇二

知识与技能:理解并掌握圆柱体的侧面积和表面积的计算方法,能结合具体情境,灵活运用计算方法解决实际问题。

过程与方法:经历圆柱表面积、侧面积计算方法的探索过程,培养学生自主探索、合作交流的能力。

情感态度与价值观:学生获得积极成功的情感体验,体会数学与生活的密切联系。

能结合具体情境,灵活运用圆柱侧面积、表面积的计算方法解决实际问题。

(一)创设生活情景,引入新课。

我根据学生喜欢喝饮料的爱好,创建生活情景,“同学们都喜欢喝饮料,那么你们知道做这样的一个饮料罐至少需要多少的铁皮吗?怎样计算?”这节课,我们就来一起学习圆柱的表面积(板书课题)(设计意图:数学来源于生活,又应用于生活,我利用学生的生活实际设疑引入新课,很容易激发学生的学习兴趣,进而求知,解决问题。)。

(2)引导探究,学习新知。

师:我们来做一个“饮料罐”,该怎样做??

生:要做一个圆筒,和两个完全相同的圆。

师:用什么形状的纸来做卷筒呢?同学们说的意见不一致时,我适时引导,你们动手剪一剪不就知道了吗?每一组的同学都剪开自己带来的圆筒,有的得到了长方形,有的得到了平行四边形,也有的得到了正方形。

(设计意图:动手操作,使学生对圆柱各部分的组成有了完整的认识,培养了学生的创造能力,同时也揭示了知识间的内在联系,实现了知识的转化和迁移。)。

师:我们先来研究把圆筒剪开展平是一个长方形的情况,求这个饮料罐要用铁皮多少?就是求什么?学生观察、思考、议论。

生1:求饮料罐铁皮用料面积就是求:圆面积×2+长方形面积。

师:这两位同学说得对吗?要求圆柱体的表面积要知道什么条件?生3:我看只要知道圆的半径和高就可以了。

师:我们来听听这位同学是怎么想的。

生3:长方形的长与圆的周长相等,长方形的宽与圆柱的高相等,所以只要知道圆的半径就可以求出长方形的长,也可以求出圆的面积。生4:我觉得知道圆的直径和高也可以了。

生5:我还觉得知道圆的周长和高也行。

师:这三位同学都说得很好,那么圆柱的侧面积该怎样求?

生6:因为长方形面积=长×宽所以圆柱的侧面积=底面周长×高。

师:如圆柱展开是平行四边形或正方形,是否也适用呢?学生分组动手操作,动笔验证,得出了同样的结论。

小结:同学们会动手、动脑,巧妙地把圆柱的侧面转化为平面图形,圆柱的侧面展开后不论是长方形、正方形或平行四边形,圆柱的侧面积都等于它的底面周长乘高。

师板书:圆柱侧面积=底面周长×高s侧=ch出示例1让学生独立计算出圆柱的侧面积,一生板演,集体订正。

(设计意图:学生在教师创设的情境中,分组合作得出结论,充分调动了学生学习的积极性,同时个性也得到发展。)。

师:我们知道了圆柱侧面积的计算了,那么它的表面积该怎样算呢?(1)出示例2。

分组讨论例2中给了哪些条件?求什么问题?它的表面积应包括几个面?怎样解答。

(设计意图:学生已掌握了圆面积和侧面积的计算方法,教学圆柱的表面积时,让学生自学交流就能掌握方法。)。

(2)教学例3。

师:通过计算,你有哪些收获?

生5:我知道了,做这个无盖水桶要用铁皮多少平方厘米就是求一个侧面积和一个底面积的和。

生6:在得数保留时,我觉得应该用进一法取近似值,因为用料比实际多一些,因为有损耗,所以要用进一法。让学生看34页,看“注意”后的一段话。

(设计意图:让学生从生活实际出发,充分讨论,理解进一法,明确在什么情况下用“进一法”取近似值,培养学生实际应用意识。)。

(3)巩固练习,灵活运用。

小结:计算圆柱的表面积要根据具体实物分别处理,要学会运用新学的知识合理灵活地解决生活中的实际问题。

2、综合练习(只列式,不计算)。

(设计意图:通过这种练习进一步培养学生根据实际情况灵活运用知识的能力。)。

3、实践与应用。

小组合作测量计算:制作所带的圆柱形实物的用料面积,先让学生讲讲需要测量哪些数据,以及测量方法,再进行测量和计算。

(设计意图:培养学生合作意识和动手操作能力,锻炼学生用所学知识解决生活中的实际问题,使学生感受数学就在身边,不断提高应用数学的意识。)。

(4)全课小结在实际生活中,计算圆柱的表面积,要根据具体情况灵活掌握,如计算油桶的表面积是求侧面积与两个底面积的总和;无盖水桶的表面积是求侧面积加上一个底面积;水管-的表面积只求侧面积,另外,在实际中使用的材料都要比计算得到的结果多一些,所以都要采用“进一法”取近似值。

长方形的`面积=长×宽。

圆柱表面积教案篇三

2.掌握圆柱侧面积和表面积的计算方法.。

3.会正确计算圆柱的侧面积和表面积.。

教学重点。

理解求表面积、侧面积的计算方法,并能正确进行计算.。

教学难点。

能灵活运用表面积、侧面积的有关知识解决实际问题.。

教学过程。

一、复习准备。

(一)口答下列各题(只列式不计算).。

1.圆的半径是5厘米,周长是多少?面积是多少?

2.圆的直径是3分米,周长是多少?面积是多少?

(二)长方形的面积计算公式是什么?

(三)回忆圆柱体的特征.。

二、探究新知。

(一)圆柱的侧面积.。

1.学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系.。

(二)教学例1.。

1.出示例1。

例1.一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积.(得数保留两位小数)。

2.学生独立解答。

教师板书:3.14×0.5×1.8。

=1.75×l.8。

≈2.83(平方米)。

答:它的侧面积约是2.83平方米.。

3.反馈练习:一个圆柱,底面周长是94.2厘米,高是25厘米,求它的侧面积.。

1.教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积.。

2.比较圆柱体的表面积和侧面积的区别.。

(四)教学例2.。

1.出示例2。

例2.一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?

2.学生独立解答。

侧面积:2×3.14×5×15=471(平方厘米)。

底面积:3.14×=78.5(平方厘米)。

表面积:471+78.5×2=628(平方厘米)。

答:它的表面积是628平方厘米.。

3.反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积.。

(五)教学例3.。

1.出示例3。

例3.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)。

2.教师提问:解答这道题应注意什么?

3.学生解答,教师板书.。

水桶的侧面积:3.14×20×24=1507.2(平方厘米)。

水桶的底面积:3.14×。

=3.14×。

=3.14×100。

=314(平方厘米)。

需要铁皮:1507.2+314=1821.2≈1900(平方厘米)。

答:做这个水桶要用1900平方厘米.。

5.“四舍五入”法与“进一法”有什么不同.。

(2)“进一法”看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一.。

三、课堂小结。

圆柱表面积教案篇四

教学内容:

九年义务教育六年制小学数学第12册33~34页例1、例2、例3的“做一做”及练习七的`第2~5题。

教学目标:

1、知识目标:理解圆柱的侧面积和表面积的含义;掌握圆柱的侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积。

2、能力目标:能灵活运用求表面积、侧面积的有关知识解决一些实际问题。

3、德育目标:渗透事物之间联系的辩证唯物主义观点,使学生感悟到数学知识内在联系的逻辑之美,增强审美意识。

教学重点:理解求表面积、侧面积的计算方法,并能正确进行计算。

教学难点:能灵活运用表面积、侧面积的有关知识解决实际问题。

教学设想:

本课是在学生认识了圆柱,学习了圆、长方形等几何图形的基础上进行的。通过学习可以发展学生的观念,提高学生解决实际问题的能力。并为以后学习圆柱的体积计算打下良好的基础。本节课由于学生缺乏空间想象能力,计算繁琐,易使学生感到枯燥无味。因此,我在教学中充分调动学生的积极主动性,让学生在自主动手操作中发现问题,自主探索解决问题的途径以解决所遇到的数学问题。

遵循学生的认知规律,组织合理有效的教学程序。

(1)抓住关键,动手操作,突破难点。

圆柱的表面积等于侧面积加两个底面积的和,圆柱的底面是两个相等的圆。对于圆面积的计算是学生已有的知识,学生以前学过的面都是“平面”而圆柱的侧面却是个“曲面”。怎么样才能求出这个“曲面”的面积就成了圆柱表面积教学过程中的难点。于是让圆柱的侧面“由曲变直”,使新知识在一定的条件下统一起来就成了一个关键性的问题。通过教具演示,把侧面展开可以使侧面“由曲变直”,但学生缺乏这方面的生活经验,接受起来思维障碍较大。所以我反其道而行之,采用实验法,让学生卷一卷、分一分,把一张长方形的纸卷成一个尽可能粗的圆柱形的纸筒。使学生在操作的过程中感知:在一定的条件下,平面也可以“由直变曲”,那么反过来曲面当然也可以“由曲变直”。又经过引导学生观察、比较,讨论长方形纸的长和宽与用它卷成的圆柱形纸筒的底面周长和高的关系,学生认识圆柱的侧面已经水到渠成,得到圆柱的侧面积等于底面周长乘以高。

这样抓住新旧知识内在联系,安排学生动手操作,引导学生在发现问题后及时动脑思考,不仅激发学生兴趣,同时也促进了学生思维能力的发展。

(2)及时练习,巩固提高,形成能力。

学生的能力主要表现在获取知识和应用知识的过程中。求圆柱侧面积,由于已知条件的不同,有多种不同的计算方法,但用圆柱的底面周长乘以高是最直接的方法,通过练习处理好新知识与旧知识的结合,解决好已有技能在新情况下的运用,将对培养学生分析综合的能力,减轻学生的记忆负担起重要作用。因此,我在引导学生推导出圆柱侧面积的计算方法之后,及时安排了练习,使学生通过练习牢固掌握求圆柱侧面积的基本方法。对于题中没有直接告诉底面周长的,并没有一一进行方法的指导,只需把基本方法加以推广,知道如果没有直接告诉底面周长时,应用已知底面直径(或半径)求周长的方法,先求出底面周长,然后再求侧面积就可以了。这样就提高了学生运用基本数学知识灵活解决实际问题的能力,并减轻了学生学习中不必要的记忆负担。这一点既减轻学生过重负担又提高课堂教学效率。

(3)通过讨论,多向交流,培养独立思考能力。

为提高课堂教学效率,培养学生能力,我在教学中注意研究如何引导学生独立钻研问题。对于课本上的例题,可以提供给学生作为讨论和思考的材料,都尽量让学生独立去探讨。因此,教学时提出了“除了侧面外圆柱还有几个面?”“什么叫做圆柱的表面积?”“怎么样求圆柱的表面积?”等三个问题让学生分组讨论,进行独立的探索。在“怎么样求圆柱的表面积?”这个问题时,有的同学得出圆柱的表面积等于侧面积加上两个底面积;有的同学则会联系圆的面积公式推导过程,把圆柱的两个底面分成若干个小扇形后拼成一个与侧面同长的长方形,然后与侧面再拼成一个大长方形,那么整个圆柱的表面积=底面周长×(圆柱的高+底面半径),用字母表示即s=2лr×(h+r)。这样学生不仅亲自参与了对新知的探索使知识掌握得更加牢固,还对旧知进行再创造并萌发了创新意识,培养了学生的创新思维和创新能力。

(4)联系生活,迁移知识,感悟生活数学乐趣。

小学数学的教学内容绝大多数可以联系学生的生活实际,教师应找准每节教材内容与学生生活实际的“切入点”,调动学生学习数学的兴趣和参与的积极性。所以在教完例2后,我让学生举例说出日常生活中,哪些物体是没有两个底面的圆柱体。出示例3让学生认真审题,并说水桶有几个面,再计算出用了多少材料,学生计算完后,要求得数保留整百平方厘米。启发学生看书发现新问题,讨论计算使用材料取近似值时,要用“四舍五入”法还是用“进一法”。从而使学生理解“进一法”的意义。接着出示拓展延伸练习:制作一个高1.5米,直径0.2米的圆柱形烟囱,需要多少平方米铁皮?最后让每一位学生小组合作制作一个圆柱体水桶并评选出最佳作品展示。

课堂小结后,我提出“大家想一想,还有什么办法能求出计算圆柱体的表面积?”(例如,可以把圆柱切开,拼成近似的长方体,由长方体的表面积计算公式推导出圆柱的表面积计算公式)这个问题让学生知道了解决问题的方法是多种的,也有利于挖掘优生的潜能,还能为求圆柱的体积埋下伏笔。

总而言之,这节课充分调动了学生的手、眼、口、脑,借助学具让学生动手去实践,动脑去想,发现问题,解决问题。

圆柱表面积教案篇五

1、让学生经历操作、观察、比较和推理,理解圆柱侧面积和表面积的含义,探究并掌握圆柱侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积相关的一些简单实际问题。

2、让学生在学习活动中进一步积累空间与图形的学习经验,培养创新意识及合作精神,以及抽象、概括能力,进一步发展学生的空间观念。

3、让学生进一步体会图形与实际生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和学好数学的信心。

圆柱侧面积计算公式的推导过程。

茶叶盒,剪刀,计算器。

一、创设情境,导入新课。

师:在前面的学习中,我们认识了圆柱,并且知道生活中有很多物体的形状是圆柱。大家看,这些圆柱形状的物体。(课件出示)这些圆柱的制作都需要一定的材料。(课件出示一个茶叶盒)请同学们想一想,要求“制作一个茶叶盒需要多少材料”,实际上求的是圆柱的什么?(让学生边演示边说)。

二、动手操作,探究新知。

1、介绍圆柱的侧面积、底面积和表面积。

师:要求“制作一个茶叶盒需要多少材料”,实际上是求圆柱的侧面面积和2个底面面积。(边指边说)我们把圆柱侧面的面积叫做圆柱的侧面积,把圆柱底面的面积叫做圆柱的底面积,圆柱的侧面积加上两个底面的面积叫做圆柱的表面积。(让学生互相说一说“什么是圆柱的表面积”。)。

2、创疑激趣。

3、小组合作探究。

师:请同学们想一想,我们能不能把圆柱的侧面转化成所学过的图形求出它的面积呢?(小组合作探究,出示要求,结合圆柱的特征,用剪一剪、比一比等方法进行研究。)。

4、小组汇报。

5、教师小结,课件演示。

师:刚才同学们把圆柱的侧面沿高剪开,展开后是一个长方形,利用长方形面积公式推导出了圆柱的侧面积的计算方法,下面我们便结合电脑演示,进一步加深理解。

6、学习计算圆柱表面积。

师:我们已经会求圆柱的侧面积,你现在会求圆柱的表面积了吗?(让学生回答,并口头列式,教师板书求表面积的算式,并板书课题“圆柱的表面积”。)。

三、运用知识,解决问题。

师:下面我们便利用学过的知识解决一些问题。

1、只列式不计算。订正时,让学生说想法。

2、完整解答下面各题。

让学生独立审题。问:要求“制作笔筒需要多少材料”,实际是求圆柱的什么?(让学生列综合算式,集体订正。)。

四、知识拓展。

将一个底面直径是8分米,高是10分米的圆柱沿底面直径垂直切开,它的表面积增加()平方分米。

师:增加了几个面?是怎样的两个面?

(课件演示)。

五、全课总结。

师:通过本节课的学习,你有什么收获?

圆柱表面积教案篇六

教材40页、41页例1、例2、例3及做一做,练习十第2-5题。

素质教育目标。

(一)知识教学点。

(二)能力训练点。

能灵活运用求表面积、侧面积的有关知识解决一些实际问题。

教学重点。

理解求表面积、侧面积的计算方法,并能正确进行计算。

教学难点。

能灵活运用表面积、侧面积的有关知识解决实际问题。

教具学具准备。

1.教师、学生每人用硬纸做一个圆柱体模型。

2.投影片。

教学步骤。

一、铺垫孕伏。

1.口答下列各题(只列式不计算)。

(1)圆的半径是5厘米,周长是多少?面积是多少?

(2)圆的直径是3分米,周长是多少?面积是多少?

2.长方形的面积计算公式是什么?

3.教师出示圆柱体模型,指同学说出它有什么特征?

二、探究新知。

1.利用圆柱体模型的侧面展开图,引导学生概括出圆柱侧面积的计算方法。

(1)让学生观察议论:圆柱的侧面展开图(是长方形)的长与宽分别和圆柱底面周长与高的关系。

(2)引导学生概括出:因为长方形的面积等于长×宽,而这个长方形的'长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘以高。

2.教学例1。

(1)出示例1,指同学读题,找出已知条件和所求问题。

学生独立解答,并把计算步骤填在课本50页例1下面的空白处,然后订正。

板书:3。14×0。5×1。8。

=1。75×1。8。

≈2。83(平方米)。

答:它的侧面积约是2。83平方米。

(2)反馈练习:完成做一做41页第1题。

学生独立解答,然后订正。

3.教学。

(1)教师说明:圆柱的侧面积加上两个底面积就是。

(2)让学生利用圆柱体模型展开图进行比较、区别,从而使学生清楚:是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积。

4.教学例2。

(2)指同学读题,找出已知条件和所求问题。

(3)让学生观察圆柱表面积的展开图,并小组议论:让学生理解圆柱表面积的组成部分,再按顺序说出求表面积的具体过程。具体计算由学生完成。

(4)指学生板演,其他同学在练习本上做,并把计算结果填在书上。

教师巡视指导,注意检查学生的计算结果和计量单位是否正确。

做完后订正,订正时让学生说出有关的计算公式。

(5)反馈练习:完成做一做第2题。

指一名学生在小黑板上做,其他在练习本上做,然后订正,订正时让学生讲解题方法。

5.教学例3。

(1)出示例3,指名读题,找出已知条件和所求问题。

(2)教师提示:解答这道题应注意什么?

启发学生说出:这道题是求做这个水桶要用铁皮多少平方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积。

(3)学生在练习本上做,教师巡视指导,注意检查学生的计算结果。如果发现计算结果是1800平方厘米的让该生上黑板上做。

(4)订正,让板演的学生讲解题的思路和计算结果取近似值的方法。

(5)教师说明:这里不能用“四舍五入”法取近似值。在实际中,制作水桶使用的材料要比计算得到的数多一些,这样才能保证原材料够用。那么保留整百平方厘米时,十位上即使是4或比4小,也要向前一位进1。这种取近似值的方法叫做进一法,所以这题的计算结果应是1900平方厘米。

(6)“四舍五入”法与“进一法”有什么不同。

圆柱表面积教案篇七

知识与技能:

过程与方法:经历猜想、操作、验证、应用的学习过程,提高学生解决问题的能力。

情感、态度、价值观:感受数学与生活的密切关系,增强学习数学的兴趣与数学应用的意识。

[教学重点]理解求表面积、侧面积的计算方法,并能正确进行计算。

[教学难点]能灵活运用表面积、侧面积的有关知识解决实际问题。

[教学手段]。

1、教学方法:观察法、分析法、讨论法。

2、学习方法:观察、实验、合作、交流。

3、教学准备:多媒体课件。

[媒体说明]。

[教学时间]40分钟。

[教学过程]。

一、复习旧知(口答):

1、(1)已知半径或直径,怎样求圆的周长和面积?

(2)长方形的面积=。

2、什么是表面积?怎样求长方体、正方体的表面积?

二、创设情境,激发兴趣。

1、教师出示一圆柱形茶叶筒:

要制作这样一个茶叶筒,至少需要多少材料?对于这个问题,你是怎样想的?

2、拿出自备的圆柱体,仔细观察,你有什么发现?(圆柱体是由两个平面和一个曲面围成的立体图形。)。

3、你能否复制出一个同样大小的圆柱体?你打算怎么做?

三、合作探究,学习新知。

1、观察、猜测:

将圆柱的表面展开,会得到什么图形?(两个底面是一样大的圆形,侧面是一个长方形或平行四边形。)。

2、动手操作:(分组讨论后再动手操作,并汇报交流)。

1组:我们用铅笔在圆柱的侧面画出了一条高,然后把它放倒在纸上,以这条高为起点开始向前滚一圈,并在纸上做好结束的标记,这是圆柱的侧面,再把两个底印在纸上画出两个圆,合起来就能知道大概用多少纸了。

2组:我们有个大圆柱体,但没有那么大的纸能让它滚一圈,怎么办?

师:对于2组遇到的实际情况,谁有更好的办法来解决?

3组:我们发现可以用长方形纸卷成圆柱体,所以就想到把圆柱体的侧面沿一条线剪开,结果发现它正好是个长方形,再加上两个圆形的底面就可以了。

生(齐声):是圆柱体的高。

部分学生认同3组同学的发现,纷纷效仿跟着操作。

老师将3组学生动手操作的结果贴在黑板上。

3、推导圆柱的侧面积计算公式。

师:这个展开的长方形与圆柱体的哪个面有关系?有什么关系?

生:长方形的面积等于圆柱体的侧面积。

师:长方形的长、宽与圆柱体的什么有关?

生:长方形的长是圆柱体的底面周长,长方形的宽是圆柱体的高。

(板书)长方形面积=圆柱体侧面积。

长×宽=底面周长×高。

师:如果用s侧表示圆柱体的侧面积,用c表示底面周长,h表示高,那么s侧=ch。

师:如果已知底面半径为r,圆柱体侧面积也可以写成什么?(s侧=2πr8226;h)。

师:还有没有不同的想法?

4组:如果不沿高去剪,而是沿一条斜线来剪,结果就不是长方形,而是平行四边形。

5组:我们小组剪出的侧面是一个正方形,它的底面周长和高相等。

师:那你们能计算出这个侧面积吗?需要测量哪些数据?(高和直径或底面周长)。

4、反馈练习。(课件出示)。

求下面各圆柱的侧面积:

(1)c=6.28dm,h=3dm;(2)r=5cm,h=5cm;。

课件出示圆柱的表面展开图,学生根据提示填空。

因为圆柱的表面展开后可得到:两个底面是大小相等的(),一个侧面是()或()形,所以圆柱的表面积就等于两个圆面积加上一个长方形的面积。即:

6、练兵场。(课件出示)。

(1)s侧=25.12cm,s底=12.56cm;(2)d=6dm,h=40cm.

四、指导练习,及时反馈。

1、学生独立完成教材第六页练一练第一题的第一小题,集体订正。

2、教材第六页试一试:

重点交流“无盖水桶”的表面积,要计算的是哪几个面的面积。

3、教材第六页练一练第2题:

重点理解“压路机前轮转一周,压路的面积就是圆柱的侧面积”。

五、课堂小结,布置作业。

1、这节课你有什么收获?

2、课后计算自己做的圆柱体,看看每个圆柱各需要多大的材料。

[板书设计]。

圆柱表面积教案篇八

教学目标:

2、进一步掌握圆柱表面积的计算方法,能根据实际情况正确计算,培养学生解决简单的实际问题。

3、进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。

教学重点。

教学难点。

对策:

加强数学问题与生活问题的沟通与转化。教学预设:

1、

提问:上节课我们学习了圆柱的侧面积和表面积。(板书课题:圆柱的侧面积和表面积)怎样求圆柱的侧面积?(板书:圆柱的侧面积=底面周长乘高)。

如果底面周长没有直接告诉我们,还可以告诉我们什么条件也能求侧面积?怎样求?再引导学生体会:如果不知道底面周长而告诉我们半径或直径,也需先求出底面周长后才能求侧面积。

2、

怎样求圆柱的表面积?(板书:圆柱的表面积=侧面积+2个底面积)。

告诉我们什么条件可以求圆柱的表面积?怎样求?

还可以告诉我们什么条件也能求表面积?怎样求?

1、

第24页上第5题:读题后,请学生分析:题中已知什么,要求的是什么?独立思考解题方法,指名说解题方法,体会要结合生活实际情况来确定要计算的是什么,本题中的灯笼在生活中是只要计算一个底面积的。(多请几个学生说,说到基本上掌握方法为止,去年教这个内容时先让学生计算再理解解题思路的,结果有不少学生解题思路错误,在计算上浪费了很长时间)再要求计算:指名板演,集体练习,评析校对,指导学生计算时分几大步完成,计算步骤不要分得太细,也不要列一个大综合算式。

2、

第24页上第6题:处理方法基本同第5题,但要结合第5题的教学引导学生注意:1、题中关键词“无盖”,否则会方法错误;2、计算结果的处理有后续要求。教育学生对这样的细节问题要细心、敏感。

3、

第24页上第7题:引导学生读题后可出示纸做的博士帽教具,帮助学生理解解题思路,请学生独立思考后指名交流并解答。最后提醒学生注意其中的单位变化情况。

4、

第24页上第8、9题:读题后独立思考,分析交流解题思路,说明想法,引导学生学习将生活问题转化为数学问题。再独立完成在作业本上。

5、

补充:填空:

给一块边长是6.28分米的正方形铁皮配上一个底面,做成一个圆柱形铁皮水桶。

(1)6.28÷3.14÷2求的是( )。

(2)12×3.14求的是( )。

(3)6.28×6.28求的是( )。

(4)6.28×6.28+12×3.14求的是( )。

6、

(如学生有困难可用粉笔操作演示)三、全课总结。

圆柱表面积教案篇九

教学目标:

1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。

2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

教学媒体:

教学重点:

教学过程:

一、猜测面积大小,激发情趣导入。

1、用你们手上的a4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。)。

3、复习:圆柱的侧面积=底面周长×高。

刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。

二、组织动手实践,探究圆柱表面积。

1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积)。

生:因为两个圆柱的侧面积一样大,只要看他们的底面积谁大那么这个圆柱的表面积就大。

3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢?

生:计算的方法。

圆柱的表面积=侧面积+两个底面的面积(板书)。

4、那现在你们就算算这两个圆柱的表面积是多少?

生:(不知所措)没有数字怎么算啊?

师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算?

生1:我想知道圆柱体的底面半径和高。

生2:我想知道圆柱体的底面直径和高。

生3:我想知道圆柱体的底面周长和高。

………。

师:老师现在告诉你的数字是这张纸的长是31.4厘米。宽是18.84厘米。那你们会算吗?怎样算,如果独立思考有困难的话可以小组讨论来共同完成。

5、汇报展示:

情况一:半径:31.4÷3.14÷2=5(cm)。

底面积:3.14×5×5=78.5(平方厘米)。

侧面积:31.4×18.84=591.576(平方厘米)。

表面积:591.576+78.5×2=748.576(平方厘米)。

情况二:半径:18.84÷3.14÷2=3(cm)。

底面积:3.14×3×3=28.26(平方厘米)。

侧面积:31.4×18.84=591.576(平方厘米)。

表面积:591.576+28.26×2=648.096(平方厘米)。

师:通过我们计算验证了我们刚才的判断是正确的。

接下来我们打开书翻到33页自学例2,从这个例题中你学到什么?

生:分三步来算,先算侧面积再算底面积然后把侧面积和两个底面积加起来。

生2:这样做挺麻烦的有没有更简单一点的方法呢?

6、好!我们一起来找一找有没有更简单的方法。(补充第二种方法)。

教具的演示:把圆柱体的侧面展开得到一个长方形,然后把圆柱体的两个底面通过剪拼成一个近似的长方形。

问:这个近似的长方形的长和宽分别是圆柱体的哪一部分?(底面周长,也就是圆柱体的侧面展开得到的长方形的长。宽是圆柱体底面半径)。

用字母表示:s=c×(h+r)。

我们用这个方法来验证一下我们的例2看是不是比原来简单?

汇报:大部分学生都认为比原来的方法简单。(说一说认为简单的原因)。

圆柱表面积教案篇十

本节课的教学内容是九年义务教育六年制小学数学第十二册,它是学生初次接触圆柱这个几何形体,要求学生认识掌握圆柱的特征,进而在理解的基础上掌握圆柱的侧面积、表面积的计算方法,教材是在学生掌握长方形面积、圆的面积计算方法的基础上安排的,因而要以上述知识为基础,运用迁移规律使圆柱体的侧面积、表面积的计算方法,这一新知识纳入学生原有的认知结构中。另外学好这部分内容,可以进一步发展学生的空间观念,为以后学习其它几何形体打下坚实的基础。

几何初步知识的教学是培养学生抽象概括能力、思维能力和建立空间观念的重要途径。大纲明确指出:教学是要通过学生的多种感官的参与,掌握形体的特征,培养学生的空间观念。结合本课概念抽象,知识点多的特点和学生的空间想象力不够丰富等实际情况,现拟如下目标:

(1)知识教学。

使学生认识圆柱体,掌握圆柱体的特征及各部分名称的同时理解并掌握圆柱体的侧面积、表面积的计算方法。

(2)能力训练。

培养学生的观察、操作、想象能力,发展学生空间观念,渗透“认识来源于实践”和“全面看问题”的唯物主义观点,以及事物间的相互联系和相互转化的观点。

(3)素质培养。

培养学生的合作能力和尝试精神,养成敢于质疑问难的习惯,唤起学生的竞争意识和创新意识。

圆柱体的侧面积和表面积在本课教材中占重要地位,它们是学习其它几何知识的基础,所以本课的重点是:掌握圆柱体侧面积、表面积的计算方法,由于圆柱体的侧面积计算较为抽象,加之学生的空间想象力不够丰富,所以本课的难点是:圆柱体侧面积公式的推导。而解决这一难点的关键是:把圆柱体的侧面展开后所得到的长方形各部分同圆柱体各部分间的关系。

本课由于概念抽象,知识难懂,易使学生感到枯燥无味或产生畏难情绪。我根据学生由感知——表象——抽象的认识规律和教学的启发性、直观性和面向全体因材施教等教学原则,以“学生发展为本,以尝试学习为主线,以创新能力为主旨”。采用微机辅助教学等有效手段,以引导法为主,辅之以直观演示法、设疑激趣法、讨论法等,让学生全面、全程的参与教学的每一个环节,充分调动学生学习的积极性,培养学生的观察力、动手操作和想象力,发展学生的空间观念,总结出圆柱的侧面积、表面积的计算方法。

本课非常注重培养学生的空间观念和想象力。以教师设计的导思题为依托,以小组合作学习为形式,创设平等、民主、和谐、安全的教学环境,通过学生的动手操作、观察、比较等充分调动学生多种感官的参与,让学生全面参与新知的发生、发展和形成过程,并学会操作、观察、比较、分析和概括,学会想象,学会与人交往。

(一)温故引新,巧妙入境。

开课提问,我们都认识了哪几种立体图形?学生回答长方体和正方体。然后教师拿出圆柱体模型问,这个物体的形状是不是长方体?为什么?让学生讨论后回答,得出这个物体的形状不是长方体,它是一种新的形体——圆柱体。在日常生活中有很多物体的形状是圆柱体,如:药瓶、铅笔、墨盒等。(这样以旧引新,通过讨论唤起学生的学习兴趣和求知欲望,使学生对圆柱体表象有了深刻的认识。)教师由此引出新课,圆柱体的侧面积和表面积怎样计算呢?这就是我们这节课所要研究的内容。板书:圆柱体的表面积以上设计能让学生充分体验到数学与生活的联系,教师的巧妙设疑把学生引入一个心求通而未得,口欲言而无能的愤悱境地,较好地激发学生的求知欲,巧妙的揭示课题。)。

(二)探求尝试,明确概念。

1、动手操作,引导发现圆柱体侧面积的计算方法。这是本节课的难点,了解决这一难点,我设计如下:

(1)把圆柱体的侧面沿高剪开得到一个什么图形?

(2)展开后的图形各部分与圆柱体的各部分有什么关系?

学生讨论后,接着教师引导学生回答上述思考题,并且用电脑演示,指出把圆柱体的侧面展开后得到一个长方形。这个长方形的长等于圆柱体的底面周长,宽等于圆柱体的高。再引导学生根据长方形的面积=长×宽,推导出圆柱体的侧面积=底面周长×高,最后引导学生利用公式计算。师问:要求圆柱体的侧面积必须知道哪些条件?这是及时出一道尝试题:

已知圆柱体的底面直径是3厘米,高是5厘米,求圆柱的侧面积。

做完后让学生分组说说解题思路。再让学生自学课本中的例1。使学生体验到尝试学习新知的乐趣。(这一环节,使学生的眼、手脑等多种感官参与感知活动,做到了在合作学习和动手操作中,思维、讨论、抽象概括出计算方法,这样能够更好的突破难点。)。

2、引导学生独立推导出圆柱体表面积的计算方法。

(2)验证表面积,让学生运用手中的.学具拆一拆,摆一摆,看一看圆柱体的表面积是由哪几部分组成的?然后教师用电脑演示圆柱表面积的组成。

(3)由学生分组讨论,独立发现计算方法,再向老师汇报:

(4)提问:要求圆柱的表面积,必须知道哪些条件,引导学生独立运用公式计算。例2:师巡视指导,共同订正。(这一步骤的设计是在前一步教师扶的基础上充分放手引导学生独立推导出计算方法。这样充分发挥了学生的主体作用,也培养了学生独立思考的能力和初步的逻辑思维能力。)。

3、教师小结,师强调重难点。

4、质疑问难,生问生答或师答。

(三)巩固练习,培养能力。

这一环节是内化知识,训练思维培养能力。形成技能的重要环节,因而我设计的练习题在注重基本练习的前提下,首先在形式上注意新颖、多样、采取、辨析、填空、判断、选择、列式、口答,笔算练习等形式。其次在内容上注意采取秩序渐进的原则,由易到难,这样即符合儿童的认识特点,又能兼顾大多数学生。

(四)全课总结,促进构建。

结合板书,让学生说说本课学到的知识,并说出是怎样学到的,(目的是让学生对本课所学的知识有系统的认识,培养学生整理知识的能力,引导学生总结学习方法,达到会学之目的。)那么在实际中要计算一只水桶的用料面积是多少,又怎样计算呢?我们下一课再研究。(这样的结尾既承接了本节课的内容,又为学习新知识高下悬念。有利于激发学生的学习兴趣。)。

圆柱表面积教案篇十一

2、填空:

(1)圆柱的( )面积加上( )的面积,就是圆柱的表面积。

(2)把一个底面积是15.7平方厘米的圆柱,切成两个同样大小的圆柱,表面积增加了( )平方厘米。

(3)计算做一个圆柱形的茶叶筒要用多少铁皮,要计算圆柱的( )。

(4)计算做一个圆柱形的烟囱要用多少铁皮,要计算圆柱的( )。

(5)计算做一个没有盖的圆柱形水桶要用多少铁皮,要计算圆柱的( )。

(6)一个圆柱,它的高是8厘米,侧面积是200.96平方厘米,它的底面积是( )。

(7)把一个圆柱体的侧面展开,得到一个长31.4厘米,宽10厘米的长方形,这个圆柱体的侧面积是平方厘米,表面积是()平方厘米。

(10)做一个圆柱体,侧面积是9.42平方厘米,高是3厘米,它的底面半径是( )厘米,表面积是平方厘米。

(11)把一根直径是20厘米,长是2米的圆柱形木材锯成同样的3段,表面积增加了( )立方厘米。

4、选择正确答案的序号填在括号里。

a、底面积 b、底面周长 c、底面半径。

(2)把一个直径为4厘米,高为5厘米的圆柱,沿底面直径切割成两个半圆柱,表面积增加了多少平方厘米?算式是( )。

a、3.14×4×5×2 b、4×5 c、4×5×2。

5、一个圆柱形无盖的水桶,底面的直径是0.6米,高是40厘米,做这样一个水桶,需要多少平方米的铁皮?(得数保留整数)。

圆柱表面积教案篇十二

2、填空:

(1)底面半径是2分米,高是7.3分米。

(2)底面周长是 18.84米 ,高是 5米 。

4、选择正确答案的序号填在括号里。

a、底面积 b、底面周长 c、底面半径。

16、一个无盖的圆柱形铁皮水桶,底面直径是 0.4米 ,高是 0.8米 ,要在水桶里、外两面都漆防锈漆,油漆的面积大约是多少平方米?(得数保留一位小数)。

【本文地址:http://www.pourbars.com/zuowen/16918006.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map