直线与圆的位置关系说课稿(汇总13篇)

格式:DOC 上传日期:2023-12-05 15:53:06
直线与圆的位置关系说课稿(汇总13篇)
时间:2023-12-05 15:53:06     小编:ZS文王

分析性质是在研究事物时,通过观察、实验等方法,了解它们的组成、结构和性质。在撰写总结时,我们应该尽量言简意赅,不偏离主题。接下来,就请大家跟随小编一起来看看以下是小编为大家收集的总结范文,仅供参考。

直线与圆的位置关系说课稿篇一

在本届贵阳市中青年教师教学研讨会中,修文中学提出打造有自己特色的“良知高效课堂”,整个课堂进程分四步八环节。本人承担的是直线与圆的位置关系这一堂课与大家交流,有不足之外请老师们批评指正。

1、教材地位。

从知识结构来看,直线与圆的位置关系是对圆的方程应用的延续和拓展,又是后续研究圆与圆的位置关系和直线与圆锥曲线的位置关系等内容的基础。在直线与圆的位置关系的判断方法的建立过程中蕴涵着诸多的数学思想方法,这对于进一步探索、研究后续内容有很强的启发与示范作用。

2、学生情况。

对于直线和圆,学生已经非常熟悉,并且知道直线与圆有三种位置关系:相离,相切和相交。从直线与圆的直观感受上,学生懂得从圆心到直线的距离与圆的半径相比较来研究直线与圆的位置关系。本节课,学生将进一步挖掘直线与圆的位置关系中的“数”的关系,学会从不同角度分析思考问题,为后续学习打下基础。另外学生在探究问题的能力,合作交流的意识及反思总结等方面有待加强。

3、教学目标。

新课程标准的要求是能根据直线与圆的方程判断其位置关系(相交、相切、相离),体会用代数方法处理几何问题的思想,感受“形”与“数”的对立和统一;初步掌握数形结合的思想方法在研究数学问题中的应用。

根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,本节课教学应实现如下教学目标:

4、知识与技能。

直线与圆的位置关系说课稿篇二

《普通开云KY官方登录入口 数学课程标准》指出:在平面解析几何初步的教学中,教师应帮助学生经历如下过程:首先将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题。这种思想应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。

《直线与圆的位置关系》这一节内容出现在必修2的第二章《平面解析几何初步》的第二节《圆与圆的方程》的第三小节的位置。就整套教材而言,《平面解析几何初步》一章的教学主要是让学生体会到用代数方法处理几何问题的思想,为选修教材中的《圆锥曲线与方程》一章打好基础。它是前两节《直线与直线方程》和《圆与圆的方程》的综合应用,也为后一小节《圆与圆的位置关系》提供研究方法的一个重要示例,是整个《平面解析几何初步》章节的重要内容,起着贯穿始终、应用反馈的重要作用,而且是贯彻“用代数方法处理几何问题”思想和“数形结合”方法的重要的反映内容和工具。在本章中的作用非常重要。

1、知识目标:

2、能力目标:

要使学生体会用代数方法处理几何问题的思路和“数形结合”的思想方法。

四、教法分析:

1、教学方法:启发式讲授法、演示法、辅导法。

2、教材处理:

(1)例题1(1)(2)用两种不同的办法求解,让学生自己体会这两种方法。

通过老师引导和让学生自己探索解决,反馈学生的解决情况。

(2)增加一个过一点求圆的切线方程的题型,帮助学生增加对直线与圆的认识。

3、学法指导:本节课的学法是继续指导学生把新问题转化为已有知识解决的化归思想。

4、教具:多媒体电脑、投影仪、自做多媒体。

五、过程分析:

教学。

环节。

教学内容。

设计意图。

新课引入。

1、学生观察日出照片,把观察到的情况用自己的语言说出来,抽象出几何图形,在学生回答的基础上,通过多媒体演示圆与直线的三种位置关系。让学生感受到数学产生于生活,与生活密切相关,并能使学生更好的直观感受直线和圆的三种位置关系。然后引入本节课的课题。

2、在上一章,我们在学习了直线的方程后,研究了点和直线、直线与直线的位置关系,本章我们已经学习了圆的方程,现在我们要研究直线与圆以及圆与圆的位置关系。

1数学产生于生活,与生活密切相关。

2、以实际问题引入有利于激发学生学习数学的兴趣,有利于扩展学生的视野。

新课讲解。

一、知识点拨:

答:把圆心到直线的距离d和半径r比较大小:

2、我们如何利用坐标法将初中判断直线和圆的位置关系代数化?

答:先利用点到直线的距离公式求圆心到直线的距离,再和半径比较大小。

答:在直线与直线的方程这一节里,我们先把两直线的方程联立解方程组。

在思考直线和圆的位置关系时,我们可类似地把直线和圆的方程联立解方程组。

二、例题讲解:

1、让学生先自学例1并回答下列问题:

(1)第二小题中,消去x的步骤怎样?如何判断方程组有没有解?

(2)你认为这两种方法哪一种较简单,为什么?

(2)方法一较简单,因为方法二在求交点坐标时仍要解方程组。

圆的切线l,求切线l的方程。

4、练习:课本第83页练习1、2。

问题1涉及初中知识,可使得学生比较容易上手。

问题2体现了将几何问题代数化的思想。

问题3以前一章知识做类比,有利于培养学生类比归纳的能力。

通过前面对知识的分析,例题1对学生来说应该比较容易,又通过两个问题检查学生的理解程度。

例3该例题有利于培养学生全面考虑问题的良好思维习惯。

课堂小结。

作业布置。

课本p86,a组4、6、b组1。

一、复习回顾。

例1。

例2。

例3。

直线与圆的位置关系说课稿篇三

一、课程目标分析:

《普通开云KY官方登录入口 数学课程标准》指出:在平面解析几何初步的教学中,教师应帮助学生经历如下过程:首先将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题。这种思想应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。

二、教材分析:

1、教材的地位和作用:

《直线与圆的位置关系》这一节内容出现在必修2的第二章《平面解析几何初步》的第二节《圆与圆的方程》的第三小节的位置。就整套教材而言,《平面解析几何初步》一章的教学主要是让学生体会到用代数方法处理几何问题的思想,为选修教材中的《圆锥曲线与方程》一章打好基础。它是前两节《直线与直线方程》和《圆与圆的方程》的综合应用,也为后一小节《圆与圆的位置关系》提供研究方法的一个重要示例,是整个《平面解析几何初步》章节的重要内容,起着贯穿始终、应用反馈的重要作用,而且是贯彻“用代数方法处理几何问题”思想和“数形结合”方法的重要的反映内容和工具。在本章中的作用非常重要。

2、教材重点、难点。

直线与圆的位置关系说课稿篇四

本节课的教学,我认为成功之处有以下几点:

1.由日落的三张照片(太阳与地平线相离、相切、相交)引入,学生比较感兴趣,充分感受生活中反映直线与圆位置关系的现象,体验到数学来源于实践。对生活中的数学问题发生好奇,这是学生最容易接受的学习数学的好方法。新课标下的数学教学的基本特点之一就是密切关注数学与现实生活的联系,从生活中“找”数学,“想”数学,让学生真正感受到生活之中处处有数学。

2.在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。

3.本着学习----总结----再学习的思维教学模式,让学生逐步理解知识掌握知识能够很好的应用知识。

同时,我也感觉到本节课的设计有不妥之处,主要有以下三点:1.学生观察得到直线和圆的三种位置关系后,我设计的是直接给出定义可以改为让学生下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。

2.本节课中扩展应用环节图形给的不是很明确,如果能给出精确的图形那么学生会容易一些。

3.由于前边时间有些过长,所以小结部分有些仓促。

直线与圆的位置关系说课稿篇五

已知直线都是正数)与圆相切,则以为三边长的三角形是________三角形.

三、解答题。

当为何值时,直线与圆有两个公共点?有一个公共点?无公共点?

四、填空题。

若直线与圆相切,则实数的值等于________.

圆心为且与直线相切的圆的方程为________.

直线与圆相切,则实数等于________.

直线与圆相切,则________.

过点作圆的切线,且直线与平行,则与间的距离是________.

过点,作圆的切线,则切线的条数为________条.

过点的圆与直线相切于点,则圆的方程为________.

五、解答题。

过点作圆的切线,求此切线的方程.。

圆与直线相切于点,且与直线也相切,求圆的方程.。

六、填空题。

由直线上的一点向圆引切线,则切线长的最小值为_____________.

七、解答题。

求满足下列条件的圆的切线方程:

(1)经过点;

(2)斜率为;

(3)过点.。

已知圆的方程为,求过的圆的切线方程.。

八、填空题。

直线被圆截得的弦长等于________.

直线被圆截得的弦长等于________.

直线被圆所截得的弦长为________.

圆截直线所得弦的长度为4,则实数的值是________.

设直线与圆相交于两点,若,则圆的面积为________.

直线被圆截得的弦长为________.

直线被圆所截得的弦长为________.

圆心坐标为的圆在直线上截得的弦长为,那么这个圆的方程为________.

过点的直线被圆截得的弦长为,则直线的斜率为________.

过原点的直线与圆相交所得弦的长为2,则该直线的方程为________.

九、解答题。

圆心在直线上,圆过点,且截直线所得弦长为,求圆的方程.。

十、填空题。

过点作圆的弦,其中最短弦的长为________.

十一、解答题。

已知圆,直线.

(1)求证:对,直线与圆总有两个不同的交点;

(2)若直线与圆交于两点,当时,求的值.。

设圆上的点关于直线的对称点仍在圆上,且直线被圆截得的弦长为,求圆的方程.。

已知圆,直线.。

证明:不论取什么实数,直线与圆恒交于两点。

求直线被圆截得的弦长最小时的方程,并求此时的弦长。

十二、填空题。

圆上到直线的距离等于1的点有________个.

在平面直角坐标系中,已知圆上有且仅有四个点到直线的距离为1,则实数的取值范围是________.

设圆上有且仅有两个点到直线的距离等于1,则圆半径的取值范围是________.

直线与曲线有且只有一个公共点,则b的取值范围是_________。

若直线与圆恒有两个交点,则实数的取值范围为________.

已知点满足,则的取值范围是________.

若过点的直线与曲线有公共点,则直线的斜率的取值范围为。

直线与圆的位置关系说课稿篇六

在本届贵阳市中青年教师教学研讨会中,修文中学提出打造有自己特色的“良知高效课堂”,整个课堂进程分四步八环节。本人承担的是直线与圆的位置关系这一堂课与大家交流,有不足之外请老师们批评指正。

从知识结构来看,直线与圆的位置关系是对圆的方程应用的延续和拓展,又是后续研究圆与圆的位置关系和直线与圆锥曲线的位置关系等内容的基础。在直线与圆的位置关系的判断方法的建立过程中蕴涵着诸多的数学思想方法,这对于进一步探索、研究后续内容有很强的启发与示范作用。

对于直线和圆,学生已经非常熟悉,并且知道直线与圆有三种位置关系:相离,相切和相交。从直线与圆的直观感受上,学生懂得从圆心到直线的距离与圆的半径相比较来研究直线与圆的位置关系。本节课,学生将进一步挖掘直线与圆的位置关系中的“数”的关系,学会从不同角度分析思考问题,为后续学习打下基础。另外学生在探究问题的能力,合作交流的意识及反思总结等方面有待加强。

新课程标准的要求是能根据直线与圆的方程判断其位置关系(相交、相切、相离),体会用代数方法处理几何问题的思想,感受“形”与“数”的对立和统一;初步掌握数形结合的思想方法在研究数学问题中的应用。

根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,本节课教学应实现如下教学目标:

掌握用圆心到直线的距离d与圆的半径r的大小比较,判断直线与圆位置关系,几何法。

理解直线和圆的三种位置关系,感受直线和圆的位置与它们的方程所组成的二元二次方程组的解的对应关系;体验通过比较圆心到直线的距离和半径之间的大小及通过方程组的解的个数判断直线与圆的位置关系,能用直线和圆的方程解决一些条件下圆的切线问题;领会数形结合的数学思想方法,提高发现问题、分析问题、解决问题的能力。

通过对本节课知识的探究活动,加深学生对解析法解决几何问题的认识,从而领悟其中所蕴涵的数学思想,体验探索中成功的喜悦,激发学习热情,养成良好的学习习惯和品质。

教法学法为了实现上述教学目标,本节课采取以下教学方法:

(1)恰当的利用多媒体课件,通过学生熟悉的实际生活问题引入课题,拉近数学与现实的距离,激发学生的问题意识和求知欲,调动学生主体参与的积极性。

(2)采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,站在学生思维的最近发展区上启发诱导。

(3)在整个数学教学过程中,既要体现学生的主体地位,更要强调教师的主导地位,在科学讲授的同时教会学生清晰的思维和严谨的推理。

在学法上注重以下几点:

(2)在用代数法解决直线与圆的位置关系时,要能够明确运算方向,把握关键步骤,正确的处理较为复杂数据。

整个教学过程是四步组成,自主学习,合作探究,老师辅导、课堂展示。共分为八个环节,复习、独立训练、相互探讨、老师参与、形成结论、课堂展示、评价(互评师评)、反思。

通过问题情境,激发学生的学习兴趣,使学生找到要学的与以学知识之间的联系;问题串的设置可让学生主动参与到学习中来;在判断方法的形成与应用的探究中,师生的相互沟通调动学生的积极性,培养团队精神;知识的生成和问题的解决,培养学生独立思考的能力,激发学生的创新思维;通过练习检测学生对知识的掌握情况;根据学生在课堂小结中的表现和课后作业情况,查缺补漏,以便调控教学。

直线与圆的位置关系说课稿篇七

本节课的教学我采用先亮标,亮自学提示及检测题的形式让学生先自学。依据自学检测题检验学生自学结果。然后精讲了切线性质定理及分析两种证明方法。然后结合小黑板练习巩固提高这节知识。

讲课时我改变了原来讲后再练的方式,采用了讲评一个知识点后配基础练习题,巩固此知识点的方法。避免讲后再练,练习与知识的脱节,练习紧跟。精讲知识后,再配以比基础题(巩固基础知识点)层次高的两组练习,让学生先做,采用举手的方式调查学生自己运用知识解决问题的情况。讲前85%的同学都举手做完,还有个别同学做到运用灵活方法解决问题。中午三道作业学生掌握良好。其余学生在我的讲解下也掌握今天的内容,会运用两种方法判断直线和圆的位置关系。知道有切线可连圆心和切点得垂直关系这种基本辅助线。

本节课的教学总的来说很顺利,学生掌握良好,由于课程标准对于本节课要求不高,紧扣标准,走进中招。本节课若能再配合课后检测题,及时精确把握,学生掌握情况会更完美。

重建:讲课前,先亮标,亮自学提示及检测题,以问题形式精讲切线性质定理及证明。配合练习、提高练习,下课前5分钟配简单检测题以便更全面把握学生掌握的情况。

教师的行为直接影响着学生的学习方式,要让学生真正成为学习的主人,积极参与课堂学习活动,因此在教学中让学生想象、观察、动手实践、发现内在的联系并利用类比归纳的方法,探索规律,指导学生合作、研究并尝试用学到的知识解决实际问题。

直线与圆的位置关系说课稿篇八

“思之不慎,行而失当”,“学然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自强也。”反思意识人类早就有之。作为教师,在教学中也应适时反思教学过程的得与失。

开课时,借助微机展示“圆圆的落日慢慢从海平面升起”的动画,从而展现直线与圆的位置关系。由此引入课题——直线与圆的位置关系,学生比较感兴趣,充分感受生活中的数学知识,体验数学来源于生活。然后提出问题,引导学生大胆猜想,思考,发现三种位置关系,激发学生学习兴趣,营造探索问题的氛围。同时让学生从生活中“找”数学,“想”数学,体会到数学知识无处不在,应用数学无处不有。这也符合“数学教学应从生活经验出发”的新课程标准要求。

在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生用类比的方法来研究直线与圆的位置关系,在研究过程中,采用小组讨论的方法,给予学生足够的探索、交流的时间,培养学生互助、协作的精神,让学生在相互讨论中,集思广益,形成思维互补,从而使概念更清楚,结论更准确。最后由学生小结这一知识点,我板书在黑板上,培养学生用数学语言归纳问题的能力,同时感受收获知识的快乐。

在新知教授完毕,知识升华这块,我安排了一道实际问题,一辆火车的噪首会不会影向处在与铁路相交的另一条公路旁的学校?如果会影响,影响的时间有多长?新课标下的数学强调人人学有价值的数学,人人学有用的数学,由于此题要学生回到生活中去运用数学知识解决生活中遇到的问题,学生的积极性高涨,都急着讨论解决方案,使乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。

一堂课教学下来,也发现有诸多不妥之处,让我认识到自己需要继续努力。归纳主要有以下三点:。

1、教师在课堂应当以引导者的身份出现,把课堂和讲台让位于学生,让“教师的教”真正服务于“学生的学”,而我在这一节课中因为一方面担心学生在自主研究知识的形成时会浪费时间,另一方面担心会产生意想不到的或者课前备课时没有考虑到的回答,总是把自己的思想强加给学生,比如学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。学生只是被动的接受,这样就会对概念的理解不是很深刻。这里可以改为让学生自己下定义,教师适当放手,以师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。

2、有些课堂提问欠合理化、科学化,提问随意性大,缺乏针对性和启发性,导致课堂教学引导不力,问题缺乏精心安排这就使得课堂存在着不少“徒劳的提问”。让课堂时间分配的不太合理。今后应该把一些提问设计再提炼,能达到精而准。

3、在处理课后练习时,做的不够细致,这一环节是对前面探究新知识是否掌握的一个小测试,重在帮助学生掌握方法,而我在讲解练习时,只展示了解题思路,并没有及时进行方法上的总结,致使部分学生在解决实际问题时思路不明确。这里教师要根据情况,简要归纳、概括应掌握的方法,使学生能够举一反三,巩固和扩大知识,吸收、内化知识,充分体现”授人以鱼不如授人以渔"。

总之,这是我对自己本节课的一些教学反思,或者说是对新课程理念的浅薄认识。

直线与圆的位置关系说课稿篇九

重点:的性质和判定.因为它是本单元的基础(如:“切线的判断和性质定理”是在它的基础上研究的),也是开云KY官方登录入口 解析几何中研究的基础.

难点:在对性质和判定的研究中,既要有归纳概括能力,又要有转换思想和能力,所以是本节的难点;另外对“相切”要分清直线与圆有唯一公共点是指有一个并且只有一个公共点,与有一个公共点含义不同(这一点到直线和曲线相切时很重要),学生较难理解.

3.教法建议。

本节内容需要一个课时.

(2)在中,以“形”归纳“数”,以“数”判断“形”为主线,开展在组织下,以学生为主体,活动式.

第12页 。

直线与圆的位置关系说课稿篇十

从教学以来,我一直不断的学习和研究如何使学生在数学课堂中高效的学习,在探索过程中我发现教师要想让学生学好数学,必须高度重视学生的主动参与课堂学习,让学生亲身体验学习知识的过程,引导学生在发现问题、分析问题、解决问题的同时,培养学生的自主学习能力和创新意识。《直线与圆的位置关系》是开云KY官方登录入口 学习中一个重要的内容,下面我详细总结一下我讲的这节课。

首先从实际生活出发,引用古诗句“海上升明月,天涯共此时”及海上日出的多媒体展示,引导学生回忆直线和圆的位置关系及判定方法,通过对已有研究方法的揭示,增强学生运用迁移方法研究新问题的意识;接着借助多媒体引出三个问题,让学生运用初中的知识判断一下直线和圆的位置关系,巩固学生初中所学内容更好的为本节课的学习打下基础,从而引导学生揭示出直线与圆的位置关系与公共点的个数之间存在着对应关系的本质特征;最后,引入轮船遇到台风的实际问题,让学生体会源自生活的数学,思考解决实际问题的方法,在数与形的相互转化过程中思考问题。

在我的引导下,提示学生先用初中所学内容解决轮船遇台风问题,学生很轻易的把这个问题解决了,紧接着我又趁热打铁,提出一般的三角形中这个方法是否可以,由此得到由开云KY官方登录入口 知识解决直线与圆的位置关系的方法:几何法,代数法。为此,我以问题为导向,以探究问题的方式引导学生自学自悟,为学生提供了自主合作探究的舞台,让学生思维在数学中自由翱翔。通过一系列问题学生不仅加深了对判定直线与圆的位置关系的方法的理解,更重要的是使学生学会运用联想、化归、数形结合等思想方法去研究问题,促进学生在学会数学的过程中顺利地向会学数学的方向发展。

为了提高学生的学习兴趣,让学生有目的的去学,提高学生的学习能力,这节课设置了大量问题,使学生充分地实践与探索,不断地归纳与总结,引导学生发现规律、拓展思路。在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化。

适量的练习、课后作业及时巩固了学生的学习,学生需通过动手动脑来完成,使学生对知识点的学习由课内延伸到课外。

当然,这节课有成功之处,也有很多不足,比如,尽管准备的很充分,但是还是有点紧张;虽然我在设计本节课时是想体现学生自主探究的原则,但是在一些问题提出之后,没有给予学生足够的时间思考,限制了学生的思维。此外,对学生引导的语言概括及对学生及时性鼓励的不是太好,学生的积极性及配合并不高。

在今后的教学中,我会继续不断的学习,提高自己的教学水平,真正让学生学会数学、学好数学,使学生的各项能力在数学学习中得到更好的发展和提高,我相信在将来的教学中,我会做得越来越好,真正成为一名合格的教师。

将本文的word文档下载到电脑,方便收藏和打印。

直线与圆的位置关系说课稿篇十一

节课的教学,我认为成功之处有以下几点:

1.由日落的三张照片(太阳与地平线相离、相切、相交)引入,学生比较感兴趣,充分感受生活中反映直线与圆位置关系的现象,体验到数学来源于实践。对生活中的数学问题发生好奇,这是学生最容易接受的学习数学的好方法。新课标下的数学教学的基本特点之一就是密切关注数学与现实生活的联系,从生活中“找”数学,“想”数学,让学生真正感受到生活之中处处有数学。

2.在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。

3.新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了一道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”培养学生解决实际问题的能力。由于此题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。

同时,我也感觉到本节课的设计有不妥之处,主要有以下三点:

1.学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。学生被动的接受,对概念的理解不是很深刻,可以改为让学生下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。

2.虽然我在设计本节课时是体现让学生自主操作探究的原则,但在让学生探索直线和圆三种位置关系所对应的数量关系时,没有给予学生足够的探索、交流的时间,限制了学生的思维。此处应充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使概念更清楚,结论更准确。

直线与圆的位置关系说课稿篇十二

20xx.11.17早上第二节授课班级:初三、1班授课教师:

过程与方法目标:

2.通过例题教学,培养学生灵活运用知识的解决能力。

情感与态度目标:让学生从运动的观点来观察直线和圆相交、相切、相离的关系、关注知识的生成,发展与变化的过程,主动探索,勇于发现。从而领悟世界上的一切物体都是运动变化着的,并且在一定的条件下可以转化的辩证唯物主义观点。

利用多媒体放映落日的动画,初中数学教案《数学教案-直线和圆的位置关系(公开课)》。引导学生从公共点个数和圆心到直线的.距离两方面体会直线和圆的不同位置关系。

学生看投影并思考问题。

调动学生积极主动参与数学活动中.。

探究新知。

1、通过观察直线和圆的公共点个数得出直线和圆相离、相交、相切的定义。

布置作业。

1、课本第101页7.3a组第2、3题。

2、课余时间,留心观察周围事物,找出直线和圆相交,相切,相离的实例,说给大家听。

直线与圆的位置关系说课稿篇十三

本节课教学我所面对的传授对象是聋哑学生,根据聋生的特点在学生观察教材123页三幅照片时,我立刻告诉学生你说的对,这就是直线和圆的三种关系:相交、相切和相离。我认为是数学课而不是语文课,数学课只注重学生的观察思维能力,不追求学生的语言表达能力和概括能力。

还有因为手语的手势再多再细也不可能表达出所有的抽象的甚至连丰富的语言都不好表述的东西,因此在讲解数学时,我追求细致,不要想很简单,很明显,而一带而过。因此,教学时我多次强化学生对直线与圆的三种关系的理解,为学生探究点到直线的距离d和圆半径r的大小关系。

然而数学教学时,该细的地方还是要细,这需要教师自己的把握,在学生轻而易举回答出来的问题时,有时要带领学生深入思考,并多问个为什么?比如在本课学生总结出:“圆的切线垂直于过切点的直径”时。养成学生深入思考的好习惯,不要想当然!

【本文地址:http://www.pourbars.com/zuowen/17482505.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map