初中数学不等式教案(专业19篇)

格式:DOC 上传日期:2023-12-06 16:18:11
初中数学不等式教案(专业19篇)
时间:2023-12-06 16:18:11     小编:薇儿

一份成功的教案还应该包含形式多样的教学活动和评价方式,以适应不同学生的学习需求。教案的编写应该注意语言表达的规范性和精炼性,以便学生更好地理解和吸收知识。教案范例中所呈现的教学思路和方法值得我们去借鉴和学习。

初中数学不等式教案篇一

目的:以不等式的等价命题为依据,揭示不等式的常用证明方法之一——比较法,要求学生能教熟练地运用作差、作商比较法证明不等式。

过程:

一、复习:

2.比较法之一(作差法)步骤:作差——变形——判断——结论。

二、作差法:(p13—14)。

甲乙两人同时同地沿同一路线走到同一地点,甲有一半时间以速度。

m

行走,另一半时间以速度。

n

行走;有一半路程乙以速度。

m

行走,另一半路。

将本文的word文档下载到电脑,方便收藏和打印。

初中数学不等式教案篇二

12未知数和方程。

用字母x、y、…等,表示所要求的数量,这些字母称为“未知数”

用运算符号把数或表示书的字母联结而成的式子,叫做代数式。

含有未知数的等式,叫做方程。

在一个方程中,所含未知数,又成为元;。

某一项所含有的未知数的指数和,成为这一项的次数。

不含未知数的项,成为常数项当常数不为零时,它的次数是0,因此常数项也称为零次项。

13方程的解与解方程的根据。

未知数应取的值是指:把所列方程中的未知数换成这个值以后,就使方程变成一个恒等式。

能是方程左右两边的值相等的未知数的值,叫做方程的解,也叫做根。

求方程解的过程,叫做解方程。

解方程的根据是“运算通性”及“等式性质”

把方程一边的任一项改变符号后,移到方程的另一边,叫做移项简单说就是“移项变号”

把方程两边各同除以未知数的系数(或同乘以系数的倒数),就得到未知数应取的值。

综上所述,得到解方程的方法、步骤:去括号、移项变号、合并同类项,使方程化为最简形式ax=b(a!=0)、除以未知数的系数,得出x=b/a(a!=0)。

2一元一次方程。

只含有一个未知数并且次数是1的方程,叫做一元一次方程一般形式:ax+b=0(a!=0,a、b是常数)。

22一元一次方程的解法。

解一元一次方程的一般步骤是:

1去分母(或化为整系数);。

2去括号;。

3移项变号;。

4合并同类项,化为ax=-b(a!=0)的形式;。

5方程两边同除以未知数的系数,得出方程的解x=-b/a。

3一次方程组。

31二元一次方程。

含有两个未知数的一次方程叫做二元一次方程。

任何一个二元一次方程都有无限多个解,正因为如此,二元一次方程也被称为不定方程。

32方程组与方程组的解。

把几个方程联合在一起,组成一个整体,叫做联立方程,也叫方程组。

由几个一次方程组并含有两个未知数的方程组,成为二元一次方程组。

能够同时满足方程组中每一个方程的未知数的数组组,叫做方程组的解。

33二元一次方程组的解法。

求方程组的解的过程,叫做解方程组。

设把二元方程转化为一元方程求解,称为消元法。

叫做加减消元法,简称加减法。

原方程组是矛盾方程组,无解。

34三元一次方程组及其解法。

含有三个未知数的三元一次方程组。

4解应用问题。

51一元一次方程式。

等式。

求不等式的解集的过程,叫做解不等式。

解一元一次不等式组的一般步骤是:

2在求出这些不等式的解集的公共部分,就得到这个不等式组的解集。

初中数学不等式教案篇三

1、使学生熟练掌握一元一次不等式的解法,初步认识一元一次不等式的应用价值;。

3、让学生在分组活动和班级交流的过程中,积累数学活动的经验并感受成功的喜悦,从而增强学习数学的自信心。

教学难点。

熟练并准确地解一元一次不等式。

知识重点。

熟练并准确地解一元一次不等式。

教学过程。

(师生活动)设计理念。

你会运用已学知识解这个不等式吗?请你说说解这个不等式的过程.以学生身边的事例为背景,突出不等式与现实的联系,这个问题为契机引入新课,可以激发学生的学习兴趣。

探究新知。

1、在学生充分发表意见的基础上,师生共同归纳出这个不等式的解法.教师规范地板书解的过程.

2、例题.

解下列不等式,并在数轴上表示解集:

(1)x50(2)-4x3。

(3)7-3x10(4)2x-33x+1。

分组活动.先独立思考,然后请4名学生上来板演,其余同学组内相互交流,作出记录,最后各组选派代表发言,点评板演情况.教师作总结讲评并示范解题格式.

3、教师提问:从以上的求解过程中,你比较出它与解方程有什么异同?

立解决;还有一些学生虽不能解答,但在老师的引导下也能受到启发,这比单纯的教师讲解更能调动学习的积极性.另外,由学生自己来纠错,可培养他们的批判性思维和语言表达能力.

比较不等式与解方程的异同中渗透着类比思想.

巩固新知。

1、解下列不等式,并在数轴上表示解集:

(1)(2)-8x10。

2、用不等式表示下列语句并写出解集:

(1)x的3倍大于或等于1;(2)y的的差不大于-2.

解决问题。

测量一棵树的树围(树干的周长)可以计算它的树龄一般规定以树干离地面1.5m的地方作为测量部位.某树栽种时的树围为5cm,以后树围每年增加约3cm.这棵树至少生一长多少年,其树围才能超过2.4m?让学生在解决问题的过程中深刻感悟数学来源于实践,又服务于实践,以培养他们的数学应用意识。

总结归纳围绕以下几个问题:

1、这节课的主要内容是什么?

2、通过学习,我取得了哪些收获?

3、还有哪些问题需要注意?

让学生自己归纳,教师仅做必要的补充和点拨.让学生自己归纳小结,给学生创造自我评价和自我表现的机会,以达到激发兴趣、巩固知识的目的。

小结与作业。

布置作业。

1、必做题:教科书第134~135页习题9.1第6题(3)(4)第10题。

2、选做题:教科书第135页习题9、12题.

本课教育评注(课堂设计理念,实际教学效果及改进设想)。

通过创设与学生实际生活密切联系的向题情境,并由学生根据自己掌握的知识与经验列出不等式,探究它的解法,可以激发学生的学习动力,唤起他们的求知欲望,促使学生动脑、动手、动口,积极参与教学的.整个过程,在教师的指导下,主动地、生动活泼地、富有个性地学习.

新课程理念要求教师向学生提供充分的从事数学活动的机会.本课教学过程中贯穿了尝试引导示范归纳练习点评等一系列环节,旨在改变学生的学习方式,将被动的、接受式的学习方式转变为动手实践、自主探索和合作交流等方式.教师的组织者、引导者与合作者的角色在这节课中得到了充分的演绎.教师要尊重学生的个体差异,满足多样化学习的需求.对学习确实有困难的学生,要及时给予关心和帮助,鼓励他们主动参与数学学习活动,尝试着用自己的方式去解决问题,勇于发表自己的观点.除了演好组织者、引导者的角色外,教师还应争当伯乐和雷锋,多给学生以赞许、鼓励、关爱和帮助,让他们在积极愉悦的氛围中努力学习.

初中数学不等式教案篇四

4.初步理解证明不等式的逻辑推理方法.

教学重点:定理1,2,3的证明的证明思路和推导过程。

教学过程()。

一、复习回顾。

上一节课,我们一起学习了比较两实数大小的方法,主要根据的是实数运算的符号法则,而这也是推证不等式性质的主要依据,因此,我们来作一下回顾:

二、讲授新课。

在证明不等式的性质之前,我们先明确一下同向不等式与异向不等式的概念.

1.同向不等式:两个不等号方向相同的不等式,例如:是同向不等式.

异向不等式:两个不等号方向相反的不等式.例如:是异向不等式.

初中数学不等式教案篇五

1.经历不同的拼图方法验证公式的过程,在此过程中加深对因式分解、整式运算、面积等的认识。

2.通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间内在联系,每一部分知识并不是孤立的。

3.通过丰富有趣的拼图活动,经历观察、比较、拼图、计算、推理交流等过程,发展空间观念和有条理地思考和表达的能力,获得一些研究问题与合作交流方法与经验。

4.通过获得成功的体验和克服困难的经历,增进数学学习的信心。通过丰富有趣拼的图活动增强对数学学习的兴趣。

1.通过综合运用已有知识解决问题的过程,加深对因式分解、整式运算、面积等的认识。

2.通过拼图验证公式的过程,使学习获得一些研究问题与合作交流的方法与经验。

利用数形结合的方法验证公式。

动手操作,合作探究课型新授课教具投影仪。

你已知道的关于验证公式的拼图方法有哪些?(教师在此给予学生独立思考和讨论的时间,让学生回想前面拼图。)。

新课讲解:

把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子。美国第二十任总统伽菲尔德就由这个图(由两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个新的图形)得出:c2=a2+b2他的证法在数学史上被传为佳话。他是这样分析的,如图所示:

教师接着在介绍教材第94页例题的拼法及相关公式。

提问:还能通过怎样拼图来解决以下问题。

(2)任意写出一个关于a、b的二次三项式,如a2+4ab+3b2。

试用拼一个长方形的方法,把这个二次三项式因式分解。

了解学生拼图的情况及利用自己的拼图验证的情况。教师在巡视过程中,及时指导,并让学生展示自己的拼图及让学生讲解验证公式的方法,并根据不同学生的不同状况给予适当的引导,引导学生整理结论。

从这节课中你有哪些收获?

(教师应给予学生充分的时间鼓励学生畅所欲言,只要是学生的感受和想法,教师要多鼓励、多肯定。最后,教师要对学生所说的进行全面的总结。)。

学生回答。

a(b+c+d)=ab+ac+ad。

(a+b)(c+d)=ac+ad+bc+bd。

(a+b)2=a2+2ab+b2。

学生拿出准备好的硬纸板制作。

给学生充分的时间进行拼图、思考、交流经验,对于有困难的学生教师要给予适当引导。

第95页第3题。

复习例1板演。

………………。

………………。

……例2……。

………………。

………………。

教学后记。

初中数学不等式教案篇六

(3)能够利用基本不等式求简单的最值。

2、过程与方法目标。

(1)经历由几何图形抽象出基本不等式的过程;。

(2)体验数形结合思想。

3、情感、态度和价值观目标。

(1)感悟数学的发展过程,学会用数学的眼光观察、分析事物;。

(2)体会多角度探索、解决问题。

初中数学不等式教案篇七

课前复习提问时,给学生的复习思考时间太短,开始问了几个学生不等式的三个基本性质,有的答不出来,有的答对一点但不完整。在很多学生没有作好充分准备时问到这个问题有点慌乱,我觉得更好的办法是先让学生看一下书复习一下不等式的三个基本性质,然后合起书再叫同学来说效果会更好。

例2学生对实际问题中的字母取值范围考虑不全,在讲解这个问题时带有点填压式,告诉学生字母的取值要大于或等于0,讲过之后可能学生印象还是不深。我觉得应先举一些实际生活中常见的例子,比如在数人的个数时字母应取什么值等,多列举一些例子让学生感性上认识,从而引导学生思考例2的字母的.取值范围。

例3学生根据三边关系往往只列出一个不等式,在教学时我先采取了提问的方式,给出了三个问题,引出三个不等式,然后让学生移项变形,又得出三个不等式,对总结三角形任意两边之差小于第三边做了辅垫。教学效果较好。

学生在回答问题的过程中,为了更快的得到自己预期的答案,往往打断学生的回答,剥夺了学生的主动权;比如学生在总结不等式性质3时,总怕他们出错所以老师急于公布结论。有时在学生思考问题时做一些补充打断学生的思路,这样对学生思考问题又带来一定影响;课堂小结中学生的体会与收获谈的不是很好。

初中数学不等式教案篇八

2.使学生学会由上的已知点说出它所表示的数,能将有理数用上的点表示出来;。

3.使学生初步理解数形结合的思想方法.

教学重点和难点。

重点:初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数.

难点:正确理解有理数与上点的对应关系.

课堂教学过程设计。

一、从学生原有认知结构提出问题。

1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?

2.用“射线”能不能表示有理数?为什么?

3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?

待学生回答后,教师指出,这就是我们本节课所要学习的内容——.

二、讲授新课。

让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.

与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):

提问:我们能不能用这条直线表示任何有理数?(可列举几个数)。

在此基础上,给出的定义,即规定了原点、正方向和单位长度的直线叫做.

通过上述提问,向学生指出:的三要素——原点、正方向和单位长度,缺一不可.

三、运用举例变式练习。

例1画一个,并在上画出表示下列各数的点:

例2指出上a,b,c,d,e各点分别表示什么数.

课堂练习。

示出来.

2.说出下面上a,b,c,d,o,m各点表示什么数?

最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.

四、小结。

指导学生阅读教材后指出:是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.

本节课要求同学们能掌握的三要素,正确地画出,在此还要提醒同学们,所有的有理数都可用上的点来表示,但是反过来不成立,即上的点并不是都表示有理数,至于上的哪些点不能表示有理数,这个问题以后再研究.

五、作业。

1.在下面上:

(1)分别指出表示-2,3,-4,0,1各数的点.

(2)a,h,d,e,o各点分别表示什么数?

2.在下面上,a,b,c,d各点分别表示什么数?

3.下列各小题先分别画出,然后在上画出表示大括号内的一组数的点:

(1){-5,2,-1,-3,0};(2){-4,2.5,-1.5,3.5};。

初中数学不等式教案篇九

重点:本节的重点是平行四边形的概念和性质.虽然平行四边形的概念在小学学过,但对于概念本质属性的理解并不深刻,为了加深学生对概念的理解,为以后学习特殊的平行四边形打下基础,所以教师不要忽视平行四边形的概念教学.平行四边形的性质是以后证明四边形问题的基础,也是学好全章的关键.尤其是平行四边形性质定理的推论,推论的应用有两个条件:

一个是夹在两条平行线间;

一个是平行线段,具备这两个条件才能得出一个结论平行线段相等,缺少任何一个条件结论都不成立,这也是学生容易犯错的地方,教师要反复强调.

难点:本节的难点是平行四边形性质定理的灵活应用.为了能熟练的应用性质定理及其推论,要把性质定理和推论的条件和结论给学生讲清楚,哪几个条件,决定哪个结论,如何用数学符号表示即书写格式,都要在讲练中反复强化.

3.教法建议。

(1)教科书一开始就给出了平行四边形的定义,我感觉这样引入新课,不利于调动学生的积极性.自己设计了一个动画,建议老师们用它作为本节的引入,既可以激发学生的学习兴趣,又可以激活学生的思维.

(2)在生产或生活中,平行四边形是常见图形之一,教师可以多给学生提供一些平行四边形的图片,增加学生的感性认识,然后,让他们自己总结出平行四边形的定义,教师最后做总结.平行四边形是特殊的四边形,要判定一个四边形是不是平行四边形,要判断两点:首先是四边形,然后四边形的两组对边分别平行.平行四边形的定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.

(3)对于教师来说讲课固然重要,但讲完课后有目的的强化训练也是不可缺少的,通过做题,帮助学生更好的理解所讲内容,也就是我们平时说的要反思回顾,总结深化.

平行四边形及其性质第一课时。

一、素质教育目标。

(一)知识教学点。

1.使学生掌握平行四边形的概念,理解两条平行线间的距离的概念.。

2.掌握平行四边形的性质定理1、2.。

3.并能运用这些知识进行有关的证明或计算.。

(二)能力训练点。

1.知道解决平行四边形问题的基本思想是化为三角形问题来处理,渗透转化思想.。

2.通过推导平行四边形的性质定理的过程,培养学生的推导、论证能力和逻辑思维能力.。

(三)德育渗透点。

通过要求学生书写规范,培养学生科学严谨的学风.。

(四)美育渗透点。

通过学习,渗透几何方法美和几何语言美及图形内在美和结构美。

二、学法引导。

阅读、思考、讲解、分析、转化。

三、重点·难点·疑点及解决办法。

1.教学重点:平行四边形性质定理的应用。

四、课时安排。

2课时。

五、教具学具准备。

教具(做两个全等的三角形),投影仪,投影胶片,小黑板,常用画图工具。

六、师生互动活动设计。

第一课时。

1.什么叫做四边形?什么叫四边形的一组对边?

2.四边形的两组对边在位置上有几种可能?

(随着学生回答画出图1)。

图1。

1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.。

2.平行四边形的表示:平行四边形用符号“。

”表示,如图1就是平行四边形。

记作“。

”.。

align=middle。

图1。

3.平行四边形的性质。

平行四边形性质定理1:平行四边形的对角相等.。

平行四边形性质定理2:平行四边形对边相等.。

(教具用两个全等的三角形拼凑的平行四边形演示,由此得到证明以上两个定理的方法.如图2)。

图2如图3。

所以四边形是平行四边形,所以.由此得到。

推论:夹在两条平行线间的平行线段相等.。

图3。

4.平行线间的距离。

我们把两条平行线中一条直线上任意一点到另一条直线的距离,叫做平行线的距离.。

图5。

注意:(1)两相交直线无距离可言.。

例1已知:如图1,

初中数学不等式教案篇十

填空:

教师追问:第三题()里可以填多少个数?第4题呢?

为什么3、4题()里可以填无数个数?

()里填任何数都行吗?哪个数不行?(板书:零除外)。

这里为什么必须“零除外”?

(板书课题:分数基本性质)。

4.深入理解分数基本性质.。

教师提问:分数的基本性质里哪几个词比较重要?

为什么“都”和“相同”很重要?

为什么“分数大小不变”也很重要?

为什么“零除外”也很重要?

三、课堂练习.。

1.用直线把相等的分数连接起来.。

2.把下列分数按要求分类.。

和相等的分数:

和相等的分数:

3.判断下列各题的对错,并说明理由.。

4.填空并说出理由.。

5.集体练习.。

四、照应课前谈话.。

问:现在谁知道哥哥、姐姐、弟弟三个人,谁吃的西瓜多呢?

板书:

五、课堂小结.。

这节课你有什么收获?

六、布置作业.。

1.指出下面每组中的两个分数是相等的还是不相等的.。

2.在下面的括号里填上适当的数.。

将本文的word文档下载到电脑,方便收藏和打印。

初中数学不等式教案篇十一

3、情感目标:在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习惯;学会在解决问题时,与其他同学交流,培养互相合作精神。

关键:突出建模思想,刻画出数量关系,从实际中抽象出数量关系。注意问题中隐含的不等量关系,列代数式得到不等式,转化为纯数学问题求解。

创设情境,研究新知。

这个周末我们要去四明山旅游渡假村,为此我们要做两个准备:先选择一家旅行社,然后购买一些必需的旅游用品。在这个过程中,我们会碰到一些问题,看同学们能不能用数学知识来解决。

(从生活中的实际问题入手,激发学生探究问题的兴趣,这是一个最优方案的选择问题,具有一定的开放性和探索性,解决这类问题,一般要根据题目的条件,分别计算结果,再比较、择优。本题通过问题设置,培养学生分析题意的能力,分析题中相关条件,找到不等关系。让学生充分进行讨论交流,在活动中体会不等式的应用。在分析问题的过程中运用了“求差值比较大小”这一方式,使学生又掌握了一种新的比较两个量之间大小的方式;同时体会到分类考虑问题的思考方式)。

观察探讨,实际操作。

选定了旅行社以后,咱们要去购物了,正好商店为了吸引顾客在举行优惠打折活动。

问题2:

分析:这个问题较复杂,从何处入手呢?

甲商店优惠方案的起点为购物款达__元后;

乙商店优惠方案的起点为购物款过__元后、

启发提问:我们是否应分情况考虑?可以怎样分情况呢?

(1)如果累计购物不超过50元,则在两店购物花费有区别吗?

(2)如果累计购物超过50元,则在哪家商店购物花费小?为什么?

关键是对于第二个问题的分类,鼓励学生大胆猜想,对研究的问题发表见解,进行探索、合作与交流,涌现出多样化的解题思路.教师及时予以引导、归纳和总结,让学生感知不等式的建模,在活动中体会不等式的实际作用。

实际问题从关键语句中找条件。

符号表达1、根据题意设置恰当的未知数。

2、用代数式表示各过程量。

3、寻找问题中的不等关系列出不等式。

解不等式注意不等式基本性质的运用。

(本环节我设置学生分组合作共同讨论,由学生代表发言,互相补充,最后总结。学生会体会到本节课我们不仅仅是解了如何分析问题中的不等关系列出不等式,也尝试了利用分类的方法考虑问题,同时还学到了一种新的比较两个量大小的方法:求差比较法。体现了新课标提倡的学生主动,师生互动,生生互动的新的总结方式。)。

一元一次不等式的实际应用是浙教版八年级上册第五章内容,是在学习了一元一次不等式的性质及其解法、用一元一次方程解决实际问题等知识的基础上,把实际问题和一元一次不等式结合在一起,既是对已学知识的运用和深化,又为下节一元一次不等式组的学习奠定基础,具有承上启下的作用;同时通过本节的学习,向学生渗透“求差比较两个量的大小”的方法,和分类考虑问题的探究方式,可以提高学生分析问题、解决问题的能力。

本节课的教学设计从以下几个方面进行设置:

1、教学内容:本节课的教学内容大多以实际生活中的问题情景呈现出来,给学生以亲切感,可以提高学生的学习兴趣,让学生感受到数学来源于生活,学生通过合作、努力解决问题,体会到学习数学的价值。

2、组织形式:本节课以开放式的课堂形式组织教学,让学生进行合作学习,共同操作与探索、共同研究、解决问题。由于本节教学内容的特点,教师无须过多讲解,只需引导、组织学生活动,有意识的让学生主动去观察、比较、分类、归纳,积极思考,并真正参与到学生的讨论之中。这节课成功与否,不在于教师的讲解本领,而在于调动、启发学生、提出问题的水平以及激起学生求知欲、培养他们学习数学的主动性的艺术高低。

3、学习方式:动手实践、自主探索是学习数学的重要方式,因此本节课改变了过去接受式的学习方式,学生不是等待知识的传递,而是主动的参与到学习活动中,成为学习的主体。

4、评价方式:教师在教学中关注的是学生对待学习的态度是否积极,关注的是学生思考了没有,参与了没有,关注学生能否从数学的角度考虑问题。也就是说:教师关注的是过程,而不是结果。另外,在课堂教学中,给了学生更多的展示自己的机会,并且教师的鼓励与欣赏有助于学生认识自我,建立自信,发挥评价的教育功能。

初中数学不等式教案篇十二

2、能力目标:通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题。

3、情感目标:在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的`习。

惯;学会在解决问题时,与其他同学交流,培养互相合作精神。

重点:一元一次不等式在实际问题中的应用。难点:在实际问题中建立一元一次不等式的数量关系。

关键:突出建模思想,刻画出数量关系,从实际中抽象出数量关系。注意问题中隐含的。

不等量关系,列代数式得到不等式,转化为纯数学问题求解。

这个周末我们要去杜氏旅游渡假村,为此我们要做两个准备:先选择一家旅行社,然后购买一些必需的旅游用品。在这个过程中,我们会碰到一些问题,看同学们能不能用数学知识来解决。

选定了旅行社以后,咱们要去购物了,正好商店为了吸引顾客在举行优惠打折活动。

问题2:

(1)如果累计购物不超过50元,则在两店购物花费有区别吗?

(2)如果累计购物超过50元,则在哪家商店购物花费小?为什么?

关键是对于第二个问题的分类,鼓励学生大胆猜想,对研究的问题发表见解,进行探索、合作与交流,涌现出多样化的解题思路.教师及时予以引导、归纳和总结,让学生感知不等式的建模,在活动中体会不等式的实际作用。

1、根据设置恰当的未知数。

2、用代数式表示各过程量。

3、寻找问题中的不等关系列出不等式。

解不等式注意不等式基本性质的运用。

(本环节我设置学生分组合作共同讨论,由学生代表发言,互相补充,最后总结。学生会体会到本节课我们不仅仅是解了如何分析问题中的不等关系列出不等式,也尝试了利用分类的方法考虑问题,同时还学到了一种新的比较两个量大小的方法:求差比较法。体现了新课标提倡的学生主动,师生互动,生生互动的新的总结方式。)预留悬念要出游旅行,目的地的天气情况也是我们很关注的问题,下节课咱们再一起看看杜氏旅游渡假村所在地的天气如何,大家可以自己先去查查相关的资料。

(抛出学生感兴趣的问题,为下节课的教学内容打下了伏笔,做了很好的铺垫)。

一元一次不等式的实际应用是人教版七年级下册第九章第二小节内容,是在学习了一元一次不等式的性质及其解法、用一元一次方程解决实际问题等知识的基础上,把实际问题和一元一次不等式结合在一起,既是对已学知识的运用和深化,又为下节一元一次不等式组的学习奠定基础,具有承上启下的作用;同时通过本节的学习,向学生渗透“求差比较两个量的大小”的方法,和分类考虑问题的探究方式,可以提高学生分析、解决问题的能力。

1。、教学内容:

本节课的教学内容大多以实际生活中的问题情景呈现出来,给学生以亲切感,可以提高学生的学习兴趣,让学生感受到数学来源于生活,学生通过合作、努力解决问题,体会到学习数学的价值。

2、组织形式:

本节课以开放式的课堂形式组织教学,让学生进行合作学习,共同操作与探索、共同研究、解决问题。由于本节教学内容的特点,教师无须过多讲解,只需引导、组织学生活动,有意识的让学生主动去观察、比较、分类、归纳,积极思考,并真正参与到学生的讨论之中。这节课成功与否,不在于教师的讲解本领,而在于调动、启发学生、提出问题的水平以及激起学生求知欲、培养他们学习数学的主动性的艺术高低。

3、学习方式:

动手实践、自主探索是学习数学的重要方式,因此本节课改变了过去接受式的学习方式,学生不是等待知识的传递,而是主动的参与到学习活动中,成为学习的主体。

4、评价方式:

教师在教学中关注的是学生对待学习的态度是否积极,关注的是学生思考。

初中数学不等式教案篇十三

《不等式的基本性质》它是北师大版八年级下册第一章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:

本节内容不等式,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。

根据《新课程标准》的要求,教材的`内容兼顾我校八年级学生的特点,我制定了如下教学目标:

知识与技能:

1.感受生活中存在的不等关系,了解不等式的意义。

过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。

情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。

教学重难点:

初中数学不等式教案篇十四

这节课从复习上节内容开始,不断的变式,最后回到一元二次不等式的解法上面。课堂的开端就给人一种环环相扣,引人入胜的感觉。随后到讲解归纳一元二次不等式的一般解法。任课老师不需要多媒体课件,就徒手在黑板上画出一个漂亮的表格,把解一元二次不等式的几种情况都归纳展示出来了。这过程老师感觉有点讲多了,我认为他可以放手让学生去完成。不过他的'做法应该是想为后面练习争取更多的时间。这里可以因人而异地处理,问题不大。随后一个典型的例子简洁明了地展示了解一元二次不等式的步骤:判断方程根的个数和求根,作出函数的图像,由图像写出不等式的解集。板书非常清晰美观!在总结了解法步骤之后,留给学生练习的时间也就15分钟以内了。从练习看出,学生对方法的掌握得还是很好的。最后任课老师还进行一元二次不等式的变式,就是分式不等式的解法了。

感觉这节课内容充实,重点突出,思路条理清晰,方法归纳简洁精准,板书美观清晰,只是在课堂组织方面有些欠缺。通过这次听课,使我开阔了眼界,也发现一些值得自己去思考的问题。

初中数学不等式教案篇十五

《一元一次不等式》是人教版教材七年级第九章第二节内容,在此之前,学生们已经学习了不等式基本性质,不等式的解集等知识,这为过渡到本节内容的学习起到了铺垫的作用。同时也是学生以后顺利学习一元一次不等式组有关内容的基础因此,本节内容在本章中具有不容忽视的重要的地位。

根据本教材的结构和内容分析,结合着七年级学生他们的认知结构及其心理特征,我制定了以下的教学目标:

3、情感与态度:初步认识一元一次不等式的应用价值,发展学生分析问题,解决问题的能力;初步感知实际问题对不等式解集的影响,积累利用一元一次不等式解决简单实际问题的经验。

本着课程标准,在吃透教材基础上,我确定了以下的教学重点和难点。

教学重点:掌握一元一次不等式的概念,会解一元一次不等式,并能将解集在数轴上表示出来。

重点的依据:“人人学有价值的数学”。因此,我确定这节课的重难点是看两方面:一是教学内容与教学目标;二是学生的认识水平。这节课的意图是让学生认识一元一次不等式,会解一元一次不等式,因此,这节课的重点为掌握一元一次不等式的概念,会解一元一次不等式,并能将解集在数轴上表示出来。

难点的依据:不等式与方程一样是千变万化的,因此不等式的解法也不是一层不变的,如何类比一元一次方程的解法来解一元一次不等式是本节的一个难点。

为了讲清教材的重、难点,使学生能够达到本节内容设定的教学目标,我再从教法和学法上谈谈:

在教学过程中,不仅要使学生“知其然”,还要使学生“知其所以然”。我们在以师生既为主体,又为客体的原则下,展现获取理论知识、解决实际问题方法的思维过程。

学生知识现状分析:七年级上学期学生已经掌握一元一次方程的解法,上一节课学生已初步会进行不等式的简单变形,但是在运用不等式性质3时容易出现错误。我主要采取学生活动的教学方法,让学生真正的参与活动,而且在活动中得到认识和体验,产生践行的愿望。培养学生将课堂教学和自己的行动结合起来,充分引导学生全面的看待发生在身边的现象,发展思辩能力,注重学生的心理状况。当然教师自身也是非常重要的教学资源。教师本人应该通过课堂教学感染和激励学生,充分调动起学生参与活动的积极性,激发学生对解决实际问题的渴望,并且要培养学生以理论联系实际的能力,从而达到最佳的教学效果。同时也体现了课改的精神。

基于本节课内容的特点,我主要采用了以下的教学方法:

1、直观演示法:

利用图片的投影等手段进行直观演示,激发学生的学习兴趣,活跃课堂气氛,促进学生对知识的掌握。

2、活动探究法。

引导学生通过创设情景等活动形式获取知识,以学生为主体,使学生的独立探索性得到了充分的发挥,培养学生的自学能力、思维能力、活动组织能力。

3、集体讨论法。

针对学生提出的问题,组织学生进行集体和分组讨论,促使学生在学习中解决问题,培养学生的团结协作的精神。

让学生从机械的“学答”向“学问”转变,从“学会”向“会学”转变,成为真正的学习的主人。这节课在指导学生的学习方法和培养学生的学习能力方面主要采取以下方法:思考评价法、分析归纳法、自主探究法、总结反思法。

在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。

1.导入新课:(3—5分钟)。

在这节课开始之初先出示两个一元一次方程,要求学生在回忆一元一次方程的基础上解出这两个方程并要求学生说出每一步的依据。这样为后面学习一元一次不等式的概念,及类比其解法埋下伏笔。在这之后,要求学生说出不等式的3条基本性质,增强课程连续性的情况下,引导学生进入本课知识的学习。

2.创设情境导入新知。

教师出示一些简单的不等式,要求学生观察分析,分组讨论这些不等式的共同特点。学生归纳总结出共同特点后,要求学生类比一元一次方程给这些不等式取名字。

通过观察,猜想,设置悬念,激发学生强烈的求知欲,要求学生类比推理,归纳总结,发展学生分析问题,解决问题的能力。

3.类比推理深化新知。

4.运用新知形成能力。

为了巩固本节课的教学效果,反馈学生学习的情况,本着学以致用的原则,设置了四道解不等式的练习题:

(1)5x+154x—1。

(2)2(x+5)3(x—5)。

这四道题分三个类型,让学生熟练掌握刚学的知识。

根据教材的特点,学生的实际、教师的特长,以及教学设备的情况,我选择了多媒体的教学手段。这些教学手段的运用可以使抽象的知识具体化,枯燥的知识生动化,乏味的知识兴趣化。重视教材中的疑问,适当对题目进行引申,使它的作用更加突出,有利于学生对知识的串联、积累、加工,从而达到举一反三的效果。

课堂小结,强化认识。(3—5分钟)。

课堂小结,可以把课堂传授的知识尽快地转化为学生的素质;简单扼要的课堂小结,可使学生更深刻地理解不等式在实际生活中的应用,并且逐渐地培养学生具有良好的个性。

4、板书设计。

直观、系统的板书设计,还及时地体现教材中的知识点,以便于学生能够理解掌握。

初中数学不等式教案篇十六

本节课的内容,是人教版七年级下册第九章第二节“实际问题与一元一次不等式”。它是在学习不等式的概念、性质及其解法和运用一元一次方程(或方程组)解决实际问题等知识的基础上,利用不等式解决实际问题。这既是对已学知识的运用和深化,又为今后在解决实际问题中提供另一种有效的解决途径。通过实际问题的探究,让学生学会列一元一次不等式,解决具有不等关系的实际问题。经历由实际问题转化为数学问题的过程,掌握利用一元一次不等式解决问题的基本过程。促进学生的数学思维意识,从而使学生乐于接触社会环境中的数学信息,愿意谈论某些数学话题,能够在数学活动中发挥积极作用。同时向学生渗透由特殊到一般、类比、建模和分类考虑问题的思想方法。不等式与现实生活中联系非常紧密,解决好这类应用题,有助于学生在以后的日常生活中自主灵活应用所学知识解决实际问题。

七2班班现有56名同学,部分学生基础较差,拔尖学生少,尤其个别学生底子太薄,学生学习较为被动,预习工作做得不够认真,同时学生学习数学的积极性不高,基本能力较差,解决问题的能力不强,知识掌握不够扎实,运用不够灵活。从学生学习的心理基础和认知特点来说:学生已经在前一阶段学习的学习中已经具备了实际问题建立一元一次方程和解一元一次方程的一般步骤的基础,能进行数学建模和简单的解释应用。虽然初一学生对消费问题比较热心,但由于年纪太小,缺少生活经验,由于本节问题的背景和表达都比较贴近实际,其中有些数量关系比较隐蔽,可能会产生一定的障碍。

一元一次不等式的应用,是中学数学的重要内容,和一元一次方程应用相似,对培养学生分析问题、解决问题的能力,体会数学的价值都有较大的意义,对实际生活中的不等量关系、数量大小比较等知识,学生在小学阶段已经有所了解,但用不等式表示,并对不等式的相关性质进行探究,对学生是新的内容。这些问题能培养学生思维的深刻性和灵活性,优化学生的思维品质。分组活动,先独立思考,再组内交流,然后各组汇报讨论结果,可极大调动学生的创造积极性,应把握学生的创新潜能,使不同层次的学生都能得到发展。在实施教学时,要根据课程改革的基本理念和教材特点组织教学,结合具体内容,让学生经历知识的形成与应用过程。

知识目标:能进一步熟练的解一元一次不等式,会从实际问题中抽象出数学模型,会用一元一次不等式解决简单的实际问题。

能力目标:通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型。

情感目标:在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习惯;学会在解决问题时,与其他同学交流,培养互相合作精神。

关键:突出建模思想,刻画出数量关系,从实际中抽象出数量关系。注意问题中隐含的不等量关系,列代数式得到不等式,转化为纯数学问题求解。

创设情境,研究新知。

初中数学不等式教案篇十七

1、地位和价值。

一元二次不等式解法是开云KY官方登录入口 数学新教材第一册(上)第一章第5节的内容。在此之前,学生在初中已学习了一元一次不等式,一元一次不等式组,一元二次方程,二次函数,绝对值不等式(开云KY官方登录入口 ),这为过渡到本节的学习起着铺垫作用。一元二次不等式解法是解不等式的基础和核心,它在开云KY官方登录入口 代数中起着广泛应用的工具作用,蕴藏着“数与形结合”的重要思想方法,它已成为代数、三角、解析几何交汇综合的重要部分,是高考综合题的热点。

2、教材结构简介。

教材首先以一个一次函数图象的应用解一元一次不等式,引出图象法,然后给出一个二次函数,通过具体画图象,提出问题。再一般地给出了二次函数图象解二次不等式的结论。课本精选了四个解不等式的例题,并配有相应的练习和习题。它的后一小节为解可转化为一元二次不等式的分式不等式。

二、教育教学观。

1、学生为主体,重学生参与学习活动。

2、重过程。按照认知规律及学生认知特点,由浅入深,由表及里,设计一系列教学活动过程。体现由“实践……观察……归纳……猜想……结论……验证应用”的循环往复的认知过程。

3、重能力与态度的培养,在活动中培养学生自主、交流合作、探究、发现的能力。重科学严谨的`个性品质。重参与学习的兴趣和体验。

4、重指导点拨。在学生自主探究、实践的基础上,相机启发,恰当点拨,促进学生知识由感性向理性提升,由具体到概括抽象,形成师生间的有效互动。

三、教学目标。

基于上述认识,及不等式的基本知识,同时学生在初中已学过二次函数,考虑到学生已有的认知结构心理特征,制订如下教学目标:

1、知识目标:一元二次方程,一元二次不等式及二次函数间的联系,及利用二次函数的图象求解一元二次不等式。

2、能力目标:数形结合的思想(应用二次函数图象解不等式)。

3、情感态度目标:通过问题解决,培养学生自主参与学习,以及严谨求实的态度。

四、教与学重点、难点。

2、难点:围绕二次函数图象、性质这一主线,解决三个“二次”的联系和应用。

初中数学不等式教案篇十八

教法与学法:

1.教学理念:“人人学有用的数学”

2.教学方法:观察法、引导发现法、讨论法.。

3.教学手段:多媒体应用教学。

4.学法指导:尝试,猜想,归纳,总结。

根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。

下面我将具体的教学过程阐述一下:

一、创设情境,导入新课。

上课伊始,我将用一个公园买门票如何才划算的例子导入课题。

(此处学生是很容易得出买30张门票需要4x30=120(元),买27张门票需要5x27=135(元),由于120〈135,所以买30张门票比买27张还要划算。由此建立了一个数与数之间的不等关系式)。

紧接着进一步提问:若人数是x时,又当如何买票划算?

二、探求新知,讲授新课。

引例列出了数与数之间的不等关系和含有未知量1205x的不等关系。那么在不等式概念提出之前,先让学生回顾等式的概念,“类比”等式的概念,尝试着去总结归纳出不等式的概念。使学生从一个低起点,通过获得成功的体验和克服困难的经历,增进应用数学的自信心,为下面的学习调动了积极。

接下来我用一组例题来巩固一下对不等式概念的认知,把表示不等量关系的常用关键词提出。

(1)a是负数;

(2)a是非负数;

(3)a与b的和小于5;

(4)x与2的差大于-1;

(5)x的4倍不大于7;

(6)的一半不小于3。

关键词:非负数,非正数,不大于,不小于,不超过,至少。

难点突破:通过上面三组算式,学生已经尝试着归纳出不等式的三条基本性质了。不等式性质3是本节的难点。在不等式性质3用数探讨出以后,换一个角度让学生想一想,是否能在数轴上任取两个点,用相反数的相关知识挖掘一下,乘以或除以一个负数时,任意两个数比较是否性质3都成立。通过“数形结合”的思想,使数的取值从特殊化到一般化,从对具体数的感知完成到字母代替数的升华。让学生用实例对一些数学猜想作出检验,从而增加猜想的可信程度。同时,让学生尝试从不同角度寻求解决问题的方法并能有效地解决问题。

反馈练习:用一个小练习巩固三条性质。

如果ab,那么。

(1)a-3b-3(2)2a2b(3)-3a-3b。

提出疑问,我们讨论性质2,3是好象遗忘了一个数0。

引出让学生归纳,等式与不等式的区别与联系。

三、拓展训练。

根据不等式基本性质,将下列不等式化为“”或“”的形式。

再次回到开头的门票问题,让学生解出相应的x的取值范围。

四、小结。

1.新知识。

2.与旧知识的联系。

五、作业的布置。

以上是我对这节课的教学的看法,希望各位专家指正。谢谢!

“让学生主动参与数学教学的全过程,真正成为学习的主人”

初中数学不等式教案篇十九

教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。

在本节课之前学生已经掌握了一元一次方程的相关知识和不等式的性质,所以,本节课类比一元一次方程的解法,利用不等式的性质解一元一次不等式。另外,本节课为后续学习解一元一次不等式组奠定基础。

不等式在日常生产生活中的应用很广泛,它与数、式、方程、函数甚至几何图形有着密切的联系,它几乎渗透到初中数学的每一部分。所以,本节课在数学领域中起着非常重要的地位。

合理把握学情是上好一堂课的基础,本次课所面对的学生群体具有以下特点。

本学段的学生逐渐掌握抽象概念和复杂的概念系统,能作科学定义,抽象逻辑思维逐步占优势。

本阶段的学生类比推理能力都有了一定的发展,并且在生活中已经遇到过很多关于一元一次方程的具体的事例,所以在生活上面有了很多的经验基础。为本节课的顺利开展做好了充分准备。

根据以上对教材的分析以及对学情的把握,我制定了如下三维目标:

(一)知识与技能。

认识一元一次不等式,会解简单的一元一次不等式,类比一元一次方程的步骤,总结归纳解一元一次不等式的基本步骤。

(二)过程与方法。

通过对比解一元一次方程的步骤,学生自己总结归纳一元一次不等式步骤的过程,提高归纳能力,并学会类比的学习方法。

(三)情感态度价值观。

通过数学建模,提高对数学的学习兴趣。

本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点:

(一)教学重点。

掌握一元一次不等式的概念,会解一元一次不等式并能够在数轴上表示出来。

(二)教学难点。

科学合理的教学方法能使教学效果事半功倍,达到教与学的和谐完美统一。

基于此,我准备采用的教法讲授法、讨论法。德国教育学家第斯多慧:差的教师只会奉送真理,好的教师则交给学生如何发现真理,教师的教是为了不教,这才是教学的最高境界,所以我采用的学法是练习法、自主合作法。

在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。

(一)新课导入。

首先是导入环节,我采用复习旧知的导入方法。我会让学生回忆不等式的概念以及一元一次方程的概念,明确指出今天学习的内容是《一元一次不等式》。

这样的设计既可以考查学生对之前知识的掌握情况,还能够为今天学习一元一次方程的概念打下基础。而且开门见山的导入方式能够快速地进入主题。

(二)新知探索。

接下来是新知探索环节,首先我请学生类比不等式以及一元一次方程的概念,给一元一次不等式下定义。

能够总结出:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。

接下来让学生回忆上节课学习的不等式x-726如何解决的,通过学生回忆总结可以得到:通过“不等式的两边都加7,不等号的方向不变”而得到的。

接下来提问学生有没有更加简便的方法解不等式?让学生类比解一元一次方程的步骤进行解题。可以得到相当于可以用“移项”,来解决。

在这个过程中,强调每一个步骤,在第二题最后一步,强调当不等式的两边同时乘以(或除以)同一个负数时,不等号的方向改变。

从而我们归纳:解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为xa的形式。

《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”。根据这一教学理念,在本环节中,我组织学生进行了自主探究活动,让学生在保持高度学习热情和探究欲望的活动过程中,始终以愉悦的心情,亲身经历和体验知识的形成过程。培养学生的探究能力、分析思维能力,激发他们的创新意识、参与意识。

(三)课堂练习。

第三个环节是课堂练习环节,出示问题,解不等式,并在数轴上表示数集:5x+154x-1。

之所以这样设计是因为练习是掌握知识、形成技能、发展思维的重要手段,针对本课的教学重点和难点,上述练习,目的是让学生进一步巩固对新知的理解。可以深化教学内容,培养思维的灵活性。

(四)小结作业。

最后一个环节为小结作业环节,关于课堂小结,我打算让学生自己来总结今天的收获。

这样既发挥了学生的主体性,又可以提高学生的总结概括能力,让我在第一时间得到学习反馈,及时加以疏导。

通过这样的方式能够为本节课学习的知识进行进一步的巩固。

【本文地址:http://www.pourbars.com/zuowen/17700651.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map