商的近似数的数学教案(热门14篇)

格式:DOC 上传日期:2023-12-07 06:45:04
商的近似数的数学教案(热门14篇)
时间:2023-12-07 06:45:04     小编:QJ墨客

编写教案时要充分考虑教材资源和教学环境的配套利用。教案的编写应注重培养学生的实际动手能力。以下是小编为大家收集的教案范文,供大家参考借鉴。

商的近似数的数学教案篇一

1、经历生活数据收集的过程,理解近似数表示的必要性。

2、探索“四舍五入”求近似数的方法。

3、能根据实际情况,灵活运用不同精确值的近似数。

相关数据资料,学生课前搜集的数据。

会正确读、写多位数,并能比较数的大小。

一、小组交流收集的有关森林面积方面的数据。

交流收集的有关森林面积方面的数据,并说说这些数据的.实际意义。在此基础上引导学生对数据进行分类,在各种分类中重点讨论精确数与近似数这两类数的特点,并让学生再举例说一说日常生活中接触的近似数。

二、用四舍五入法取近似数。

出示说一说中的数据,使学生通过比较、分析,了解四舍五入法取近似数的方法。结合是试一试第2题的讨论,体会如何根据不同需要求近似数。

三、巩固与应用。

做试一试第1题:汇报时说说取近似值的方法。

试一试第2题:在实际生活中常常需要根据情况取不同精确程度的近似数。在本题中,可先让学生说一说三个近似值的精确程度,再出示下面的两个小问题,供学生讨论。在讨论时重点让学生理解取近似值是根据实际的需要来确定的。

讨论:重点可讨论括号内的数字有几种可能性,分析哪些是“五入的”,哪些是“四舍的”。

四、课堂作业新设计。

1、教材第12页底1题。

2、教材第12页第2题。

3、教材第12页第3题。

五、思维训练。

括号里能填几?

49()835≈50万49()835≈49万。

商的近似数的数学教案篇二

1、认识“四舍五入”法是截取积的近似数的一般方法。

2、掌握求小数乘法的积的近似数的方法。

(二)过程与方法。

经历求小数乘法的积的近似数的过程,体验迁移的学习方法,培养学生应用数学知识解决实际问题的能力。

(三)情感态度与价值观。

在学习活动中,激发学生的学习兴趣,感受知识源于生活。

二、教学重点。

会用“四舍五入”法截取积是小数的近似数。

三、教学难点。

能根据生活实际灵活截取积是小数的近似数。

四、新授。

(一)导入(复习导入)。

师:在开始新课程之前,我们先回顾一下之前小数乘法学习了哪些内容?

生:小数成整数和小数成小数。

师:今天学习积的近似数。一说到求近似乎,想一想,我们四年级学过求什么数的近似数?

生:求小数的近似数。

师:还都记得怎么做吗?

生:记得(忘了)。

师:让我们先来热热身,看看谁掌握的最为牢固。

(ppt展示题目)。

求下列小数的近似数,并说出你的思考过程。

5.3456.2680.402。

要求:

1、(精确到十分位)。

2、省略百分位后面的尾数。

通过做题,总结规律:

1、先确定保留的数位,在要保留的数位下划条横线;

2、将下一位上的数同“5”作比较,如果小于5,则舍掉;如果大于5或者等于5,则向前进1。(四舍五入法)。

3、取近似数时,若末尾的“0”起到占位的作用,则不能去掉。

(二)情景导入。

例:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍,狗约有多少亿个嗅觉细胞?(得数保留一位小数)。

找同学读题两遍,让同学自己提取信息、列式,让同学到黑板上做题板书,并说出思考过程。

0.049×45=2.205≈2.2(亿个)竖式略。

答:

此处强调两点,一个单位,一个答句不能丢。

(三)、经典练习。

0.95×0.95(得数保留一位小数)。

0.95×0.95=0.9025≈0.9(竖式略)。

想一想,若此题改为保留两位小数,怎么做?(做在练习本上)。

0.95×0.95=0.9025≈0.90(取近似数)。

(四)、做一做(书上)p11现学现练,加深印象。

1、计算下面各题。

0.8×0.9=0.72≈0.7(得数保留一位小数)。

1.7×0.45=0.765≈0.77(得数保留两位小数)。

2、一种大米的价格是每千克3.85元,买2.5kg应付多少钱?(联系实际生活,保留适当的小数位数)。

延伸:实际生活中,常用的纸币面值为元、角,所以保留一位小数即可!

五、小结。

1、学生自己谈收获。

2、老师总结课程重点。

商的近似数的数学教案篇三

1.谈话:同学们,本单元前面几个信息窗我们学习了形形色色的鸟蛋和龟蛋带给我们的数学知识。本节课我们继续来学习本单元最后一个信息窗绿毛龟蛋带给我们的数学知识。

出示情境图,仔细观察画面,你知道了什么?你又能提出哪些数学问题?

学生合作交流。

[设计意图]激发学生的学习愿望和参与动机是引导学生主动学习的前提,通过清晰生动的情境图中出现的两位同学不同的测量结果让学生观察讨论,学生意见不一,于是需要寻找正确的判断方法,由此激起学生探寻新知的强烈愿望。

二、探究新知。

1.学生独立思考他们说的结果为什么不一样?这一问题。

谈话:观察两位同学说的结果,你能发现什么?

让学生观察,引导学生发现:小华读出的结果是一个一位小数,小明读出的结果是一个整数。

谈话:对,求3.94的近似数,根据不同的要求,既可以保留一位小数,也可以保留整数。请同学们选择一种情况,根据我们求整数的近似数的方法,研究一下怎样求一个小数的近似数。

学生独立研究后,再在小组内交流。

谈话:哪位同学愿意说说你是怎样求3.94的近似数的?把你的方法向大家介绍一下。

谈话:你的方法很正确,还有哪位同学与他求得的近似数不同?

谈话:你的方法也很正确。因此,我们在求一个小数的近似数时,依然运用了四舍五入法,关键是看精确到哪一位。

2.学生独立思考绿毛龟蛋的宽径约是多少?这一问题。

学生独立思考后,引导学生讨论什么时候小数的近似数的2,什么时候小数的近似数的2.0。

讨论得出:求一个小数的近似数时,保留小数的数位不同,精确程度也不同。

[设计意图]这一环节教学时让学生自己去观察,在观察中探究新知,在交流中归纳新知,把学习的主动权交给学生,在观察讨论过程中教谈话为学生创设自由选择的空间,让学生体会自由选择的轻松和快乐。

三、巩固应用。

1.黄河的流域面积是75.14万平方千米。(保留一位小数)。

3.小华的体重保留整数是45千克,他的体重可能是多少千克?

[设计意图]练习中让学生交流不同的思考方法,鼓励学生思维的创新,方法的简洁,但也照顾学生不同的认知水平,尊重学生的学习成果。

四、感悟收获。

谈话:今天大家学得愉快吗?你们最大的收获是什么?

(学生自由说说说本课的收获及体验)。

商的近似数的数学教案篇四

1、结合现实素材让学生认识近似数,并能结合实际进行估计。

2、通过教学活动培养学生的数感。

3、知识与生活实际结合,让学生体会到近似数在生活中的作用和意义。

初步理解近似数的意义。

一、游戏引入:猜数:教师或学生悄悄指定一个4位数,学生猜猜是什么数。猜的过程中提示学生所猜数是否与目标数接近,猜中为止。

二、探究新知。

1、教学例8。

(1)出示主题图和近似数“约是1500人”。

请猜猜育英小学的准确数是多少。

猜中之后提问:你如何想到这个数的?

(2)比较1500和1506两数。

指出:1506是一个准确数,1500是它的近似数,在不需要准确数据的情况下,选择一个近似数可方便记忆。

(3)一个数的近似数不唯一。

出示主题图2“新长镇有9992人”

9992的近似数有什么?

同学们说的数哪个最接近9992?

在不要求准确的情况下,你会选择哪个数来表示新长镇的人数?为什么?

小结:一般情况下选择最接近的整十、整百、整千数,方便记忆。

2、生活中的数学。

近似数的使用。

举例:二年级同学304人,可说大约300人。

购物总价钱2998元,可说大约3000元。

学生举例。

3、练习:p794、5、6。

三、课堂作业p808、9。

四、课后任务p807。

商的近似数的数学教案篇五

1、用四舍五入法取1.46348精确到百分位的值是()。

a1.46b1.460c1.5d1.50。

2、下列近似数精确到万位的是()。

a1500b3亿5千万c4×104d3.5×104。

3、如果由四舍五入得到的近似数是58,真值不可能是()。

a58.01b57.88c58.50d57.49。

4、下列说法正确的是()。

a近似数14,0与14的精确度相同;

b近似数20000与2万的精确度相同;

c近似数5×103与5000的精确度相同;

d近似数6万与6×104的精确度相同。

二填空题。

9、用四舍五入法把0.493057精确到百分位为---------;

10、近似数1.820精确到----------位;

11、近似数4.50万精确到---------位;

12、近似数3.04×105精确到-------位;

13、1325.667精确到百位的近似数约为--------------;

14、每人每小时呼出的二氧化碳约为38克,1公顷茂盛的.树林每天约可以吸收1吨的二氧化碳,若要吸收掉1万人一天呼出的二氧化碳约需要----------公顷的树林。(精确到0.1)。

16、两名同学的身高都大约是1.70米,则两人的身高最多差------厘米;

17、1.8206取近似数精确到千分位是--------------;

18,有效数字是对一个近似数从左往右数第一个不是0的数字算起,有几个数有效数字是几,那么数4.6982取三位有效数字约等于---------,近似数2,38×104有------个有效数字。

三、解答题。

(1)0.4605(精确到千分位);

(2)23250.84(精确到千位);

(3)5.49835(精确到百分位);

(4)1.80248(保留三个有效数字).

20、指出下列各数精确到哪一位。

(1)、0.3023(2)7.80。

(3)、13.46亿(4)6.43×107。

21、一个人在洗脸刷牙过程中一直开着水龙头,将浪费大约7杯水(每杯水约250ml)。

某市月100万人口,若在洗漱过程中都一直开着水龙头,那么一个月(按30天计算)将浪费约多少ml水,精确到亿位。

22、(1)计算:22=---------,202=-------------,

2002=-----------,20002=-------;

(2)不用计算器解决问题。

若2342=54756,分别求234002,2.342近似结果。保留两个有效数字。

答案:

20、万分位;百分位;百万位;十万位21、5.25×101。

商的近似数的数学教案篇六

我们生活中有时候需要很精准的数字,比如:

让学生体会生活中有时候只需要近似数,回顾四舍五入。

读书破万卷下笔如有神,以上就是为大家带来的6篇《五年级数学《积的近似数》教案》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在。

商的近似数的数学教案篇七

教材p32例6及练习八第1、2、3、8题。

1.知识与技能:能理解商的近似数的'意义。

2.过程与方法:掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。

3.情感、态度与价值观:培养学生在实际生活中灵活运用数学知识的能力,能根据实际情况进行求近似数。

掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。

注重新旧知识的迁移,引导学生自主学习、总结。

多媒体。

复习旧知:(出示如下题目)。

1.用“四舍五入”法将下面的数改写成一位小数。

8.7693.45212.7118.64。

2.计算下面各题,得数保留两位小数。

2.43×4.6712.15×3.41。

订正答案,并通过问题:你是用什么方法求这些数的近似数?

(保留几位小数就看这位小数后面的数位,大于4就向前一位进一,小于五就舍去。师引导总结方法的名称:“四舍五入”法。)。

引出课题:这节课我们要学习“商的近似数”。(板书课题:商的近似数)。

1.出示教材第32页例6情境图。

阅读情境图中的信息,并问:怎样解决爸爸提出的问题呢?

引导学生自主列算式,并试着计算:19.4÷12。

通过交流,学生可能会想到:实际计算钱数时应该算到分,因为分是人民币的最小单位;也可以算到角,因为现在买东西时已经不用分了。

教师小结:根据我们的生活实际,当所买的商品数量少的时候,可以保留整数,或者保留一位小数,或者两位小数。当然如果数量很多的时候,通常会计算到分,这就要根据我们的实际需要进行取近似数了。看来取近似数一种是按照要求去取,一种是按照实际情况去取。(板书:按要求取,按需要取。)。

然后再引导学生想一想:算到分和角时分别需要保留几位小数?

(算到分要保留两位小数,算到角就要保留一位小数。)。

师引导学生思考并讨论:除的时候应该怎么算?

小组讨论后,学生汇报:保留两位小数,就要算出三位小数,再按“四舍五入”法省略百分位后面的尾数;保留一位小数,就要算出两位小数,再按“四舍五入”法省略十分位后面的尾数。

让学生自己用竖式计算:19.4÷12。教师根据学生汇报,板书。

2.提问:说一说如何求商的近似数?

让学生独立思考后,在小组内交流、讨论。引导学生小结:求商的近似数时,只需要比需要保留的小数位数多除出一位,然后再用“四舍五入”法就可以取近似数了。或者除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。同时,求商的近似数的时,不需要算出商的准确值之后再进行取舍。

3.引导学生比较求商的近似值和求积的近似值的异同点。

小组讨论后发言:相同点:都是用“四舍五入”法求近似数。

不同点:积的近似数要求出准确数之后再求近似数;商的近似数不需要求出准确数,只需比需要保留的小数位数多除出一位就可以求近似数。

师小结:求商的近似数非常重要,有时按照要求取近似数,有时按照实际取,在取商的近似数的时候,要明白应该除到哪位就可以不用再除了。

1.完成教材第32页“做一做”。学生独立完成。订正时让学生说一说它们的近似值分别是怎么取的。有些题保留指定小数位数后,近似数的末尾有0,要让学生说说是如何处理的。如第2小题1.55÷3.9,保留两位小数是0.40。

同学们,这节课你学了什么知识?有哪些收获?

引导学生归纳。

1.求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。

2.求商的近似数的时候不需要算出商的准确值之后再进行取舍。除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。

作业:教材第36~37页练习八第1、2、3、8题。

板书设计:

求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。

商的近似数的数学教案篇八

(一)知识与技能。

1、认识“四舍五入”法是截取积的近似数的一般方法。

2、掌握求小数乘法的积的近似数的方法。

(二)过程与方法。

经历求小数乘法的积的`近似数的过程,体验迁移的学习方法,培养学生应用数学知识解决实际问题的能力。

(三)情感态度与价值观。

在学习活动中,激发学生的学习兴趣,感受知识源于生活。

会用“四舍五入”法截取积是小数的近似数。

能根据生活实际灵活截取积是小数的近似数。

(一)导入(复习导入)。

师:在开始新课程之前,我们先回顾一下之前小数乘法学习了哪些内容?

生:小数成整数和小数成小数。

生:求小数的近似数。

师:还都记得怎么做吗?

生:记得(忘了)。

师:让我们先来热热身,看看谁掌握的最为牢固。

(ppt展示题目)。

求下列小数的近似数,并说出你的思考过程。

要求:

1、(精确到十分位)。

2、省略百分位后面的尾数。

通过做题,总结规律:

1、先确定保留的数位,在要保留的数位下划条横线;

2、将下一位上的数同“5”作比较,如果小于5,则舍掉;如果大于5或者等于5,则向前进1。(四舍五入法)。

3、取近似数时,若末尾的“0”起到占位的作用,则不能去掉。

(二)情景导入。

例:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍,狗约有多少亿个嗅觉细胞?(得数保留一位小数)。

找同学读题两遍,让同学自己提取信息、列式,让同学到黑板上做题板书,并说出思考过程。

0.049×45=2.205≈2.2(亿个)竖式略。

答:

此处强调两点,一个单位,一个答句不能丢。

(三)经典练习。

0.95×0.95(得数保留一位小数)。

0.95×0.95=0.9025≈0.9(竖式略)。

想一想,若此题改为保留两位小数,怎么做?(做在练习本上)。

0.95×0.95=0.9025≈0.90(取近似数)。

(四)做一做(书上)p11现学现练,加深印象。

1、计算下面各题。

0.8×0.9=0.72≈0.7(得数保留一位小数)。

1.7×0.45=0.765≈0.77(得数保留两位小数)。

2、一种大米的价格是每千克3.85元,买2.5kg应付多少钱?(联系实际生活,保留适当的小数位数)。

延伸:实际生活中,常用的纸币面值为元、角,所以保留一位小数即可!

1、学生自己谈收获。

2、老师总结课程重点。

商的近似数的数学教案篇九

教科书第七页的例五及“做一做”,练习二的第1-4题。

使学生懂得求积的近似值的必要性,掌握用“四舍五入”法取积的近似值,并能根据实际需要与题目要求正确地求积的近似值。

小黑板准备以下的表格:

保留一位小数。

保留两位小数。

保留整数。

1。283。

5。904。

2。876。

1、口算。

0。840。3220。812。5。

7。80。013。20。20。080。08。

9。30。018。42+5。84。8-0。48。

选其中几题讲一讲算式的意义。

2、出示小黑板。

说明按要求用“四舍五入”法求出每位小数的近似值。指名让学生回答,并说一说是怎样用“四舍五入”法求一个小数的近似值的。

1、引入新课。

师:在实际生活中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可根据需要,用“四舍五入”法保留一定的小数位数,求出积的近似值。今天我们就来学习求积的近似值的方法。(板书课题:积的近似值)。

2、教授新课。

出示例5。指名读题,说计算方法,列式。

问:这道题的数量关系是什么?(单价数量=总价)。

指名学生板演:

0。9249。2=45。264(元)。

问:1)人民币的`最小单位是什么?(分)。

2)以元为单位的小数表示`分`的是哪个数位?(百分位)。

3)现在我们算出的积有几位小数?(三位小数)。

教师说明:“在收付现款时,通常只算到`分`。

然后问:4)要精确到分该怎么办?(保留两位小数)。

5)那么最后的结果应该是多少?(45。26元)。

教师板书:。

0。9249。245。26(元)。

答:应付菜款45。26元。

3、小结。

在实际生活中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可根据需要或题目要求取近似值,取近似值的一般方法是保留一位小数,就看第二位小数是几,要保留两位小数,就看第三位小数是几。。。。。。然后按“四舍五入”法取舍。

例如:3。9523。95(保留两小数或精确到百分位)。

3。9524。0(保留一位小数或精确到十分位)。

3。9524(保留整数或精确到个位)。

1。教科书第七页“做一做”的第一题。

提示:求付款的题目没有要求保留小数位数时,都要以元为单元保留两位小数。

对于第2题,由于这道题只有两位小数,不必再求近似数。在以后做题时,一定要根据题目的要求或实际情况来判断。

2。练习二的第1-4题。

第1、2题的第一小题。

商的近似数的数学教案篇十

p23例7、做一做,p26练习四第10、11题。

1、使学生学会用“四舍五入”法取商的近似数。

2、培养学生的实践能力和思维的灵活性,培养学生解决实际问题的能力。

3、引导学生根据生活中的实际情况多角度思考问题,灵活地取商的近似数。

知道为什么要求商的近似数,会用“四舍五入”法取商的近似数。

能根据生活中的实际情况多角度思考问题,灵活地取商的近似数。

一、复习

1.按“四舍五入法”,将下列各数保留一位小数.

6。03 7。98

2.按“四舍五入”法,将下列各数保留两位小数.

8。785 7。602 4。003 5。897 3。996

做完第1、2题后,要让学生说明其中小数末尾的“0”为什么不能去掉.

3。 计算0。38*1。14(得数保留两位小数)

二、新课

1.教学例7:

教师出示例6,口述图意, 再列式计算.当学生除到商为两位小数时,还除不尽.教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候要除到哪一位?为什么?(应 该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)横式应该怎样写出?教师板书。

教师问:表示计算到“角”需要保留几位小数?除的时候要除到哪一位?应该约等于多少?

教师要让学生想一想:“怎样求商的近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再“四舍五入”.)

我们学习班了求积的近似值和求商的近似值,比一比这两者有什么相同点和不同点?

2.p23做一做:

教师让学生按要求进行计算,巡视时,注意学生计算时取商的近似值的做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数.)

师:解题时用了什么技巧?

三、巩固练习

1、求下面各题商的.近似数:

3.81÷7 32÷42 246。4÷13

2、p26第10题第(1)题。

四、作业:p26第10题第(2)题、第11题。

本以为求近似数是教学难点, 所以在新授前安排了大量相关知识的复习。但在实际教学中才发现计算才是真正的教学难点, 由于例题及做一做中所有习题全是小数除以整数, 所以当作业中出现小数除以小数计算时, 许多学生装都忘记了"一看, 二移"的步骤。 所以在设计巩固练习时应增加小数除以小数的练习。

其次我根据学情补充介绍了一种求商近似数的简便方法。 即除到要保留的小数位数后不再继续除,只把余数同除数做比较,若余数比除数的一半小,就说明求出下一位商要直接舍去;若余数等于或大于除数的一半,就说明 要在已除得的商的末一位上加1。介绍了这种方法感觉好的同学算得更快了,但悟性较差的学生听完后连最基本的保留两位小数应除到小数点后面第几位也混淆不清 了。所以下次再教时,此方法的介绍时间可以适当后移,放在练习课上。

商的近似数的数学教案篇十一

求出积的近似数和有关它的一些内容。

(1)进一步巩固小数乘法计算。

(2)根据要求,会用“四舍五入法”取积的近似值。

(3)体会“四舍五入法”是解决实际问题的重要工具,培养学生的实践能力和思维的灵活性。

重点:应用“四舍五入法”取积的近似数。

难点:要根据实际需要求出积的近似值。

(一)复习:

1.保留一位小数。

2.345.68。

2.保留两位小数。

4.25634.708。

3.保留整数。

5.676.502。

(二)导入课:

(1)我们班有28人。

(2)这个箱子里大约有23个苹果。

(3)小明的身高是172厘米,体重约60千克。

4.揭题谈话:在实际应用中,小数乘法乘得积往往不需要保留很多的小数位数,这时可根据需要,用“四舍五入法”保留一定的小数位数,求出积的近似数。

板书:积的'近似数。

(三)探求新知:

1.出示例6:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45狗约有多少亿个嗅觉细胞?(得数保留一位小数)。

(1)读题,找出已知所求,列式计算,板书:0.04945。

(2)指明板演,集体订正。

(3)按要求,积保留一位小数,怎么保留?结果怎样?

0.49×45≈2.2(亿个)。

师:今天我们学习了用四舍五入法取积的近似数,那么谁来归纳一下?生答,互相补充,归纳概括:我们求积的近似数时,首先求出积的准确值,然后明确要保留的小数位数,再看比要保留的小数位数多一位上的数字,按“四舍五入”法截取积的近似数。

(四)巩固练习:

1.填空题:

(1)积是4.56保留一位小数()。

(2)积是6.075保留两位小数()。

(3)积是45.9保留整数()。

2.要完成第10页的“学一学”

(五)小结:

四舍五入法:

0------4要舍去。

5------9向前进一位,再舍去。

(按着要求再用“四舍五入法”)。

五.布置作业:

第13页1.2。

(一)优点:

(1)从实际问题中取材,使学生更快进入新知学习中,也能让学生体会源于实际生活而且于生活,激发学生学习的兴趣。

(2)在出示图片后让学生自己提取信息、提问、解答,意在培养学生提取信息、分析问题、解决问题的能力。

(二)不足:

(1)引入太冗长,“四舍五入法”是四年级所学的内容,对五年级学生来说不是难点,因此可以直接入题。重难点把握不是很准确,没能很好分析学生的学情。

(2)内容过于简单,不够充实,练习的时间过长了。可以再根据生活中实际情况深入内容,渗透“进一法”和“去尾法”。

(3)在上课时,由于自身经验不足,在对及时抓住学生的反馈给予及时的评价和引申方面有很大欠缺,比如:我在问学生你们想付给他多少钱时,学生的答案很多,有的说6元,有的说6.1元,这些我都没能及时抓住学生的反馈,完美地结合实际生活进行教学。

(4)在巩固练习的习题设置上不懂得延伸,2、3两题设计意图有点重复,其实可以直接用其一进行延伸。

商的近似数的数学教案篇十二

复习用四舍五入法求一个小数的近似数。

使学生会把较大数改写成用万或亿作单位的小数。

培养同学们分析问题、解决问题的能力。

使学生会把较大数改写成用万或亿作单位的小数。

教学难点:

使学生会把较大数改写成用万或亿作单位的小数。

用四舍五入法分别求出近似数。

5.9685:保留两位小数、保留一位小数(末尾的0怎么处理)、保留整数部分。

1.以前我们学过把整万、整亿的数改写成用万或亿作单位的数,现在我们继续学习把较大的数改写成用万或亿作单位的数。

(1)教学例11:。

20xx年我国生产汽车4443900辆,把这个数改写成以万辆为单位的数。再保留一位小数。

(2)引导学生分析题目要求,理解改写隐含的意思和解题方法。

与小数点为之移动建立起联系(除法)[理解改写的结果是怎样得到的]。

4443900辆=444.39万辆。

444390010000=444.39(为什么除以10000?)。

(3)学生独立完成改写和求近似数。

(4)交流订正:

(5)观察:今天所学的哪儿是新知识?(改写的过程和方法)。

(1)应该怎么办?(要把6158100缩小多少倍?小数点应向哪个方向移动几位?)。

(2)引导学生小结方法,教师说明:为了简便,只在万位后面点上小数点,去掉小数末尾的0,在数的后面加上万台。

3.练习:

(1)把356000改写成以万作单位的数。

让学生完成后说说是怎么做的。

(2)1999年我国生产水泥573000000吨,把这个数改写成以亿吨作单位的数,再保留一位小数。

学生独立试做,指名板演,订正时说明改写和省略的方法。

提醒学生防止将改写与省略和精确混淆。

4.整理:比较改写与求近似数的区别。

本节课我们主要学习了哪些内容?

完成练习五的第5、6题。

教学反思:学生很好的掌握了小数改写的方法,能够正确区分改写和近似的区别,本课中要是加强练习量,扩展练习形式。增强学生兴趣上下功夫,课堂气氛可能会好一些的,建议可以尝试着把近似和改写一起讲可能就提高教学效率了。

商的近似数的数学教案篇十三

2.过程与方法:掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。

3.情感、态度与价值观:培养学生在实际生活中灵活运用数学知识的能力,能根据实际情况进行求近似数。

掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。

注重新旧知识的迁移,引导学生自主学习、总结。

多媒体。

一、复习导入。

复习旧知:(出示如下题目)。

1.用“四舍五入”法将下面的数改写成一位小数。

8.7693.45212.7118.64。

2.计算下面各题,得数保留两位小数。

2.43×4.6712.15×3.41。

订正答案,并通过问题:你是用什么方法求这些数的近似数?

(保留几位小数就看这位小数后面的数位,大于4就向前一位进一,小于五就舍去。师引导总结方法的名称:“四舍五入”法。)。

引出课题:这节课我们要学习“商的近似数”。(板书课题:商的近似数)。

二、互动新授。

1.出示教材第32页例6情境图。

阅读情境图中的信息,并问:怎样解决爸爸提出的问题呢?

引导学生自主列算式,并试着计算:19.4÷12。

通过交流,学生可能会想到:实际计算钱数时应该算到分,因为分是人民币的最小单位;也可以算到角,因为现在买东西时已经不用分了。

教师小结:根据我们的生活实际,当所买的商品数量少的时候,可以保留整数,或者保留一位小数,或者两位小数。当然如果数量很多的时候,通常会计算到分,这就要根据我们的实际需要进行取近似数了。看来取近似数一种是按照要求去取,一种是按照实际情况去取。(板书:按要求取,按需要取。)。

然后再引导学生想一想:算到分和角时分别需要保留几位小数?

(算到分要保留两位小数,算到角就要保留一位小数。)。

师引导学生思考并讨论:除的时候应该怎么算?

小组讨论后,学生汇报:保留两位小数,就要算出三位小数,再按“四舍五入”法省略百分位后面的尾数;保留一位小数,就要算出两位小数,再按“四舍五入”法省略十分位后面的尾数。

让学生自己用竖式计算:19.4÷12。教师根据学生汇报,板书。

让学生独立思考后,在小组内交流、讨论。引导学生小结:求商的近似数时,只需要比需要保留的小数位数多除出一位,然后再用“四舍五入”法就可以取近似数了。或者除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。同时,求商的近似数的时,不需要算出商的准确值之后再进行取舍。

3.引导学生比较求商的近似值和求积的近似值的异同点。

小组讨论后发言:相同点:都是用“四舍五入”法求近似数。

不同点:积的近似数要求出准确数之后再求近似数;商的近似数不需要求出准确数,只需比需要保留的小数位数多除出一位就可以求近似数。

师小结:求商的近似数非常重要,有时按照要求取近似数,有时按照实际取,在取商的近似数的时候,要明白应该除到哪位就可以不用再除了。

三、巩固拓展。

1.完成教材第32页“做一做”。学生独立完成。订正时让学生说一说它们的.近似值分别是怎么取的。有些题保留指定小数位数后,近似数的末尾有0,要让学生说说是如何处理的。如第2小题1.55÷3.9,保留两位小数是0.40。

四、课堂小结。同学们,这节课你学了什么知识?有哪些收获?

引导学生归纳。

1.求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。

2.求商的近似数的时候不需要算出商的准确值之后再进行取舍。除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。

商的近似数的数学教案篇十四

1.结合现实素材让学生认识近似数,并能结合实际进行估计。

2.通过教学活动培养学生的数感。

3.知识与生活实际结合,让学生体会到近似数在生活中的作用和意义。

重点与难点。

初步理解近似数的`意义。

教学准备。

多媒体课件。

教学过程:

一、复习导入。

猜数游戏:教师或学生指定一个4位数(不让其他学生知道),学生猜猜是什么数。猜的过程中提示学生所猜数是否与目标数接近,猜中为止。

二、探究新知。

1.出示例10的图画和文字,让学生读一读图画中的文字。

(1)9985和10000都表示参赛运动员的人数吗?有什么不同?

组织学生在小组中讨论、交流,说一说“将近10000人”是什么意思,“有9985人”是什么意思。

9985这种说法特别精确,所以它是一个准确数。

9985接近10000,10000比较容易记住,10000是一个近似数。

(板书课题:近似数)。

(2)让学生在小组中议一议“二年级同学304人,可说大约300人”中的304和300各是什么数。

(304是准确数,300是近似数。)。

这里的准确数和近似数,哪个数容易记住?

组织学生在小组中互相说一说。

(3)提问:现在同学们知道什么是近似数了吗?谁来说说。

小结:近似数是指大约是多少的数,也就是与实际比较接近的数。

2.日常生活中我们还碰到过哪些近似数?

让学生列举生活中的近似数,体会近似数,体会近似数在日常生活中的广泛应用。

三、课堂作业。

1.教材第91页“做一做”。

2.教材第92~94页练习十八第4~12题。

四、课堂小结。

通过本节课的学习,你学到了哪些新的知识?

【本文地址:http://www.pourbars.com/zuowen/17791306.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map