总结是回顾过去、规划未来的关键环节。总结应该有一个清晰的结构,包括问题的陈述、原因的分析和解决方案的提出。下面是一些关于掌握社交技巧的实用建议,供大家参考。
鸽巢问题教学设计篇一
本节课是数学广角内容,也叫“抽屉原理”。实际上是一种解决某种特定结构的数学或生活问题的模型,体现了一种数学的思想方法。反思如下:
1.从学生喜欢的“游戏”入手,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。这样设计使学生在生动、活泼的数学活动中主动参与、主动实践、主动思考,使学生的数学知识、数学能力、数学思想、数学情感得到充分的发展,从而达到动智与动情的完美结合,全面提高学生的整体素质。
2.引导学生在经历猜测、尝试、验证的过程中逐步从直观走向抽象。
在例1中针对实验的所有结果,在学生总结表征的基础上,进而提出“你还可以怎样想?”的问题,组织学生展开讨论交流。我引导学生借助平均分即每个笔筒里先只放1支,这时学生看到还剩下1支铅笔,这1支铅笔不管放入其中的哪一个笔筒,这个笔筒都会有2支铅笔。进一步引导学生加深对“至少有一个笔筒中有2支铅笔”的理解。最后,组织学生进一步借助直观操作,讨论诸如“5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒中至少有2支铅笔,为什么?”的问题,并不断改变数据(铅笔数比笔筒数多1),让学生继续思考,引导学生归纳得出一般性的结论:(+1)支铅笔放进个笔筒里,总有一个笔筒里至少放进2支铅笔。注重让学生在观察、实验、猜想、验证等活动中,发展合情推理能力,培养学生能进行有条理的思考,能比较清楚地表达自己的思考过程与结果,经历与他人合作交流解决问题的过程。
本节课首先通过三个基础练习回顾了“鸽巢原理”,接下来的练习题是鸽巢问题的原理比较简单,但是在实际的题目当中,最主要的.是帮助学生在不同的题目中找出该道题目的“鸽巢”是什么,然后要放到“鸽巢”里的东西是什么,只有帮助学生在解题时有了构建鸽巢问题模型的能力,才能使学生真正的理解鸽巢问题,以便更好地解决鸽巢问题。
鸽巢问题的出题方式都比较有趣,可以涉及生活的许多不同的方面。在解决这些问题时可以让学生都动手,构解题的模型,用实物去解决问题,教师要提高学生的这种能力,才能让学生真正地学会学习,产生学习数学动力,掌握学习数学的方法。
鸽巢问题教学设计篇二
1.通过猜测、验证、观察、分析等数学活动,经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢原理”解决简单的实际问题。渗透“建模”思想。
2.经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
3.通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
教学重点。
经历“鸽巢问题”的探究过程,初步了解“鸽巢原理”。
教学难点。
理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。
教具准备:相关课件相关学具(若干笔和筒)。
教学过程。
一、游戏激趣,初步体验。
游戏规则是:请这四位同学从数字1.2.3中任选一个自己喜欢的数字写在手心上,写好后,握紧拳头不要松开,让老师猜。
二、操作探究,发现规律。
1.具体操作,感知规律。
教学例1:4支笔,三个筒,可以怎么放?请同学们运用实物放一放,看有几种摆放方法?
(1)学生汇报结果。
(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
(2)师生交流摆放的结果。
(3)小结:不管怎么放,总有一个筒里至少放进了2支笔。
(学情预设:学生可能不会说,“不管怎么放,总有一个筒里至少放进了2支笔。”)。
质疑:我们能不能找到一种更为直接的方法,只摆一次,也能得到这个结论的方法呢?
2.假设法,用“平均分”来演绎“鸽巢问题”。
1思考,同桌讨论:要怎么放,只放一次,就能得出这样的结论?
学生思考――同桌交流――汇报。
2汇报想法。
预设生1:我们发现如果每个筒里放1支笔,最多放4支,剩下的1支不管放进哪一个筒里,总有一个筒里至少有2支笔。
3学生操作演示分法,明确这种分法其实就是“平均分”。
三、探究归纳,形成规律。
1.课件出示第二个例题:5只鸽子飞回2个鸽巢呢?至少有几只鸽子飞进同一个鸽巢里?应该怎样列式“平均分”。
[设计意图:引导学生用平均分思想,并能用有余数的除法算式表示思维的过程。]。
根据学生回答板书:5÷2=2……1。
(学情预设:会有一些学生回答,至少数=商+余数至少数=商+1)。
根据学生回答,师边板书:至少数=商+余数?
至少数=商+1?
2.师依次创设疑问:7只鸽子飞回5个鸽巢呢?8只鸽子飞回5个鸽巢呢?9只鸽子飞回5个鸽巢呢?(根据回答,依次板书)。
……。
7÷5=1……2。
8÷5=1……3。
9÷5=1……4。
观察板书,同学们有什么发现吗?
得出“物体的数量大于鸽巢的数量,总有一个鸽巢里至少放进(商+1)个物体”的结论。
板书:至少数=商+1。
师过渡语:同学们的这一发现,称为“鸽巢问题”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“鸽巢原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。
四、运用规律解决生活中的问题。
课件出示习题.:
1.三个小朋友同行,其中必有几个小朋友性别相同。
2.五年一班共有学生53人,他们的年龄都相同,请你证明至少有两个小朋友出生在同一周。
3.从电影院中任意找来13个观众,至少有两个人属相相同。
……。
[设计意图:让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。]。
五、课堂总结。
这节课我们学习了什么有趣的规律?请学生畅谈,师总结。
鸽巢问题教学设计篇三
一、教学内容:。
教科书第68页例1。
二、教学目标:
(一)知识与技能:通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。
(二)过程与方法:结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。
(三)情感态度和价值观:在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。
三、教学重难点。
教学重点:经历鸽巢问题的探究过程,初步了解鸽巢原理,会用鸽巢原理解决简单的实际问题。
教学难点:通过操作发展学生的类推能力,形成比较抽象的数学思维。
四、教学准备:多媒体课件。
五、教学过程。
(一)候课阅读分享:
同学们,大家好,课前老师让大家收集了有关“鸽巢问题”的阅读资料,现在就某某同学的阅读在这候课的几分钟内与大家分享一下。
(二)激情导课。
好,咱们班人数已到齐,从今天开始,我们学习第五单元鸽巢问题,这节课通过数学活动我们来了解鸽巢原理,学会简单的鸽巢原理分析方法。你准备好了吗?好,我们现在开始上课。
(三)民主导学。
1、请同学们先来看例1。把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2只铅笔。
请你再把题读一次,这是为什么呢?
对总有就是一定的意思。至少就是最少的意思至少有两支铅笔,就是说最少有两支铅笔。或者是说,铅笔的支数要大于或等于两支。
课前老师已经让大家完成前置性作业,就“4支铅笔放进3个笔筒中有几种摆法呢?”这儿老师收集到了各组组长整理出的大家的各种摆法,我们一起来看一看吧!
方法一:用“枚举法”证明。也可用“分解法”证明把4分解成3个数。我们发现有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四种不同的方法。
刚才的两种方法无论是摆还是写都是把方法枚举出来,在数学中我们叫它“枚举法”。
那大家能不能找到一种更为直接的方法只摆一种情况也能得到这个情况呢?
方法二:用“假设法”证明。
对,我们可以这样想,如果在每个笔筒中放1支,先放3支,剩下的1支就要放进其中的一个笔筒。这时无论放在哪个笔筒,那个笔筒中就有2支,所以总有一个笔筒中至少放进2支铅笔。(平均分)。
方法三:列式计算。
你能用算式表示这个方法吗?
学生列出式子并说一说算式中商与余数各表示什么意思?
2、把5支铅笔放进4个笔筒,总有一个笔筒里至少有2支铅笔。
这道题大家可以用几种方法解答呢?
3种,枚举法、假设法、列式计算。
3、100支铅笔,放进99个笔筒,总有一个笔筒至少要放进多少支铅笔呢?
还能有枚举法吗?对,不能,枚举法虽然比较直观,但数据大的时候用起来比较麻烦。可以用假设法和列式计算。
4、表格中通过整理,总结规律。
你发现了什么规律?
当要分的物体数比鸽巢数(抽屉数)多1时,至少数等于2“商+1”。
5、简单了解鸽巢问题的由来。
经过刚才的探索研究,我们经历了一个很不简单的思维过程,我把我们的这一发现,称为笔筒问题。但其实最早发现这个规律的不是我们,而是德国的一个数学家“狄里克雷”。
(四)检测导结。
好,我们做几道题检测一下你们的学习效果。
1、随意找13位老师,他们中至少有2个人的属相相同。为什么?
3、5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?
(五)全课总结。
今天你有什么收获呢?
(六)布置作业。
作业:两导两练第70页、71页实践应用1、4题。
鸽巢问题教学设计篇四
教学内容:教科书第68页例1。
教学目标:
1、使学生理解“抽屉原理”(“鸽巢原理”)的基本形式,并能初步运用“抽屉原理”解决相关的实际问题或解释相关的现象。
2、通过操作、观察、比较、说理等数学活动,使学生经历抽屉原理的形成过程,体会和掌握逻辑推理思想和模型思想,提高学习数学的兴趣。
教学重点:
经历“抽屉原理”的探究过程,了解掌握“抽屉原理”。
教学难点:
理解“抽屉原理”,并对一些简单的实际问题加以“模型化”。
教学模式:
学、探、练、展。
教学准备:
多媒体课件一套。
教学过程:。
一、游戏导入。
1.师生玩“扑克牌魔术”游戏。
(2)玩游戏,组织验证。
通过玩游戏验证,引导学生体会到:不管怎么抽,总有两张牌是同花色的。
2.导入新课。
刚才这个游戏当中,蕴含着一个数学问题,这节课我们就一起来研究这个有趣的问题。
二、呈现问题,探究新知。
课件出示自学提示:
(1)“总有”和“至少”是什么意思?
(2)把4支铅笔放进3个笔筒中,可以怎么放?有几种。
不同的放法?(请大家用摆一摆、画一画、写一写等方法把自己的想法表示出来。)。
(3)把4支铅笔放进3个笔筒中,不管怎么放总有一个笔筒至少放进xxx支铅笔?
(一)自主探究,初步感知。
1、学生小组合作探究。
2、反馈交流。
(1)枚举法。
(2)数的分解法:(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
(3)假设法。
师:除了像这样把所有可能的情况都列举出来,还有没有别的。
方法也可以证明这句话是正确的呢?
生:我是这样想的,先假设每个笔筒中放1支,这样还剩1支。这时无论放到哪个笔筒,那个笔筒中就有2支了。
师:你为什么要先在每个笔筒中放1支呢?
生:因为总共有4支,平均分,每个笔筒只能分到1支。
师:你为什么一开始就平均分呢?(板书:平均分)。
生:平均分就可以使每个笔筒里的笔尽可能少一点。
生:平均分已经使每个笔筒里的笔尽可能少了,如果这样都符合要求,那另外的情况肯定也是符合要求的了。
(4)确认结论。
师:到现在为止,我们可以得出什么结论?
生(齐):把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。
(二)提升思维,构建模型。
师:(口述)那要是。
(1)把5支铅笔放进4个笔筒中,不管怎么放,总有一个笔筒里至少有xx支铅笔。
(2)把6支铅笔放进5个笔筒中,不管怎么放,总有一个笔筒里至少有xx支铅笔。
(3)10支铅笔放进9个笔筒中呢?100支铅笔放进99个笔筒中。
2.建立模型。
师:通过刚才的.分析,你有什么发现?
生:只要铅笔的数量比笔筒的数量多1,那么总有一个笔筒至少要放进2支笔。
师:对。铅笔放进笔筒我们会解释了,那么有关鸽子飞入鸽巢的问题,大家会解释吗?(课件出示)。
师:以上这些问题有什么相同之处呢?
生:其实都是一样的,鸽巢就相当于笔筒,鸽子就相当于铅笔。
师:像这样的数学问题,我们就叫做“鸽巢问题”或“抽屉问题”,它们里面蕴含的这种数学原理,我们就叫做“鸽巢问题”或“抽屉问题”。(揭题)。
三、基本练习。
四、拓展提升。
五、课堂小结。
六、作业布置。
完成课本第71页,练习十三,第1题。
鸽巢问题教学设计篇五
教学目标:
1、引导学生经历鸽巢原理的探究过程,初步了解鸽巢原理,会运用鸽巢原理解决一些简单的实际问题。
2、通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力,形成比较抽象的数学思维。
3、使学生经历将具体问题“数学化”的过程,初步形成模型思想。
教学重点:经历鸽巢原理的探究过程,初步了解鸽巢原理。
教学难点:理解鸽巢原理,并对一些简单的实际问题加以模型化。
教学过程:
一、创设情境、导入新课。
1、师:同学们,你们玩过扑克牌吗?这里有一副牌,拿掉大小王后还剩52张,5位同学随意抽一张牌,猜一猜:至少有几张牌的花色是一样的?(指名回答)。
2、师:大家猜对了吗?其实这里面藏着一个非常有趣的数学问题,叫做“鸽巢问题”。今天我们就一起来研究它。
二、合作探究、发现规律。
师:研究一个数学问题,我们通常从简单一点的情况开始入手研究。请看大屏幕。(生齐读题目)。
1、教学例1:把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。
(1)理解“总有”、“至少”的含义。(ppt)总有:一定有至少:最少。
师:这个结论正确吗?我们要动手来验证一下。
探究之前,老师有几个要求。(一生读要求)。
(3)汇报展示方法,证明结论。(展示两张作品,其中一张是重复摆的。)。
第一张作品:谁看懂他是怎么摆的?(一生汇报,发现重复的摆法)。
第二张作品:他是怎么摆的?这4种摆法有没有重复的?还有其他的摆法吗?板书:(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)。
师:我们要证明的是总有一个笔筒里至少有2支铅笔,这4种摆法都满足要求吗?(指名汇报:第一种摆法中哪个笔筒满足要求?只要发现有一个笔筒里至少有2支铅笔就行了。)。
总结:把4支铅笔放进3个笔筒中一共只有四种情况,在每一种情况中,都一定有一个笔筒中至少有2支铅笔。看来这个结论是正确的。
师:像这样把所有情况一一列举出来的方法,数学上叫做“枚举法”。(板书)。
(4)通过比较,引出“假设法”
引导学生说出:假设先在每个笔筒里放1支,还剩下1支,这时无论放到哪个笔筒,那个笔筒里就有2支铅笔了。(ppt演示)。
(5)初步建模—平均分。
师:先在每个笔筒里放1支,这种分法实际上是怎么分的?
生:平均分(师板书)。
师:为什么要去平均分呢?平均分有什么好处?
生:平均分可以保证每个笔筒里的笔数量一样,尽可能的少。这样多出来的1支不管放进哪个笔筒里,总有一个笔筒里至少有2支铅笔。(如果不平均分,随便放,比如把4支铅笔都放到一个笔筒里,这样就不能保证一下子找到最少的情况了)。
师:这种先平均分的方法叫做“假设法”。怎么用算式表示这种方法呢?
板书:4÷3=1……11+1=2。
师:现在我们把题目改一改,结果会怎样呢?
ppt出示:把5支笔放进4个笔筒里,不管怎么放,总有一个笔筒里至少有几支笔?(引导学生说清楚理由)。
师:为什么大家都选择用假设法来分析?(假设法更直接、简单)。
通过这些问题,你有什么发现?
交流总结:只要笔的数量比笔筒数量多1,总有一个笔筒里至少放进2支笔。
过渡语:师:如果多出来的数量不是1,结果会怎样呢?
2、出示:5只鸽子飞进了3个鸽笼,总有一个鸽笼里至少飞进了几只鸽子呢?
(1)同桌讨论交流、指名汇报。
先让一生说出5÷3=1……21+2=3的结果,再问:有不同的意见吗?
再让一生说出5÷3=1……21+1=2。
师:你们同意哪种想法?
(2)师:余下的2只怎样飞才更符合“至少”的要求呢?为什么要再次平均分?
(3)明确:再次平均分,才能保证“至少”的情况。
3、教学例2。
(1)师:我们刚才研究的把笔放入笔筒、鸽子飞进鸽笼这样的问题就叫做“鸽巢问题”,也叫“抽屉问题”。它最早是由德国数学家狄利克雷发现并提出的,当他发现这个问题之后决定继续深入研究下去。出示例2。
(2)独立思考后指名汇报。
师板书:7÷3=2……12+1=3。
(3)如果有8本书会怎样?10本书呢?
指名回答,师相机板书:8÷3=2……22+1=3。
师:剩下的2本怎么放才更符合“至少”的要求?
为什么不能用商+2?
10÷3=3……13+1=4。
(4)观察发现、总结规律。
归纳总结:总有一个抽屉里至少可以放“商+1”本书。(板书:商+1)。
三、巩固应用。
师:利用鸽巢问题中这个原理可以解释生活中很多有趣的问题。
1、做一做第1、2题。
2、用抽屉原理解释“扑克表演”。
说清楚把4种花色看作抽屉,5张牌看作要放进的书。
四、全课小结:
通过这节课的学习,你有什么收获或感想?
鸽巢问题教学设计篇六
1、借助直观学具演示,经历探究过程。教师注重让学生在操作中,经历探究过程,感知、理解鸽巢问题。
2、教师注重培养学生的“模型”思想。通过一系列的操作活动,学生对于枚举法和假设法有一定的认识,加以比较,分析两种方法在解决鸽巢问题的优超性和局限性,使学生逐步学会运用一般性的数学方法来思考问题。
3、在活动中引导学生感受数学的魅力。本节课的“鸽巢问题”的建立是学生在观察、操作、思考与推理的基础上理解和发现的,学生学的积极主动。特别以游戏引入,又以游戏结束,既调动了学生学习的积极性,又学到了抽屉原理的知识,同时锻炼了学生的思维。在整节课的教学活动中使学生感受了数学的魅力。
鸽巢问题教学设计篇七
1.经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“鸽巢问题”的灵活应用感受数学的魅力。
重点:经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”。难点:理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。
多媒体课件。
纸杯。
吸管。
一、课前游戏引入。
生:想。
师:我这里有一副扑克牌,我找五位同学每人抽一张。老师猜。(至少有两张花色一样)。
二、通过操作,探究新知。
(一)探究例1。
1、研究3根小棒放进2个纸杯里。
(1)要把3枝小棒放进2个纸杯里,有几种放法?请同学们想一想,摆一摆,写一写,再把你的想法在小组内交流。
(2)反馈:两种放法:(3,0)和(2,1)。(教师板书)(3)从两种放法,同学们会有什么发现呢?(总有一个文具盒至少放进2枝铅笔)你是怎么发现的?(说得真有道理)。
(4)“总有”什么意思?(一定有)。
(5)“至少”有2枝什么意思?(不少于2枝)。
小结:在研究3根小棒放进2个纸杯时,同学们表现得很积极,发现了“不管怎么放,总有一个纸杯里放进2根小棒)。
2、研究4根小棒放进3个纸杯里。
(1)要把4根小棒放进3个纸杯里,有几种放法?请同学们动手摆一摆,再把你的想法在小组内交流。
(2)反馈:四种放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。(3)从四种放法,同学们会有什么发现呢?(总有一个纸杯里至少有2根小棒)。
(4)你是怎么发现的?
(5)大家通过枚举出四种放法,能清楚地发现“总有一个纸杯里放进2根小棒”。
师:大家看,全放到一个杯子里,就有四个了。太多了。那怎么样让每个杯子里都尽可能少,你觉得应该要怎样放?(小组合作,讨论交流)(每个纸杯里都先放进一枝,还剩一枝不管放进哪个纸杯,总会有一个纸杯里至少有2根小棒)(你真是一个善于思想的孩子。)。
(6)这位同学运用了假设法来说明问题,你是假设先在每个纸杯里里放1根小棒,这种放法其实也就是怎样分?(平均分)那剩下的1枝怎么处理?(放入任意一个文具盒,那么这个文具盒就有2枝铅笔了)。
(8)在探究4枝铅笔放进3个文具盒的问题,同学们的方法有两种,一是。
3、类推:把5枝小棒放进4个纸杯,总有一个纸杯里至少有几根小棒?为什么?
把6枝小棒放进5个纸杯,总有一个纸杯里至少有几根小棒?为什么?
把7枝小棒放进6个纸杯,是不是总有一个纸杯里至少有几根小棒?为什么?
把100枝小棒放进99个纸杯,是不是总有一个纸杯里至少有几根小棒?为什么?
4、从刚才我们的探究活动中,你有什么发现?(只要放的小棒比纸杯的数量多1,总有一个纸杯里至少放进2根小棒。)。
5、小结:刚才我们分析了把小棒放进纸杯的情况,只要小棒数量多于纸杯数量时,总有一个纸杯里至少放进2根小棒。
这就是今天我们要学习的鸽巢问题,也叫抽屉原理。既然叫“抽屉原理”是不是应该和抽屉有联系吧?小棒相当于我们要准备放进抽屉的物体,那么纸杯就相当于抽屉了。如果物体数多于抽屉数,我们就能得出结论“总有一个抽屉里放进了2个物体。
小练习:
1、任意13人中,至少有几人的出生月份相同?
2、任意367名学生中,至少有几名学生,他们在同一天过生日?为什么?
3、任意13人中,至少有几人的属相相同?”
6、刚才我们研究的是小棒数比纸杯多1的情况,如果小棒比纸杯数多2呢?多3呢?是不是也能得到结论:“总有一个纸杯里至少有2根小棒。”
鸽巢问题教学设计篇八
数学课堂是师生互动的过程,学生是学习的主人,教师是组织者和引导者。一堂好的数学课,我认为应该是原生态,充满“数学味”的课;应该立足课堂,立足知识点。“创设情境——建立模型——解释应用”是新课程倡导的课堂教学模式,本节课运用这一模式,设计了丰富多彩的数学活动,让学生经历“鸽巢问题”的探究过程,从探究具体问题到类推得出一般结论,初步了解“鸽巢问题”。本节课教学在师生互动方面有以下特色:
在导入新课时,我以游戏引入,不仅激发学生的兴趣,提高师生双边互动的积极性,更是让学生初步感受到鸽巢原理的本质。通过游戏,一下子就抓住了学生的注意力。让学生觉得这节课要探究的问题,好玩又有意义,唤起学生继续参与课堂互动的意愿。
本节课充分发挥学生的自主性,首先让学生自主思考,采用自己的方法“证明”:“把4枝铅笔放入3个杯子中,不管怎么放,总有一个杯子里至少放进2枝铅笔”。接着同桌互动演示并尝试解释这种现象发生的原因。最后,全班交流展示,多元评价各种“证明”方法,针对学生的不同方法教师给予针对性的鼓励和指导,让学生在自主探索中体验成功,获得发展。
本节课注重给学生创造提出问题的机会,让学生去品尝提出问题、解决问题的快乐。如在出示“5只鸽子飞进了3个鸽笼”问学生看到这个条件你想提怎样的数学问题?这样间接培养学生的问题意识。
鸽巢问题教学设计篇九
本教材专门安排“数学广角”这一单元,向学生渗透一些重要的数学思想方法。和以往的义务教育教材相比,这部分内容是新增的内容。本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢问题”加以解决。在数学问题中,有一类与“存在性”有关的问题。在这类问题中,只需要确定某个物体(或某个人)的存在就是可以了,并不需要指出是哪个物体(或人)。这类问题依据的理论我们称之为“抽屉原理”。“抽屉原理”最先是19世纪的德国数学家狄利克雷运用于解决数学问题的,所以又称“狄利克雷原理”,也称之为“鸽巢问题”。“鸽巢问题”的理论本身并不复杂,甚至可以说是显而易见的。但“鸽巢问题”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的`结论。因此,“鸽巢问题”在数论、集合论、组合论中都得到了广泛的应用。
1、知识与技能:引导学生通过观察、猜测、实验、推理等活动,经历探究“鸽巢原理”的过程,初步了解“鸽巢原理”的含义,会用“鸽巢原理”解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。
3、情感态度与价值观:
(1)体会数学与生活的紧密联系,体验学数学、用数学的乐趣。
(2)理解知识的产生过程,受到历史唯物注意的教育。
(3)感受数学在实际生活中的作用,培养刻苦钻研、探究新知的良好品质。
重点:应用“鸽巢原理”解决实际问题。引导学会把具体问题转化成“鸽巢问题”。
难点:理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。
这个问题同“鸽巢原理”结合起来,是本次教学能否成功的关键。所以,在教学中,应有意识地让学生理解“鸽巢原理”的“一般化模型”。六年级的学生理解能力、学习能力和生活经验已达到能够掌握本章内容的程度。教材选取的是学生熟悉的,易于理解的生活实例,将具体实际与数学原理结合起来,有助于提高学生的逻辑思维能力和解决实际问题的能力。
1、让学生经历“数学证明”的过程。可以鼓励、引导学生借助学具、实物操作或画草图的`方式进行“说理”。通过“说理”的方式理解“鸽巢原理”的过程是一种数学证明的雏形。通过这样的方式,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。
2、有意识地培养学生的“模型”思想。当我们面对一个具体的问题时,能否将这个具体问题和“鸽巢原理”联系起来,能否找到该问题中的具体情境与“鸽巢原理”的“一般化模型”之间的内在关系,找出该问题中什么是“待分的东西”,什么是“鸽巢”,是解决问题的关键。教学时,要引导学生先判断某个问题是否属于用“鸽巢原理”可以解决的范畴;再思考如何寻找隐藏在其背后的“鸽巢问题”的一般模型。这个过程是学生经历将具体问题“数学化”的过程,从纷繁复杂的现实素材中找出最本质的数学模型,是学生数学思维和能力的重要体现。
3、要适当把握教学要求。“鸽巢原理”本身或许并不复杂,但它的应用广泛且灵活多变。因此,用“鸽巢原理”解决实际问题时,经常会遇到一些困难。例如,有时要找到实际问题与“鸽巢原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“鸽巢”,要用几个“鸽巢”。因此,教学时,不必过于要求学生“说理”的严密性,只要能结合具体问题,把大致意思说出来就可以了,鼓励学生借助实物操作等直观方式进行猜测、验证。
鸽巢问题教学设计篇十
1.1知识与技能:
1.初步了解“抽屉原理”,会运用“抽屉原理”解决简单的实际问题或解释相关的现象。2.通过操作、观察、比较、推理等数学活动,引导学生理解并掌握这一类“抽屉原理”的一般规律。
1.2过程与方法:
经历“抽屉原理”的探究过程,初步了解“抽屉原理”,体会比较的学习方法。
1.3情感态度与价值观:
感受数学的魅力,提高学习数学的兴趣和应用意识,培养学习数学的兴趣。
2.教学重点/难点。
2.1教学重点。
经历抽屉原理的探究过程,理解抽屉原理,灵活运用抽屉原理解决生活中的简单问题。
2.2教学难点。
理解“总有”、“至少”,构建“抽屉原理”的数学模型,并对一些简单的实际问题加以模型化。
3.教学用具。
多媒体课件,铅笔,笔筒,一副扑克牌。
4.标签。
教学过程。
一、开门见山,引入课题。
学生提出问题:什么是抽屉原理?怎样研究抽屉原理?抽屉原理有什么用?等等。师:同学们都很爱提问题,也很会提问题,这节课我们就带着这些问题来研究。
二、自主探究,构建模型。
1.教学例1,初步感知,体验方法,概括规律。
师:我们先从简单的例子入手,请看,如果把4个小球放进3个抽屉里,我可以肯定地说,不管怎么放,总有一个抽屉里至少放2个小球。
稍加停顿。
师:“总有”是什么意思?
生:一定有。
师:“至少放2个小球”你是怎样理解的?
生:最少放2个小球,也可以放3个、4个。
师:2个或比2个多,我们就说“至少放2个小球”。
师:老师说的这句话对吗?我们得需要验证,怎么验证呢?华罗庚说过不懂就画图,下面请同学们用圆形代替小球,用长方形代替抽屉,画一画,看有几种不同的方法。也可以寻求其他的方法验证,听明白了吗?开始吧!
学生活动,教师巡视指导。
汇报交流。
师:哪位同学愿意把你的方法分享给大家?
一生上前汇报。
生1:可以在第一个抽屉里放4个小球,其他两个抽屉空着。
师:这4个小球一定要放在第一个抽屉里吗?
生:不一定,也可以放在其他两个抽屉里。
师:看来不管怎么放,总有一个抽屉里放进4个小球。这种放法可以简单的记作4,0,0。不好意思,接着介绍吧。
生:第二种方法是第一个抽屉里放3个小球,第二个抽屉里放1个,第三个抽屉空着,也就是3,1,0;第三种方法是2,2,0;第四种方法是2,1,1。
(此环节可以先让一名学生汇报,其他学生补充、评价)。
师:他找到了4种不同的方法,谁来评一评?
生2:他找的很全,并且排列的有序。
师:除了这4种放法,还有没有不同的放法?(没有)谢谢你的精彩展示,请回。看来,把4个小球放进3个抽屉里,就有这4种不同的方法。同学们真不简单,一下子就找到了4种放法。
出示课件,展示4种方法。
生:第一种放法有一个抽屉里放4个,大于2,符合至少2个,第二种放法有一个抽屉里放3个,也大于2,符合至少2个,第三种放法有一个抽屉里放2个,符合至少2个,第四种放法有一个抽屉里放2个,符合至少2个。所以,总有一个抽屉里至少放两个小球。
师:说得有理有据。谁愿意再解释解释?(再找一名学生解释)。
师:原来呀!这两位同学关注的都是每种方法当中放的最——多的抽屉,分别放了几个小球?(4个、3个、2个、2个)最少放了几个?(2个),最少2个,有的超过了2个,我们就说至少2个。确实,不管怎么放,我们都找到了这样的一个抽屉,里面至少放2个小球。看来,老师的猜测对不对?(对)是正确的!
生1:把小球分散地放,每个抽屉里先放1个小球?剩下的1个小球任意放在其中的一个抽屉里,这样总有一个抽屉里至少放了两个小球。
生2:先把小球平均放,余下的1个小球不管放在哪个抽屉里,一定会出现总有一个抽屉里至少放了2个小球。
师:每个抽屉里先放1个小球,也就是我们以前学过的怎么分?
生:平均分。
师:为什么要先平均分?
生:先平均分,就能使每个抽屉里的小球放得均匀,都比较少,再把余下的1个小球任意放在其中的一个抽屉中,这样一定会出现“总有一个抽屉至少放了2个小球”。
课件演示。
3=1……1,1+1=2。生:4÷。
3=1……1,1+1=2教师随机板书:4÷。
师:这两个“1”表示的意思一样吗?
生:不一样,第一个“1”表示每个抽屉里分得的1个小球,第二个“1”表示剩下的那个小球,可以放在任意一个抽屉里。
师:第一个“1”就是先分得的1个小球,也就是除法中的商,第二个“1”是剩下的1个小球,可以任意放在其中的一个抽屉中。瞧,用算式来表示多么地简洁明了。
生:第四种放法出现的情况。
师:你认为用列举法和假设法进行验证,哪种方法比较简便?为什么?
生:假设法,列举法需要把所有的情况都一一列举出来,假设法只需要研究一种情况,并且可以用算式简明地表示出来。
生:2个,先往每个抽屉里放一个小球,这样还剩下1个,剩下的1个小球任意放在一个其中的一个抽屉里,这样,不管怎么放,总有一个抽屉里至少放2个小球。
师:把6个小球放进5个抽屉里,总有一个抽屉里至少放几个小球呢?
5=1……1,1+1=2,还是总有一个抽屉里至少放2个小球。生:6÷。
师:把7个小球放进6个抽屉里呢?
生:总有一个抽屉里至少放2个小球。
师:接着往后想,你能继续说吗?
生1:小球个数和抽屉个数都依次增加1,总有一个抽屉里至少放的小球个数都是2.生2:当小球的个数比抽屉数多1时,不管怎么放,总有一个抽屉里至少放2个小球。师:你们真善于概括总结!
2.教学例2,深入研究,提升思维,构建模型。
师:刚才我们研究了小球数比抽屉数多1时,总有一个抽屉至少放2个小球,当小球数比抽屉数多2、多3,甚至更多,又会出现什么情况呢?想不想继续研究?(想)。
5=1……2,1+2=3。生1:7÷。
师:有不同意见吗?
5=1……2,1+1=2。生2:7÷。
5=1……2,不同点是一位同学认师:出现了两种不同的声音,这两位同学都是用7÷。
生3:我赞同1+1=2。因为余下的2个还要分到不同的抽屉里,所以总有一个抽屉至少放2个小球。
鸽巢问题教学设计篇十一
1.通过猜测、验证、观察、分析等数学活动,经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢原理”解决简单的实际问题。渗透“建模”思想。
2.经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
3.通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
经历“鸽巢问题”的探究过程,初步了解“鸽巢原理”。
教学难点。
理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。
教具准备:相关课件相关学具(若干笔和筒)。
教学过程。
一、游戏激趣,初步体验。
游戏规则是:请这四位同学从数字1.2.3中任选一个自己喜欢的数字写在手心上,写好后,握紧拳头不要松开,让老师猜。
二、操作探究,发现规律。
1.具体操作,感知规律。
教学例1:4支笔,三个筒,可以怎么放?请同学们运用实物放一放,看有几种摆放方法?
(1)学生汇报结果。
(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
(2)师生交流摆放的结果。
(3)小结:不管怎么放,总有一个筒里至少放进了2支笔。
(学情预设:学生可能不会说,“不管怎么放,总有一个筒里至少放进了2支笔。”)。
质疑:我们能不能找到一种更为直接的方法,只摆一次,也能得到这个结论的方法呢?
2.假设法,用“平均分”来演绎“鸽巢问题”。
1思考,同桌讨论:要怎么放,只放一次,就能得出这样的结论?
学生思考――同桌交流――汇报。
2汇报想法。
预设生1:我们发现如果每个筒里放1支笔,最多放4支,剩下的1支不管放进哪一个筒里,总有一个筒里至少有2支笔。
3学生操作演示分法,明确这种分法其实就是“平均分”。
三、探究归纳,形成规律。
1.课件出示第二个例题:5只鸽子飞回2个鸽巢呢?至少有几只鸽子飞进同一个鸽巢里?应该怎样列式“平均分”。
[设计意图:引导学生用平均分思想,并能用有余数的除法算式表示思维的过程。]。
根据学生回答板书:5÷2=2……1。
(学情预设:会有一些学生回答,至少数=商+余数至少数=商+1)。
根据学生回答,师边板书:至少数=商+余数?
至少数=商+1?
2.师依次创设疑问:7只鸽子飞回5个鸽巢呢?8只鸽子飞回5个鸽巢呢?9只鸽子飞回5个鸽巢呢?(根据回答,依次板书)。
……。
7÷5=1……2。
8÷5=1……3。
9÷5=1……4。
观察板书,同学们有什么发现吗?
得出“物体的数量大于鸽巢的数量,总有一个鸽巢里至少放进(商+1)个物体”的结论。
板书:至少数=商+1。
师过渡语:同学们的这一发现,称为“鸽巢问题”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“鸽巢原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。
四、运用规律解决生活中的问题。
课件出示习题.:
1.三个小朋友同行,其中必有几个小朋友性别相同。
2.五年一班共有学生53人,他们的年龄都相同,请你证明至少有两个小朋友出生在同一周。
3.从电影院中任意找来13个观众,至少有两个人属相相同。
……。
[设计意图:让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。]。
五、课堂总结。
这节课我们学习了什么有趣的规律?请学生畅谈,师总结。
鸽巢问题教学设计篇十二
课堂上,我首先采用学生抢凳子游戏导入,使学生初步感受总是有一个凳子上要坐两个同学,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,也使学生集中注意力,把心思马上放到课堂上,让学生觉得这节课探究的问题既好玩又有意义,为后面教与学的活动做了铺垫。但这部分内容真正理解对于学生来说有一定的难度。在教学中我通过实际案例培养学生有根据、有条理地进行思考和推理的能力,从而解决实际问题,初步感受数学的魅力。本堂课注重为学生提供自主探索的空间,引导学生通过探索,初步了解“鸽巢原理”,总结“鸽巢原理”的规律,会用“鸽巢原理”解决实际问题。
在本节课中,我非常注重学生的自主探索精神,让学生在学习中,经历猜想、验证、推理、应用的过程。
1、采用枚举法,让学生通过小组合作把4本书放入3个抽屉中的所有情况都列举出来,然后通过学生汇报四种不同的排放情况,运用直观的方式,发现并描述、理解最简单的“鸽巢原理”即“书本数比抽屉数多1时,总有一个抽屉里至少有2本书”。进而介绍这种摆放的'方法是我们数学中常用的一种方法即枚举法。
2、让学生借助直观操作发现,把书尽量多的“平均分”给各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉里,总有一个抽屉比平均分得的本数多1本,可以用有余数的除法这一数学规律来表示。
3、大量例举之后,再引导学生总结归纳这一类“抽屉问题”的一般规律,让学生借助直观操作、观察、表达等方式,让学生经历从不同的角度认识鸽巢原理。
4、对“某个抽屉至少有书的本数”是除法算式中的“商+1”,而不是“商+余数”,适时挑出有针对性问题进行交流、引导、讨论,使学生从本质上理解了“抽屉原理”,总结出“抽屉原理”中总有一个抽屉里至少有的本数等于“商+1”。
5、本课教学中,学生对“总是”和“至少”的理解上没有进行结合具体的实例进行引导,学生在学习时理解有一些空难。
6、在数学语言表述上应该更加准确,使学生听起来更加明白。
在这堂课的难点突破处,也就是让学生借助直观操作发现,把书尽量多的“平均分”到各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉里,总有一个抽屉比平均分得的本数多1本。教学知识不光是让学生按照公式来套用公式,这样很容易造成学生的思维定势,所以在练习中,让学生充分说理的基础上,明确把什么当作“抽屉数”,把什么当作“物体数”并进行反复练习。
在这节课里部分学生判断不出谁是“物体”,谁是“抽屉”。因此,在今后的教学中,多下些功夫,以求在课堂上让学生更好地理解、消化所授知识。课后还要让多做相关的练习加以巩固。
鸽巢问题教学设计篇十三
教科书第68页例1。
(一)知识与技能:通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。
(二)过程与方法:结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。
(三)情感态度和价值观:在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。
教学重点:经历鸽巢问题的探究过程,初步了解鸽巢原理,会用鸽巢原理解决简单的实际问题。
教学难点:通过操作发展学生的类推能力,形成比较抽象的数学思维。
多媒体课件。
同学们,大家好,课前老师让大家收集了有关“鸽巢问题”的阅读资料,现在就某某同学的阅读在这候课的几分钟内与大家分享一下。
好,咱们班人数已到齐,从今天开始,我们学习第五单元鸽巢问题,这节课通过数学活动我们来了解鸽巢原理,学会简单的鸽巢原理分析方法。你准备好了吗?好,我们现在开始上课。
1、请同学们先来看例1。把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2只铅笔。
请你再把题读一次,这是为什么呢?
对总有就是一定的意思。至少就是最少的意思至少有两支铅笔,就是说最少有两支铅笔。或者是说,铅笔的支数要大于或等于两支。
课前老师已经让大家完成前置性作业,就“4支铅笔放进3个笔筒中有几种摆法呢?”这儿老师收集到了各组组长整理出的大家的各种摆法,我们一起来看一看吧!
方法一:用“枚举法”证明。也可用“分解法”证明把4分解成3个数。我们发现有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四种不同的方法。
刚才的两种方法无论是摆还是写都是把方法枚举出来,在数学中我们叫它“枚举法”。
那大家能不能找到一种更为直接的方法只摆一种情况也能得到这个情况呢?
方法二:用“假设法”证明。
对,我们可以这样想,如果在每个笔筒中放1支,先放3支,剩下的1支就要放进其中的一个笔筒。这时无论放在哪个笔筒,那个笔筒中就有2支,所以总有一个笔筒中至少放进2支铅笔。(平均分)。
方法三:列式计算。
你能用算式表示这个方法吗?
学生列出式子并说一说算式中商与余数各表示什么意思?
2、把5支铅笔放进4个笔筒,总有一个笔筒里至少有2支铅笔。
这道题大家可以用几种方法解答呢?
3种,枚举法、假设法、列式计算。
3、100支铅笔,放进99个笔筒,总有一个笔筒至少要放进多少支铅笔呢?
还能有枚举法吗?对,不能,枚举法虽然比较直观,但数据大的时候用起来比较麻烦。可以用假设法和列式计算。
4、表格中通过整理,总结规律。
你发现了什么规律?
当要分的物体数比鸽巢数(抽屉数)多1时,至少数等于2“商+1”。
经过刚才的探索研究,我们经历了一个很不简单的思维过程,我把我们的这一发现,称为笔筒问题。但其实最早发现这个规律的不是我们,而是德国的一个数学家“狄里克雷”。
好,我们做几道题检测一下你们的学习效果。
1、随意找13位老师,他们中至少有2个人的属相相同。为什么?
3、5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?
今天你有什么收获呢?
作业:两导两练第70页、71页实践应用1、4题。
鸽巢问题教学设计篇十四
本节课是通过几个直观例子,借助实际操作,引导学生探究“鸽巢原理”,初步经历“数学证明“的过程,并有意识的培养学生的“模型思想。
1、借助直观操作,经历探究过程。教师注重让学生在操作中,经历探究过程,感知、理解抽屉原理。
2、教师注重培养学生的“模型”思想。通过一系列的操作活动,学生对于枚举法和假设法有一定的认识,加以比较,分析两种方法在解决抽屉原理的优超性和局限性,使学生逐步学会运用一般性的数学方法来思考问题。
3、在活动中引导学生感受数学的魅力。本节课的“抽屉原理”的建立是学生在观察、操作、思考与推理的基础上理解和发现的,学生学的积极主动。特别以游戏引入,又以游戏结束,既调动了学生学习的积极性,又学到了抽屉原理的知识,同时锻炼了学生的思维。在整节课的教学活动中使学生感受了数学的魅力。
回顾整节课我觉得主要存在两个问题:
1、在学生体验数学知识的产生过程中,我始终担心学生不理解,不敢大胆放手,总是牵着学生的思路走。
2、这部分内容属于思维训练的内容,应该让学生多说理,让学生在说理的过程中真正理解体会“鸽巢问题”中的“总有”和“至少”的真正含义,并能灵活运用所学知识解答一些变式练习。
【本文地址:http://www.pourbars.com/zuowen/17819510.html】