数学教案数轴(汇总14篇)

格式:DOC 上传日期:2023-12-07 14:58:10
数学教案数轴(汇总14篇)
时间:2023-12-07 14:58:10     小编:XY字客

教案的编写需要注重教学方法的选择和教学资源的利用,以提高教学的灵活性和多样性。编写教案时,教师还应充分考虑学生的自主学习能力和问题解决能力的培养。请大家阅读这些教案范例,融会贯通,从中挖掘出对自己教学设计的启示。

数学教案数轴篇一

1.了解一元一次方程的概念。

2.掌握含有括号的一元一次方程的解法。

重点、难点。

1.重点:解含有括号的一元一次方程的解法。

2.难点:括号前面是负号时,去括号时忘记变号。

教学过程。

一、复习提问。

1.解下列方程:

(1)5x-2=8(2)5+2x=4x。

2.去括号法则是什么?“移项”要注意什么?

二、新授。

一元一次方程的概念。

只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,这样的方程叫做一元一次方程。

例1.判断下列哪些是一元一次方程。

x=3x-2x-=-l。

5x2-3x+1=02x+y=l-3y=5。

例2.解方程(1)-2(x-1)=4。

(2)3(x-2)+1=x-(2x-1)。

强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是“-”号,注意去掉括号,要改变括号内的每一项的符号。

补充:解方程3x-[3(x+1)-(1+4)]=l。

说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。

三、巩固练习。

教科书第9页,练习,l、2、3。

四、小结。

学习了一元一次方程的概念,含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号。

五、作业。

1.教科书第12页习题6.2,2第l题。

数学教案数轴篇二

理解一元一次方程解简单应用题的方法和步骤;并会列一元一次方程解简单应用题。

1、重点:弄清应用题题意列出方程。

2、难点:弄清应用题题意列出方程。

一、复习。

1、什么叫一元一次方程?

2、解一元一次方程的理论根据是什么?

二、新授。

分析:等量关系;a盘现有盐=b盘现有盐。

检验所求出的解是否合理。培养学生自觉反思求解过程和自觉检验方程的解是否正确的良好习惯。

1、题目中有哪些已知量?

(1)参加搬砖的初一同学和其他年级同学共65名。

(2)初一同学每人搬6块,其他年级同学每人搬8块。

(3)初一和其他年级同学一共搬了1400块。

2、求什么?初一同学有多少人参加搬砖?

3、等量关系是什么?

初一同学搬砖的块数十其他年级同学的搬砖数=1400。

三、巩固练习。

教科书第12页练习1、2、3。

四、小结。

列方程解应用题的关键在于抓住能表示问题含意的一个主要等量关系,对于这个等量关系中涉及的量,哪些是已知的,哪些是未知的,用字母表示适当的未知数(设元),再将其余未知量用这个字母的代数式表示,最后根据等量关系,得到方程,解这个方程求得未知数的值,并检验是否合理。最后写出答案。

五、作业。

数学教案数轴篇三

3、使学生初步了解数形结合的思想方法,培养学生相互联系的观点。

一、重点、难点分析。

本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小。难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。

二、知识结构。

有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的方法,本课知识要点如下表:

定义三要素应用。

规定了原点、正方向、单位长度的直线叫数轴原点。

正方向。

在理解并掌握数轴概念的基础之上,要会画出数轴,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数,要知道所有的有理数都可以用数轴上的点表示,会利用数轴比较有理数的大小。

三、教法建议。

小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。数轴是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是数轴的根本依据。数轴与它所在的位置无关,但为了教学上需要,一般水平放置的数轴,规定从原点向右为正方向。要注意原点位置选择的任意性。

关于有理数与数轴上的点的对应关系,应该明确的是有理数可以用数轴上的点表示,但数轴上的点与有理数并不存在一一对应的关系。根据几个有理数在数轴上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。

四、数轴的相关知识点。

1、数轴的概念。

(1)规定了原点、正方向和单位长度的直线叫做数轴。

这里包含两个内容:一是数轴的三要素:原点、正方向、单位长度缺一不可。二是这三个要素都是规定的。

(2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。

以数轴是理解有理数概念与运算的重要工具。有了数轴,数和形得到初步结合,数与表示数的图形(如数轴)相结合的思想是学习数学的思想。另外,数轴能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小。因此,应重视对数轴的学习。

2、数轴的画法。

(1)画直线(一般画成水平的)、定原点,标出原点“o”。

(2)取原点向右方向为正方向,并标出箭头。

(3)选适当的长度作为单位长度,并标出…,—3,—2,—1,1,2,3…各点。具体如下图。

(4)标注数字时,负数的次序不能写错,如下图。

3。用数轴比较有理数的大小。

(1)在数轴上表示的两数,右边的数总比左边的数大。

(2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

(3)比较大小时,用不等号顺次连接三个数要防止出现“”的写法,正确应写成“”。

五、数轴定义的理解。

数学教案数轴篇四

1、了解一元一次方程的概念。

2、掌握含有括号的一元一次方程的解法。

1、重点:解含有括号的一元一次方程的解法。

2、难点:括号前面是负号时,去括号时忘记变号。

一、复习提问。

1、解下列方程:

(1)5x-2=8(2)5+2x=4x。

2、去括号法则是什么?“移项”要注意什么?

二、新授。

一元一次方程的概念。

只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,这样的方程叫做一元一次方程。

例1.判断下列哪些是一元一次方程。

x=3x-2x-=-l。

5x2-3x+1=02x+y=l-3y=5。

例2.解方程(1)-2(x-1)=4。

(2)3(x-2)+1=x-(2x-1)。

强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是“-”号,注意去掉括号,要改变括号内的每一项的符号。

补充:解方程3x-[3(x+1)-(1+4)]=l。

说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。

三、巩固练习。

教科书第9页,练习,l、2、3。

四、小结。

学习了一元一次方程的概念,含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号。

五、作业。

1、教科书第12页习题6.2,2第l题。

数学教案数轴篇五

1.掌握数轴的三要素,能正确画出数轴.。

2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.。

(二)能力训练点。

1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.。

2.对学生渗透数形结合的思想方法.。

(三)德育渗透点。

使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点.。

(四)美育渗透点。

通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受.。

数学教案数轴篇六

与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):

提问:我们能不能用这条直线表示任何有理数?(可列举几个数)。

在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.。

通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.。

数学教案数轴篇七

1.在下面数轴上:

(1)分别指出表示-2,3,-4,0,1各数的点.。

(2)a,h,d,e,o各点分别表示什么数?

2.在下面数轴上,a,b,c,d各点分别表示什么数?

3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:

(1){-5,2,-1,-3,0};(2){-4,2.5,-1.5,3.5};

课堂教学设计说明。

数学教案数轴篇八

学习目标:

1、掌握数轴概念,理解数轴上的点和有理数的对应关系。

2、会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数。

轴上的点读出所表示的有理数。

3、使学生初步理解数形结合的思想。

教学重点:数轴的概念。

教学难点:从直观认识到理性认识,从而建立数轴的概念,并初步体会数形结合的思想方法。

教学过程:

一、创设情境:

问题1:在一条东西走向的马路上,有一个汽车站,汽车站东3米和。

师提出问题:(1)先画什么呢?

(2)先找什么?再找什么?

(3)怎样正确摆放这几者的位置呢?

问题2:怎样用数轴简明地表示这些树,电线杆与汽车站的相对位置。

关系(方向、距离)。

师生合作完成二、合作交流,探索新知。

引导学生思考上面的问题,引导学生建立数轴的概念。

问题3:怎样正确地画一条数轴,数轴需哪几个条件?

怎样才能将不同数的点清楚表示出来?

尝试画满足条件的数轴。

可以先让学生试着画出自己想象的数轴,并把学生不同画法展示出来。先让学生交流哪种画法规范,然后师生共同分析归纳得出数轴的特征:

(1)数轴是一条直线。

(2)数轴三要素:原点。

正方向。

单位长度。

(题目及图形在导学案上)。

三、动手操作,亲身体验。

问题。

(1)画出数轴并表示下列有理数。

91.5-22-2.52(2)写出数轴上a、b、c、d、e表示的数。

(图形在导学案上)。

观察发现:(1)哪些数在原点的左边?哪些数在原点的右边?由此你会。

发现什么规律?

(2)每个数到原点的距离是多少?由此你会发现什么规律?

小组讨论,交流归纳完成上述问题。

四、巩固提高。

1、画出数轴并表示下列有理数。

(1)-3-2-10123。

(2)-30-20-100102030。

(3)155122-2-。

2五、课堂小节:、数轴的概念。、数轴的三要素。、数轴的作法及数与点转化过程。

六、作业:

必做题:教科书第14面习题1、2第二题123。

数学教案数轴篇九

1.掌握数轴的概念,理解数轴上的点和有理数的对应关系;。

3.感受在特定的条件下数与形是可以互相转化的,体验生活中的数学.

[教学重点与难点]。

重点:数轴的概念和用数轴上的点表示有理数.难点:同上.[教学设计]。

一.创设情境引入新知。

观察屏幕上的温度计,读出温度..(3个温度分别是零上,零,零下)。

[问题1]:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(分组讨论,交流合作,动手操作)。

二.合作交流探究新知。

通过刚才的操作,我们总结一下,用一条直线表示有理数,这条直线必须满足什么条件?(原点,单位长度,正方向,说出含义就可以)。

1.你能举出生活中用直线表示数的实际例子吗?(温度计,测量尺,电视音量,量杯容量标志,血压计等).

四.反复演练掌握新知。

教科书12练习.画出数轴并表示下列有理数:。

1.5,-2.2,-2.5,,,0.2.写出数轴上点a,b,c,d,e所表示的数:。

2.数轴的作用是什么?

[作业]。

必做题:教科书第18页习题1.2:第2题.[备选题]。

1.在数轴上,表示数-3,2.6,,0,,,-1的点中,在原点左边的点有个.2.在数轴上点a表示-4,如果把原点o向负方向移动1.5个单位,那么在新数轴上点a表示的数是()。

(2)你觉得数轴上的点表示数的大小与点的位置有关吗?为什么?

总结可以由教师提出问题,学生总结,教师完善.2题也可以启发学生反过来想,即点a向正方向移动1.5个单位.3题有一定的难度,两次变动可转化成原点实际怎样移动了,移动了几个单位,那么-5实际上怎样移动了.

数学教案数轴篇十

本节课上后个人感觉还有很多细节问题没有处理好,虽然同事们都给予了肯定,但我个人还是不太满意的。下面作出自我反思:

1、本节课拖堂5分钟,主要原因有二:

首先可能是教学内容较多,在新课中就有许多练习,整体上时间已经比较紧凑了。

第二,在两个环节上个人认为还处理不当,导致时间浪费过多。一是学生收集的信息中有一个关于8和9的小故事,这在试教时是没有的,因为两个班学生收集的信息不同。我觉得这个题材不错,于是在课堂上给学生读了一下,也浪费了1分钟时间,虽然感觉这能吸引学生的兴趣,但在时间如此紧凑的前提下,也只能放在课后让学生去了解。另外,在处理8和9的序数意义时,我怕读题太费时间,但结果学生由于识字量有限,对这一题解决得并不理想,也许读一读题目,效果会好很多,毕竟这是一年级的学生。由于我对低段教学经验不足,总是忽略这个问题,这是今后应十分重视的问题。

2、8和9的书写环节应该调整在揭题之后。

这是吴老师给我提的第一个建议,我发现其实这个问题很明显,但自己之前却没有考虑到,而只是一味地照本宣科,看到课本上的顺序是这么安排的,就这么死板地去教,可见自己处理教材上还应考虑得更周全些。

吴老师的建议让我觉得豁然开朗,比如在理解8、9的基数和序数意义时,我是通过数花朵一题来完成的,但由于没有读题,学生反馈情况不太理想,吴老师建议我让学生现场站一站,如请从左数第8个学生站起来,请从右数8个学生站起来。这样的方法既直观又生动,可以有效帮助学生理解“几和第几”,从而突破难点。遗憾的是我只能将吴老师的建议带回我平时的课堂深化下去,感谢的是有这么多专家及同事给出中肯的建议,让我学到更多!包括黄校长,亲临我的试教,悉心指导;还有吴老师的谆谆指导,总是让我受益匪浅,而面对这所有的一切,我只有更快地改正自己的不足!

个人觉得自己此次准备仓促,也暴露出了自己在教学上的许多不足之处,比如设计上,还没有特别创意的设计。又如以往对于教研课,我都至少试教2次,而本次只教了1次,所以也足以看出自己的功底还不够,以后应朝着“精教”的方向去努力。另外,本节课我都采用保护环境这个主题,后面的练习设计也都在“花”上下功夫,但给人的感觉却有些视觉疲劳,可见我的情境没有连贯好。借着此次机会给自己提出一个忠告:不要忽视每一节课,不要因为这是一节普通的教研课而不够重视,我需要的是初上讲台时的那种执着和不懈的努力。不要给自己找任何的借口,正视不足,不断改之,方为上策!

数学教案数轴篇十一

首先让学生回顾有理数,同时借助多媒体让学生举手回答,使学生思维活跃迅速进入上课状态。

在进入新课时,又借助实物让学生对数轴有一个感性的认识,引导学生回答在实际生活中类似于温度计的例子,让学生注意力集中,思维活跃。

教师对教材中的例1进行灵活性的解释,学生通过实际生活中的具体模型归纳他们所具有的共同特点,从而得出数轴的定义,教学中应在学生的归纳处突出数轴的三要素,学生踊跃发言,共同不漏,兴趣提升,课堂气氛活跃。

在这节课的教学过程中,学生的思维始终保持高度的活跃的性,出现了很多的闪光点,对我的启发也很大。

在教学中应把握教材的精神,创造性的利用教材,在设计安排和组织教学过程的每一个环节都应当很意识的体现探索的内容和方法,避免教学内容的过分抽象和形成化,使学生通过直观感受去理解和把握体验数学学习的乐趣。积累数学活动经验,体现数学学习的乐趣,积累数学活动经验,体验数学思维的意义,让学生在中学中逐步形成创新意识。

本节课中,相信学生,并为学生提供充分展示自己的机会,教学活动的设计力求使学生多动手,多思考,多反思,充分发挥学生的主题作用,创设实际情景,情境,给学生足够的时间和空间进行充分的探索和交流,通过动手实践,自主探索,合作交流的学习方式进行有效的学习。

本节课注意改进的方面是课堂最后的小结中,教师提出数轴上的点与有理数并非一一对应的关系,将学生的思想引入更深一层做的不好,在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问,与其对困难学生的帮助等,使小组合作学习更具时效性。

数学教案数轴篇十二

紧张有序的高二教学工作已经结束了,经受了磨砺和考验的我,在各个方面都得到了很大的提高,尤其是学科知识的理解和业务水平方面更有了进步,这都离不开学校领导和同组的有经验的老师的支持和帮忙。

“学高为师,身正为范”,作为一名人民教师,最重要的是教书育人,而要做好教学工作就务必具备精湛的专业水平和良好的思想道德品质。

这一年来我认真钻研数学中的每一个知识点,精心设计每一节课,虚心向教学经验丰富的教师请教,同时用心主动的学习老教师的实际教学方法,与此同时,我努力做好教学的各个环节,做好学生的课后辅导工作,注意学生的心理素质的提高。尽管我在教学中留意谨慎,但还是留下了一些遗憾。

为了以后更好提高教学效果。经过一番深思,我个人觉得高二数学教学,就应作到夯实“三基”,理顺知识网络。因为高考命题是以课本知识为载体,全面考查潜力,所以,促进学生对基本知识、基本概念和基本方法的巩固掌握相当关键。我从中得到的教学反思如下:

一、教学定位要合理化,重基础知识、基本方法和基本思想。

透过一年来的高二的数学教学,以及对会考试题及市统测的研究分析发现,数学考查的多是中等题型,占据总分的百分之八十之多,所以我认为,对于大多数的学生作好这部分题是至关重要的。我的做法是:加大独立解题和考场心理的模拟训练,这是我们能够进一步改善的地方,可大大提高整体的数学成绩。与此同时,又要有针对性地提高程度较好的学生,先从思想认识和学习方法上加以指导,提高拔尖人才,这样把一些偏、难、怪的资料减少一些,在平时考试中,个性注意对试题整体的把握,指导学生的整体学习思想。

二、教师指导好学生对教材的合理利用。

数学考试考查点“万变不离教材”,许多的试题就来源于教材的例题和习题,提高学生对教材的重视的同时,关键做好学生的学习指导工作,对于教材的改造和加工至关重要,先整体把握全教材的章节,再细化具体的资料,用联想的方式,对于详略的处理交代清楚,使学生在自己的头脑中构建知识体系,理解解题思想和知识方法的本质联系,提高实际运用潜力十分重要。

三、理解知识网络,构建认识体系。

各知识模块之间不是孤立的,我们要引导学生发现知识之间的衔接点,有的在概念外延上相连,有的在应用上相通等。这样,就能够把已有知识连成一个完整的体系,在解决问题时便会左右逢源,如鱼得水。

四、高度重视新课程新增资料的复习。

新课程新增资料:简易逻辑、平面向量、线形规划、概率、是大纲修订和考试改革的亮点,在高考都有涉及。现行教学状况与过去相比,教学时间比较紧张,复习时间相对短,新增资料考察要求逐年提高,分值也不断加大,如向量已经成为分析和解决问题不可缺少的工具。

在新课程试题中,有些题目属于新教材和旧教材的结合部,在高考命题中采用新旧结合的方法。例如函数的单调性问题既能够用导数解决也能够用定义解决。立体几何问题的处理既能够用传统方法也能够用向量方法。只有重视和加强新增资料的复习,才能紧跟教改和高考改革的步伐,提高学生的认知潜力和思维潜力。

五、明确考试资料和考试要求,把握好复习方向和明确重难点。

我结合自身的状况,工作中,我首先在进行复习资料的时候,先把《新课程标准》精读一遍,平时通读争取做到心中有数,同时经常请教本组有经验的老师学习好的经验,其次我总是努力多听本组老师的课,这样最有利于把握一节课的教学重点和难点,掌握难点的突破方法,及时反思并结合自己学生的状况做为教学中的指导,再次我争取把近几年的全国的高考试题做一遍,认真研究,从知识、方法和思想上入手。透过实践证明效果很好,能够在今后的教学中得到应用。

六、把握教材,注重通性通法的教学、做好学习方法的指导工作。

近几年高考数学试题坚持新题不难、难题不怪的命题方向,强调“注意通性通法,淡化特殊技巧”。就是说高考最重视的是具有普遍好处的方法和相关的知识。尽管复习时间紧张,但我们仍然要注意回归课本。回归课本,不是要强记题型、死背结论,而是要抓纲悟本,对着课本目录回忆和梳理知识,把重点放在掌握例题涵盖的知识及解题方法上,选取一些针对性极强的题目进行强化训练,这样复习才有实效。

学生的心理素质极其重要,以平和的心态参加考试,以实事求是的科学态度解答试题,培养锲而不舍的精神。考试是一门学问,高考要想取得好成绩,不仅仅取决于扎实的基础知识、熟练的基本技能和过硬的解题潜力,而且取决于临场的发挥。我们要把平常的考试看成是积累考试经验的重要途径,把平时考试当做高考,从心理调节、时间分配、节奏的掌握以及整个考试的运筹诸方面不断调试,逐步适应。

教师自己还要思考一个问题,就是针对学生存在的问题如何调整复习策略,使复习更有重点、有针对性。

数学教案数轴篇十三

3.感受在特定的条件下数与形是可以互相转化的,体验生活中的数学.

重点:数轴的概念和用数轴上的点表示有理数.

难点:同上.

一.创设情境引入新知。

观察屏幕上的温度计,读出温度..(3个温度分别是零上,零,零下)。

问题1:。

在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(分组讨论,交流合作,动手操作)。

二.合作交流探究新知。

通过刚才的.操作,我们总结一下,用一条直线表示有理数,这条直线必须满足什么条件?(原点,单位长度,正方向,说出含义就可以)。

小游戏:。

在一条直线上的同学站起来,我们规定原点,正方向,单位长度,按老师发的数字口令回答"到"游戏前可先不加任何条件,游戏中发现问题,进行弥补.

总结游戏,明确用直线表示有理数的要求,提出数轴的概念和要求(教科书第11页).

三.动手动脑学用新知。

1.你能举出生活中用直线表示数的实际例子吗?(温度计,测量尺,电视音量,量杯容量标志,血压计等).

四.反复演练掌握新知。

教科书12练习.画出数轴并表示下列有理数:。

1.5,-2.2,-2.5,,,0.

2.写出数轴上点a,b,c,d,e所表示的数:。

问题1先给出情境,学生观察,思考,研究,表示.增强学生的合作意识.

满足的条件可以先不必明确,基本能明确就可以,在后面逐步明确.

游戏的目的是使学生明白数与点的对应关系,并知道要想在直线上表示数必须满足的条件是什么.

明确数轴的正确画法和要求.

练习中注意纠正学生数轴画法的错误和点的表示错误.

1.数轴需要满足什么样的条件;。

2.数轴的作用是什么?

必做题:教科书第18页习题1.2:第2题.

1.在数轴上,表示数-3,2.6,,0,,,-1的点中,在原点左边的点有个.

2.在数轴上点a表示-4,如果把原点o向负方向移动1.5个单位,那么在新数轴上点a表示的数是xx。

a.b.-4c.d.

(2)你觉得数轴上的点表示数的大小与点的位置有关吗?为什么?

总结可以由教师提出问题,学生总结,教师完善。

数学教案数轴篇十四

1.掌握数轴的概念,理解数轴上的点和有理数的对应关系;。

重点:数轴的概念和用数轴上的点表示有理数.难点:同上.[教学设计]。

一.创设情境引入新知。

观察屏幕上的温度计,读出温度..(3个温度分别是零上,零,零下)。

[问题1]:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(分组讨论,交流合作,动手操作)。

二.合作交流探究新知。

通过刚才的操作,我们总结一下,用一条直线表示有理数,这条直线必须满足什么条件?(原点,单位长度,正方向,说出含义就可以)。

四.反复演练掌握新知。

教科书12练习.画出数轴并表示下列有理数:。

1.5,-2.2,-2.5,,,0.2.写出数轴上点a,b,c,d,e所表示的数:。

1.数轴需要满足什么样的条件;。

2.数轴的作用是什么?

[作业]。

必做题:教科书第18页习题1.2:第2题.[备选题]。

1.在数轴上,表示数-3,2.6,,0,,,-1的点中,在原点左边的点有个.2.在数轴上点a表示-4,如果把原点o向负方向移动1.5个单位,那么在新数轴上点a表示的数是()。

(2)你觉得数轴上的点表示数的大小与点的位置有关吗?为什么?

总结可以由教师提出问题,学生总结,教师完善.2题也可以启发学生反过来想,即点a向正方向移动1.5个单位.3题有一定的难度,两次变动可转化成原点实际怎样移动了,移动了几个单位,那么-5实际上怎样移动了.

【本文地址:http://www.pourbars.com/zuowen/17918132.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map