编写好的教案可以提供给学生作为学习的参考资料。编写教案的过程中,教师还需要充分考虑教学资源的利用和布置,确保教学顺利进行。教案是指教师在教学过程中根据教育教学要求和学生实际情况,依据教材和教学大纲,制定的用于指导教学活动的详细计划和安排。教案起到了指导教师教学的作用,提供了教学的蓝图。那么如何编写一份优秀的教案呢?教案应明确教学目标,明确学生需要达到的知识、能力和情感目标。以下是小编为大家收集的优秀教案范文,仅供参考,希望对大家有所帮助。
小学数学平均数的教案篇一
大家都听过小猫钓鱼的故事吧?今天老师也要给大家讲一段小猫钓鱼的故事。
一、小猫钓鱼认识平均数。
1、在一个天气晴朗的午后,大虎、二虎和小虎三位猫兄弟到河边钓鱼。两个小时以后他们每人数了数自己的鱼,大虎钓到7条鱼,二虎也钓到6条鱼,只有小虎才钓到2条鱼,你能用圆形代替鱼,摆出他们钓鱼的条数吗?(竖排或横排摆都可以)。
3、怎样才能让每个人的鱼同样多呢?用圆片摆一摆再在小组内说说你的方法。
方法二:大虎拿出两条鱼给小虎,二虎拿出1条鱼给小虎,这样每个人都有5条鱼,这种方法叫做移多补少。
5条是大虎钓鱼的条数吗?是二虎和三虎钓鱼的条数吗?我们给他起个名字,5条就是大虎、二虎、小虎钓鱼的平均数,我们可以说他们平均每人钓了5条鱼。
二、进一步理解平均数。
1、大虎、二虎、小虎在回家的路上遇到花花姐妹,原来她们也去钓鱼了,花花姐妹可是钓鱼的高手。大虎:“你们平均每个人钓了多少条鱼?”
2、这是花花姐妹钓鱼的条数,你估计一下花花姐妹平均每人大约钓到多少条鱼?
3、你能算出花花姐妹到底平均每人钓了多少条鱼呢?
三、歌唱比赛,理解平均数的必要性。
1、森领卡拉ok大赛就要开始了,许多小动物都赶着去观看比赛呢!
3、你知道谁是这次比赛的冠军吗,想一想、算一算,然后在小组里说说你的理由。
4、黄鹂是4位评委打出的分数,而百灵鸟是3位评委打出的分数,因为评委的.人数不同,所以算总分是不公平的,这个时候只有算平均分才公平。在现实生活中你知道哪些比赛是取平均分来决定比赛成绩的。
四、生活中灵活应用平均数。
看完卡拉ok比赛,三位猫兄弟觉得天气太热,就派大虎到小熊冷饮店买冰糕。咦!小熊遇到什么难题了?(小熊:星期四该进多少雪糕呢?)。
这是小熊冷饮店本周前三天卖出冰糕的情况,小熊星期四该进多少箱冰糕合适呢?
五、平均数的应用。
小学数学平均数的教案篇二
北师大版《义务教育教科书数学》四年级(下册)第90页。
【教学目标】。
(一)知识与技能:
1、使学生理解“平均数”的含义,初步掌握求平均数的方法,使学生能根据简单的统计表求平均数,培养学生分析问题的能力和操作能力。
2、结合解决问题的过程初步认识平均数,体会平均数的必要性,并能根据统计图表解决一些简单的实际问题,在具体的情境中培养学生合作交流的能力,并能根据情况进行合理推测。
(二)过程与方法:
采用“自主合作,相互交流”的方法更好地理解平均数。在解决实际问题的过程中,进一步积累分析和处理数据的办法,发展统计观念。
(三)情感态度、价值观:
向学生渗透事物间联系的思想和统计思想,使学生感悟到数学知识内在联系的逻辑之美,提高学生审美意识。
【教学重点】。
明确“平均数”的含义;掌握求“平均数”的方法。
【教学难点】。
感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考,体会平均数的意义。
【教学准备】。
多媒体课件。
【教学过程】。
一、创设情境、激情导入。
师:刚才短片中,石正小学让你印象最深刻的是什么?
生1:美丽的.校园。
生2:是一所有特色的足球学校。
生:(很兴奋地)想啊。
师:现在就请我们一起看看当时的比赛情况!
设计谈话导入,一方面拉近了师生间的关系激起了学生的认知兴趣,另一方面也为学生探究活动的开展指明了方向。
二、合作交流、建立概念。
1、初步感知。
生1:我不同意。万一他后面两次踢进的多了,那我不就危险啦!
生2:我会同意的。做老师的应该大度一点。
师:呵呵,还真和我想到一块儿去了。不过,小力后两次的成绩很有趣。
(师出示小力的后两次点球成绩:5个,5个。生会心地笑了)。
生:5。
师:为什么?
生:他每轮都踢进了5个,所有用5来表示他的成绩最合适。
师:说的有理!小林出场了,三次成绩各不相同。这一回,又该用哪个数来表示小林的成绩比较合适呢(3、4、5)。
能不能通过移一移的办法使到小林三次点球的成绩看起来一样多?
2、展示交流,理解求平均数的两种方法。
数学上,像这样从多的里面移一些补给少的,使得每轮个数都一样多。这一过程就叫“移多补少”。移完后,小林每轮看起来都踢进了几个(4个)。
小刚也踢了三轮,成绩又怎样?(3、7、2)。
讨论交流:现在,又该用几来表示他的成绩同学们先独立思考,然后看看除了移动补少的方法外有没有更快、更好的方法来解决?你有什么发现?学有困难的同学也可以自学课本90页。
3、引出课题:平均数。
数学上,我们把通过移多补少或计算后得到的每一轮同样多的这个数,就叫做原来这几个数的平均数。(板书:平均数)。
这里的平均数4是表示小刚的最高水平?是最低水平?那表示的是?(板书:平均水平)。
4、理解平均数的意义。
正式比赛前,我主动提出踢四轮的想法。前三轮射门已经结束,怎么样,想不想看看(师呈现前三轮成绩:4个、6个、5个)。
猜猜看,三位同学看到我前三轮的成绩,可能会怎么想。
5、体会平均数的取值范围。
出示4次成绩(4、6、5、1)凭直觉,刘老师最后的平均数可能是几个。
感知最后的平均成绩应该比最大的数6小,比最小的数1大。
[生列式计算,并交流计算过程:4+6+5+1=16(个),16÷4=4(个)]。
6、体会平均数的特点——敏感性。
失败乃成功之母,你觉得老师输在哪里?
试想一下:如果老师最后一轮踢进9个,比赛结果又会如何呢。
看来,要使平均数发生变化,只需要改变其中的几个数。
其实呀,平均数很敏感,善于随着每一个数据的变化而变化,任何一个数据的“风吹草动”都会使它改变,这正是平均数的一个重要特点。
三、巧设练习,巩固新知。
1、计算平均数。
你能计算这一周的平均最高气温是多少摄氏度吗?平均数是一个知冷暖的“人”。
2、为了使同学们对平均数有更深刻的了解,我还给大家带来了一幅图。(出示中国男子篮球队队员的合影)画面中的人,相信大家一定不陌生。
没错,这是以姚明为首的中国男子篮球队队员。老师从网上查到这么一则数据,中国男子篮球队队员的平均身高为200厘米。这是不是说,篮球队每个队员的身高都是200厘米平均数只反映一组数据的一般水平,并不代表其中的每一个数据。平均数是一个很善变的“人”。
3、好了,探讨完身高问题,我们再来看看池塘的平均水深。(师出示图)。
平均水深110cm,小明身高140cm下河游泳不会有危险!您认同吗?
生:不认同,最深的地方有200cm,下河游泳还是有危险的。
师:看来,平均数还是个危险的“人”。
4、体会极端数据对平均数的影响。
你们知道在实际的一些比赛中是如何计算平均分的吗?刘老师带来了中央电视台青歌赛的视频请看!
去掉最高分和最低分的目的是什么?平均数是一个严谨的“人”。
5、看来,认识了平均数,对于我们解决生活中的问题还真有不少帮助呢。当然,如果不了解平均数,闹起笑话来,那也很麻烦。
20xx年5月14日综合外媒报道,世界卫生组织(who)13日发布了20xx年版《世界卫生统计》报告。报告指出,从总体上看,全世界人口的寿命都较以往有所增加。中国在此次报告中的人口平均寿命为:男性74岁,女性77岁。
一位73岁的老伯伯看了这份资料后,不但不高兴,反而还有点难过。这又是为什么呢。
假如我就是那位73岁的老伯伯,你们打算怎么劝劝我。
平均数是一个会开玩笑的“人”。
四、畅谈收获、回顾总结。
平均数是一个怎样的“人”?您懂他了吗?
五、回应课本、课后延伸。
今天我们学习的是课本第90页的内容,请大家翻开书看看内容,有没有不明白的地方?发现重点可以用笔划起来。
板书设计。
平均数。
平均数是一组数据平均水平的代表。
移多补少。
一样多。
合并平分。
(4+6+5+1)÷4=4(个)。
1
小学数学平均数的教案篇三
教学内容:
苏教版小学数学第六册教科书第9294页。
平均数是描述一组数据集中趋势的统计特征量。求平均数是分析数据的一种重要方法,在日常生活中,特别是在工农业生产中经常要用到,如平均成绩、平均身高、平均产量、平均速度等。这样的平均数常用于表示统计对象的一般水平,它既可以反映出一组数量的一般情况,也可以用来进行不同组数量的比较,以看出组与组之间的差别。这部分教材是在学生已具有一定的收集和整理数据能力的基础上教学比较简单的求平均数问题。本节课是三年级下册《统计与平均数》的教学,是把已学的统计知识和认识平均数结合起来,学会求平均数的基本方法:移多补少。引导学生进一步体会到求平均数是解决问题的有效方法之一。以帮助学生灵活运用平均数的知识解决生活中的实际问题,并通过多种练习让学生加深对平均数意义的多角度理解和先求和再平均分的求平均数一般方法的掌握。
教学目标:
1、在具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。
2、在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。
3、进一步增强与他人交流的意识与能力,体会运用已学的统计知识解决问题的乐趣,建立学习数学的信心。
教学重难点:
理解平均数的意义,学会求简单数据的平均数。
教学过程:
一、创设情境,自主探究。
1.呈现套圈情境。
2.收集整理数据。
多媒体依次演示4个男生和5个女生套圈比赛情况,最后将每个选手卡通像与其套圈结果定格组合成一个画面。要求学生根据男、女生套圈成绩,小组合作利用小方块完成统计图(每小组中男生合作完成男生队成绩的统计,女生合作完成女生队成绩的统计)。
小学数学平均数的教案篇四
生:(齐)喜欢!
师:如果张老师告诉大家,我最喜欢并且最拿手的体育运动是篮球,你们相信吗?
生:不相信。篮球运动员通常都很强壮,就像姚明和乔丹那样。张老师,您也太瘦了点。
生:(齐)想!
生:我不同意。万一他后面两次投中的多了,那我不就危险啦!
生:我会同意的。做老师的应该大度一点。
师:呵呵,还真和我想到一块儿去了。不过,小强后两次的投篮成绩很有趣。
(师出示小强的后两次投篮成绩:5个,5个。生会心地笑了)
生:5。
师:为什么?
生:他每次都投中5个,用5来表示他1分钟投中的个数最合适了。
师:说得有理!接着该小林出场了。小林1分钟又会投中几个呢?我们也一起来看看吧。
(师出示小林第一次投中的个数:3个)
师:如果你是小林,会就这样结束吗?
生:不会!我也会要求再投两次的。
师:为什么?
生:这也太少了,肯定是发挥失常。
生:(齐)不同。
生:我觉得可以用5来表示,因为他最多,二次投中了5个。
师:也就是说,如果也用5来表示,对小强来说
生:(齐)不公平!
师:该用哪个数来表示呢?
生:可以用4来表示,因为3、4、5三个数,4正好在中间,最能代表他的成绩。
师:不过,小林一定会想,我毕竟还有一次投中5个,比4个多1呀。
生:(齐)那他还有一次投中3个,比4个少1呀。
师:哦,一次比4多1,一次比4少1
生:那么,把5里面多的1个送给3,这样不就都是4个了吗?
(师结合学生的交流,呈现移多补少的过程,如图1)
生:(齐)4个。
师:能代表小林1分钟投篮的一般水平吗?
生:(齐)能!
师:轮到小刚出场了。(出示图2)小刚也投了三次,成绩同样各不相同。这一回,又该用几来代表他1分钟投篮的一般水平呢?同学们先独立思考,然后在小组里交流自己的想法。
生:我觉得可以用4来代表他1分钟的投篮水平。他第二次投中7个,可以移1个给第一次,再移2个给第三次,这样每一次看起来好像都投中了4个。所以用4来代表比较合适。
(结合学生交流,师再次呈现移多补少过程,如图3)
师:还有别的方法吗?
生:我们先把小刚三次投中的个数相加,得到12个,再用12除以3等于4个。所以,我们也觉得用4来表示小刚1分钟投篮的水平比较合适。
[师板书:3+7+2=12(个),123=4(个)]
生:能!都是4个。
师:能不能代表小刚1分钟投篮的一般水平?
生:能!
生:使原来几个不相同的数变得同样多。
师:数学上,我们把通过移多补少后得到的同样多的这个数,就叫做原来这几个数的平均数。(板书课题:平均数)比如,在这里(出示图1),我们就说4是3、4、5这三个数的平均数。那么,在这里(出示图3),哪个数是哪几个数的平均数呢?在小组里说说你的想法。
生:在这里,4是3、7、2这三个数的平均数。
师:不过,这里的平均数4能代表小刚第一次投中的个数吗?
生:不能!
师:能代表小刚第二次、第三次投中的个数吗?
生:也不能!
生:这里的4代表的是小刚三次投篮的平均水平。
生:是小刚1分钟投篮的一般水平。
(师板书:一般水平)
(师呈现前三次投篮成绩:4个、6个、5个,如图4)
师:猜猜看,三位同学看到我前三次的投篮成绩,可能会怎么想?
生:他们可能会想:完了完了,肯定输了。
师:从哪儿看出来的?
生:你们看,光前三次,张老师平均1分钟就投中了5个,和小强并列第一。更何况,张老师还有一次没投呢。
生:我觉得不一定。万一张老师最后一次发挥失常,一个都没投中,或只投中一两个,张老师也可能会输。
生:万一张老师最后一次发挥超常,投中10个或更多,那岂不赢定了?
师:情况究竟会怎么样呢?还是让我们赶紧看看第四次投篮的.成绩吧。
(师出示图5)
师:凭直觉,张老师最终是赢了还是输了?
生:输了。因为你最后一次只投中1个,也太少了。
师:不计算,你能大概估计一下,张老师最后的平均成绩可能是几个吗?
生:大约是4个。
生:我也觉得是4个。
生:不可能,因为只有一次投中6个,又不是次次都投中6个。
生:前三次的平均成绩只有5个,而最后一次只投中1个,平均成绩只会比5个少,不可能是6个。
生:再说,6个是最多的一次,它还要移一些补给少的。所以不可能是6个。
师:那你们为什么不估计平均成绩是1个呢?最后一次只投中1个呀!
生:也不可能。这次尽管只投中1个,但其他几次都比1个多,移一些补给它后,就不止1个了。
生:小一些。
生:还要比最小的数大一些。
生:应该在最大数和最小数之间。
师:是不是这样呢?赶紧想办法算算看吧。
[生列式计算,并交流计算过程:4+6+5+1=16(个),164=4(个)]
师:和刚才估计的结果比较一下,怎么样?
生:的确在最大数和最小数之间。
师:现在看来,这场投篮比赛是我输了。你们觉得问题主要出在哪儿?
生:最后一次投得太少了。
生:如果最后一次多投几个,或许你就会赢了。
师:试想一下:如果张老师最后一次投中5个,甚至更多一些,比如9个,比赛结果又会如何呢?同学们可以通过观察来估一估,也可以动笔算一算,然后在小组里交流你的想法。
(生估计或计算,随后交流结果)
生:如果最后一次投中5个,那么只要把第二次多投的1个移给第一次,很容易看出,张老师1分钟平均能投中5个。
师:你是通过移多补少得出结论的。还有不同的方法吗?
生:我是列式计算的。4+6+5+5=20(个),204=5(个)。
生:我还有补充!其实不用算也能知道是5个。大家想呀,原来第四次只投中1个,现在投中了5个,多出4个。平均分到每一次上,每一次正好能分到1个,结果自然就是5个了。
师:那么,最后一次如果从原来的1个变成9个,平均数又会增加多少呢?
生:应该增加2。因为9比1多8,多出的8个再平均分到四次上,每一次只增加了2个。所以平均数应增加2个。
生:我是列式计算的,4+6+5+9=24(个),244=6(个)。结果也是6个。
师:现在,请大家观察下面的三幅图,你有什么发现?把你的想法在小组里说一说。
(师出示图6、图7、图8,三图并排呈现)
(生独立思考后,先组内交流想法,再全班交流)
生:我发现,每一幅图中,前三次成绩不变,而最后一次成绩各不相同。
师:最后的平均数
生:也不同。
师:看来,要使平均数发生变化,只需要改变其中的几个数?
生:一个数。
师:瞧,前三个数始终不变,但最后一个数从1变到5再变到9,平均数
生:也跟着发生了变化。
生:我发现平均数总是比最大的数小,比最小的数大。
师:能解释一下为什么吗?
生:很简单。多的要移一些补给少的,最后的平均数当然要比最大的小,比最小的大了。
师:其实,这是平均数的又一个重要特点。利用这一特点,我们还可以大概地估计出一组数据的平均数。
生:我还发现,总数每增加4,平均数并不增加4,而是只增加1。
师:那么,要是这里的每一个数都增加4,平均数又会增加多少呢?还会是1吗?
生:不会,应该增加4。
生:想!
生:超过的部分和不到的部分一样多,都是3个。
师:会不会只是一种巧合呢?让我们赶紧再来看看另两幅图(指图7、图8)吧?
生:(观察片刻)也是这样的。
师:这儿还有几幅图,(出示图1和图3)情况怎么样呢?
生:超过的部分和不到的部分还是同样多。
师:奇怪,为什么每一幅图中,超出平均数的部分和不到平均数的部分都一样多呢?
生:如果不一样多,超过的部分移下来后,就不可能把不到的部分正好填满。这样就得不到平均数了。
生:就像山峰和山谷一样。把山峰切下来,填到山谷里,正好可以填平。如果山峰比山谷大,或者山峰比山谷小,都不可能正好填平。
师:多生动的比方呀!其实,像这样超出平均数的部分和不到平均数的部分一样多,这是平均的第三个重要特点。把握了这一特点,我们可以巧妙地解决相关的实际问题。
(师出示如下三张纸条,如图9)
生:我觉得不对。因为第二张纸条比10厘米只长了2厘米,而另两张纸条比10厘米一共短了5厘米,不相等。所以,它们的平均长度不可能是10厘米。
师:照你看来,它们的平均长度会比10厘米长还是短?
生:应该短一些。
生:大约是9厘米。
生:我觉得是8厘米。
生:不可能是8厘米。因为7比8小了1,而12比8大了4。
师:它们的平均长度到底是多少,还是赶紧口算一下吧。
生:有可能。
师:不对呀!不是说队员的平均身高是160厘米吗?
生:平均身高160厘米,并不表示每个人的身高都是160厘米。万一李强是队里最矮的一个,当然有可能是155厘米了。
生:平均身高160厘米,表示的是篮球队员身高的一般水平,并不代表队里每个人的身高。李强有可能比平均身高矮,比如155厘米,当然也可能比平均身高高,比如170 厘米。
师:说得好!为了使同学们对这一问题有更深刻的了解,我还给大家带来了一幅图。(出示中国男子篮球队队员的合影,图略)画面中的人,相信大家一定不陌生。
生:姚明!
生:不可能。
生:姚明的身高就不止2米。
生:姚明的身高是226厘米。
师:看来,还真有超出平均身高的人。不过,既然队员中有人身高超过了平均数
生:那就一定有人身高不到平均数。
师:没错。据老师所查资料显示,这位队员的身高只有178厘米,远远低于平均身高。看来,平均数只反映一组数据的一般水平,并不代表其中的每一个数据。好了,探讨完身高问题,我们再来看看池塘的平均水深。
(师出示图11)
师:冬冬来到一个池塘边。低头一看,发现了什么?
生:平均水深110厘米。
生:不对!
师:怎么不对?冬冬的身高不是已经超过平均水深了吗?
生:平均水深110厘米,并不是说池塘里每一处水深都是110厘米。可能有的地方比较浅,只有几十厘米,而有的地方比较深,比如150厘米。所以,冬冬下水游泳可能 会有危险。
师:说得真好!想看看这个池塘水底下的真实情形吗?
(师出示池塘水底的剖面图,如图12)
生:原来是这样,真的有危险!
师:看来,认识了平均数,对于我们解决生活中的问题还真有不少帮助呢。当然,如果不了解平均数,闹起笑话来,那也很麻烦。这不,前两天,老师从最新的《健康报》上查到这么一份资料。
(师出示:《2007年世界卫生报告》显示,目前中国男性的平均寿命大约是71岁)
生:中国男性的平均寿命比原来长了。
生:我想,老伯伯可能以为平均寿命是71岁,而自己已经70岁了,看来只能再活1年了。
师:老伯伯之所以这么想,你们觉得他懂不懂平均数。
生:不懂!
生:老伯伯,我觉得平均寿命71岁反映的只是中国男性寿命的一般水平,这些人中,一定会有人超过平均寿命的。弄不好,你还会长命百岁呢!
师:谢谢你的祝福!不过,光这么说,好像还不足以让我彻底放心。有没有谁家的爷爷或是老太爷,已经超过71岁的?如果有,那我可就更放心了。
生:我爷爷已经78岁了。
生:我爷爷已经85岁了。
生:我老太爷都已经94岁了。
师:真有超过71岁的呀!猜猜看,这一回老伯伯还会再难过吗?
生:不会了。
师:探讨完男性的平均寿命,想不想了解女性的平均寿命?有谁愿意大胆地猜猜看?
生:我觉得中国女性的平均寿命大约有65岁。
生:我觉得大约有73岁。
(师呈现相关资料:中国女性的平均寿命大约是74岁)
师:发现了什么?
生:女性的平均寿命要比男性长。
生:不一定!
生:虽然女性的平均寿命比男性长,但并不是说每个女性的寿命都会比男性长。万一这老爷爷特别长寿,那么,他完全有可能比老奶奶活得更长些。
师:说得真好!走出课堂,愿大家能带上今天所学的内容,更好地认识生活中与平均数有关的各种问题。下课!
小学数学平均数的教案篇五
教学目标:
1.会正确读、写多位数,并能比较数的大小。
2.能用万、亿为单位表示大数。
3.能根据实际问题的需要求一个数的近似数。
教学重点:会正确读、写多位数,并能比较数的大小。
教学难点:能根据实际问题的需要求一个数的.近似数。
教学过程:
一、多位数的读、写的练习。
练习一第1题:先回顾计数单位的顺序,再根据书中的数据说说它们是几位数,最高位在什么位上,并进行读、写。
二、多位数的改写。
练习一第2题:先复习多位数的不同数位上数字的不同意义。再进行数的改写。
三、读写游戏。
同桌间进行的游戏:第1步一个同学读数,另一个同学根据所读的数写数,经过几次读数,两人可交换角色;第2步一个同学写数,另一个同学根据所写的数读数,然后交换角色进行。在同桌练习的基础上,可选派代表在全班进行比赛,以激发学生的兴趣。
四、多位数比大小。
做第4题:完成后说说比较的方法。
(一)组数游戏:
请每个同学准备一些数字卡片;然后请学生代表提出组数的要求,根据要求每个同学都摆一摆;接着,选择一部分学生所摆的数,供全班观察讨论。
(二)有关近似数的练习。
讨论括号内的数字有几种可能性,分析哪些是“五入的”,哪些是“四舍的”。
板书设计:练习一。
亿级万级个级。
千百十亿千百十万千百十个。
亿亿亿万万万。
13820000。
计数单位一千三百八十二万。
小学数学平均数的教案篇六
教学内容:
人教版《义务教育课程标准实验教科书 数学》三年级(下册)统计中求平均数例1。
教学目标:
1.在具体问题情境中,感受求平均数的需要,通过操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。
2.能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。
3.进一步增强与同伴交流的意识与能力,体验运用知识解决问题的乐趣,建立学好数学的信心。
教学重点、难点:
平均数的意义及求平均数的方法。
教学过程:
一、情境导入。
阳光体育运动启动后男生和女生举行了一场趣味投篮比赛,想知道他们的得分情况吗?
课件出示统计图。
(1)看到统计图,你知道了什么?(板书每组每人得分)。
(2)金灿灿的奖杯在那儿等着呢,请你来当裁判,这金灿灿的奖杯该被哪组捧走呢?
学生说出自己的裁判理由,其他同学可以发表自己的意见,也可以反驳他人的观点。
当学生讨论、交流出需要求出每组平均每人得多少分时,师板书出“平均”。
(3)刚才同学们通过讨论,认为用平均数来比较那个对的实力强一些比较公平,那什么是平均数呢?(指名学生回答)。
师:那么什么是平均数呢?下面老师给大家做个小实验。
二、在操作中体验平均数的涵义。
1.课件演示:出示一个玻璃水槽,里面用三块挡水板平均分成四个部分,形成四个水柱高低不同的水柱。
师:四根水柱的高度一样吗?(指名回答)。
2.师继续演示:如果拿开挡水板,会发生什么?(课件演示)。
师:现在高度一样了吗?(指名回答)。
师:这个一样的高度就是原来四个高度的什么数?(指名回答)。
师:刚才老师是怎样使他们变得一样高的呢?(拿开挡水板,水会从高处流向低处)(指名回答)。
师:你的意思是把多的一一部分给少的,使大家变得一样多。这种方法我们把它们叫做“移多补少”(板书)。
师:在移多补少的过程中,水的总量有没有变?(指名回答)。
师:下面我们就用移多补少的方法来求出男女队投篮比赛中各自的平均数。
3.请同学们拿出你手中的小圆片代替投中的个数在小组内进行移多补少的操作。
(1)。第一组和第二组操作男生队,第三组和第四组操作女生队,摆完后在小组内交流操作过程。
(2)指名汇报交流。
4.教师用课件演示投篮的移多补少过程。
5.课件出示小练习。
5.演示后小结:(课件出示)像这样,几个不相同的数,在总数不变的前提下,可以通过移多补少是他们变得相等,这个相等的数就是这几个数的平均数。(学生齐读)。
师:理解了平均数的含义,那么平均数有什么特征呢?同学们想不想做个小游戏?
三、游戏中感悟平均数的特征。
1、出示:各装有3根小棒的红蓝两个纸袋(红带内平均每根长14厘米,蓝袋内平均每根长10厘米)课件出示两个纸袋。
师:下面我们来做个游戏,请几位同学上来,每位同学从两代中各抽出一根来比一比。(请三位同学上讲台操作)。
先让学生在小组里讨论,然后全班交流。(平均数大一些,并不是说每一根都长一些。平均长14厘米,不一定每一根都是14厘米,也有可能比14厘米短的,也有可能比14厘米长的。平均长10厘米的小棒,有可能正好是10厘米,也有可能比10厘米短,还有可能比10厘米长。)。
4、师:(课件演示)平均数和原来那些数相比,处在什么位置?(处在中间的位置,比最大的数要小,比最小的数要大。)(课件出示平均数的特点)。
师:我们感悟了平均数的特点,敢不敢挑战一下?
5、挑战练习——明辨是非。
四、探索中建构平均数的算法。
1、师:前面我们用移多补少的方法求的男女队各自的平均数,知道了女队的实力强一些。如果现在要进行班与班之间的对抗赛,那么要计算什么的平均数呢?(要计算班级的平均数)。
2、师:一个班有六十来名学生,如果还用移多补少的办法来获得平均数,你感觉怎么样?(指名交流)。
3、师:是啊,移多补少的方法对数据较小或数据个数比较少时,还是挺管用的。但是当一组数据比较大,数据的个数有比较多的时候,这种方法就有局限性了。看来,我们需要探索一种更加通用的计算方法。
4、以小组为单位,让学生讨论计算方法:(1)平均分是怎样分的?平均分需要知道哪两个条件?(师举例:有12块糖平均分给3个小朋友,每个小朋友分几块?)。
(2)哪个条件已经知道了?哪个条件还没知道?
(3)怎样求平均数?(师举例,3个小朋友一共有12块糖,平均每个孩子分几块?
(4))推出求平均数的公式。
五、学习例1,巩固公式计算法。
1、出示主题图,先用移多补少的方法获得平均数。(课件演示)。
2、让学生试着用公式计算例题中的平均数。
3、集体订正讲解。
六、生活中的平均数。(课件出示)。
七、巩固练习。
1、算出三条彩带的平均长度。
2、算一算你们小组的平均体重。
七、课堂小结。
小学数学平均数的教案篇七
教学内容:
义务教育课程标准实验教科书人教版二年级上册第八单元排列与组合。
教学目标:
1、通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。
2、经历探索简单事物排列与组合规律的过程。
3、培养学生有序地全面地思考问题的意识。
4、感受数学与生活的紧密联系,培养学生学习数学的兴趣和用数学方法解决问题的意识。
教学重点:经历探索简单事物排列与组合规律的过程。
教学难点:初步理解简单事物排列与组合的不同。
教具准备:每组三张数字卡片、人民币学具。
教学设计:
一、情境创设,激发兴趣。
学生汇报(黑板演示)(2分)。
(2)(黑板出示:用数字卡片1、2、3可以摆成几个不同的两位数呢?)。
师:哦刚才用几摆的呢?轻轻地闭上眼睛,张开双眼看一看,用数字卡片1、2、3可以摆成几个不同的两位数呢?)。
师:想一想,和同桌说一说,拿出数字卡片,一人摆卡片,一人做好记录。
学生活动,教师巡视,汇报结果。
1、你们小组排出了哪些数?2、怎样排的?指名学生一边操作一边汇报。其他学生一起说数。
3、检查一下,有没有重复的?还有吗?(有没有漏掉的)。
4、谁发现了他们小组排数的规律?(可以让排数的学生说,也可以指名其他同学说。)。
5、看来呀,每个组的方法虽然不完全一样,但都只能排出这6个数。6、教师小结:大家都采用各种方法摆出了6个不同的两位数。真了不起啊!
看来要想既不重复也不漏掉,就必须要按照一定的顺序和规律进行。
像这道题:先把数字1放在十位,再把数字2和3分别放在个位,分别组成12和13,我接着把数字2放在十位,数字1和3分别放在个位,又分别组成了21和23,最后把数字3放在十位,数字1和2分别放在个位,分别组成了31和32,这样就不会漏也不会重复了。(8分)。
随机练习:听明白吗?那么你能试着说几个数吗?
3.感知组合(5分)。
师:咱们合作的真是太愉快!让老师握握你的小手吧!
三个小朋友,每两个人只能握一次手,一共要握几次手呢?
师:一人做裁判,小组的其他三个同学握一握,试一试,到底几次?
学生汇报表演。他们握手,咱们一起来数吧!(注意握过小朋友一边休息)。
师问:a和b握手了吗?b和a握手了吗?这算一次还是两次呀?
对比:三个小朋友握手只有三次,那刚才三个数去摆了六个数,是怎么回事呢?
小结:看来,两个人相互握手,只能算一次。刚才排数,交换数的位置,就变成另一个数了。孩子们,你们真了不起。
三、应用拓展,深化探究(15分)。
1、搭配衣服。
(课件出示)有几种搭配的选择呢?
师:谁愿意起来告诉我们大家究竟有几种不同的穿法呢?
(1):一件上衣可以配两条不同的裤子,这样有2种,另一件上衣又可以配两条不同的裤子,又有两种,这样一共有4种。
(2):上衣1号和裤子1号,上衣1号和裤子2号,上衣2号和裤子1号,上衣2号和裤子1号。
师:运动员们穿上你们搭配的漂亮衣服,非常高兴,邀请大家去观看比赛。
2、乒乓球比赛。
师:三人参加乒乓球比赛,如果两个人打一场比赛,那三个人要打几场比赛呢?
师:运动员的参赛激情很高,如果有4个人参加比赛,那又要打几场呢?
3、买奖品。
比赛结束了,老师想给他们买些作业本,买一个作业本可以怎样付钱?
四、总结延伸,畅谈感受(5分)。
师:刚才,我们一起去玩游戏,也观看了精彩的比赛,你有什么收获吗?(学生谈收获)。
师:原来生活有这么多数学问题,只要同学们细心观察,就能发现更多有趣的数学问题。
小学数学平均数的教案篇八
1、使学生理解平均数的含义,初步学会简单的求平均数的方法。
2、理解平均数在统计学上的意义,感受数学与生活的联系。
3、发展学生解决问题的能力。
【重点难点】使学生理解平均数的含义,初步学会简单的求平均数的方法。
【教学过程】。
学生动手解决,并交流解决的方法。
2、引入“平均数”
1、出示情景图:说说老师和同学们在干什么?
2、出示统计图:引导学生收集信息。
3、引导学生运用“移多补少”的方法求平均每人收集了多少个:利用这个统计图,你们有什么办法,可以解决这个问题?学生独立思考后交流方法。
5、小组讨论解决的方法并派代表交流,并说说13个就是平均数,那是不是说他们每个人都是收集13个呢?理解平均数是个虚的数。
教师带领学生共同理解平均数的计算过程以及其中蕴涵的意义。
6、小结。
师:同学们,电视上比赛评分时,为何要去掉一最高分,去掉一最低分?你能说说理由吗?
引起了学生的激烈讨论。学生通过讨论解决实际问题,对平均数的理解又上升到一个高度,明白平均数不是一个实在的数,去掉最高分和最低分是为了让最后得分不会偏离平均分太远。
三、巩固训练。
四、小结:
通过这节课的学习,你们有什么收获,还有什么问题?
小学数学平均数的教案篇九
教学内容:苏教版课程标准实验教科书三年级(下册)第92~94页。
教学目标:
1.经历用平均数刻画一组数据特征的过程,体会平均数的意义,掌握求简单平均数的方法。
2.经历移多补少、先合后分、估算等多样化算法的讨论,会利用图形直观估计平均数,能选择灵活的方法解决平均数问题。
3.体会平均数在现实生活中的广泛应用,激发参与热情,增强应用数学的意识。
教学重点:体会平均数的意义,掌握求平均数的方法。
教学难点:理解平均数的意义。
教学具准备:多媒体课件 小黑板 棋子。
一、设疑引欲,激趣导入。
同学们,有几个小朋友,你们看他们在干什么?
四个男生和四个女生比赛套圈,每人套15个,我们给他们当裁判,好吗?
让我们看看他们分别投了多少个。
(课件出示两组套中的成绩统计图)。
二、激起矛盾,提出问题。
1、瞧,又来了一个女生!她也想参加女生队进行比赛。行不行?
同座位交流一下,讨论一下。
三、合作探索,解决问题。
1、学生交流。
我们可以分别求出男生和女生平均每人套中的个数。
2、自主探索平均数的意义和计算方法。
a:求男生平均每人套中的个数。
(1)移多补少。
谁能上来动动小手,让男生套中的个数变得同样多?为什么要这样移动?
把移动多的补给少的,我们把这种方法叫做“移多补少”法。
现在我们可以看出平均每个男生套中多少个吗?
(2)先合并再均分。
现在还有办法让男生套中的个数变得同样多吗?(师合并所有的个数)。
老师先怎样?又怎样?这种方法叫做先合并再均分。
你能用算式将先合并再均分的过程表示出来吗?
指名列式计算:5+9+8+6=28(个) 28÷4=7(个)。
这里的28指的是什么?为什么要除以4?
(3)通过移多补少、先合并再均分的方法我们知道了男生平均每人投中了7个,这个7就是男生投中个数的平均数,也就是我们今天要学的内容。(板书课题)。
(4)理解平均数的范围。
a、平均数是7,是不是代表所有男生实际套中的个数都是7?
b、男生中哪些人套中的个数比平均数多?哪些人套中的个数比平均数少?
c、提问:平均数会比这里最大的数大吗?会比最小的数小吗?
d、小结:平均数是通过把多的部分移给少的部分,使大家都相等而得到的数,所以平均数在最大数与最小数之间。
b:求女生平均每人套中的个数。
(1)请你估计一下,女生平均每人套中多少个?
(2)算一算 。
移多补少。
(课件演示)。
先求和再平均分:11+4+8+2+5=30(个) 30÷5=6(个)。
这里30指的是什么?为什么这里用总数除以的是5而不是4?
现在你知道谁套得更准一些吗?
小结:通过比较,我们发现在这次比赛中,男生套中圈的平均数是7,女生是6,所以男生套得准一些。
四、巩固深化,拓展应用。
1、出示想想做做1。
看到大家学得这么认真,我决定来个小测验,记住,既要动手又要动脑呀。
谁来说一说,你是怎样想的、怎样做的。(通过动手动脑再次验证、巩固求平均数的方法。要给学生充分的操作时间,发挥学生的聪明才智。)。
2、出示想想做做2。
求三条丝带的平均长度(请同学们在下面做)。
3、出示想想做做3。
老师口渴了,我们去逛逛水果店好不好?找到了一些信息。(课件出示统计图)。
1)哪一天卖出的苹果同样多?哪一天卖出的橘子同样多?
2)平均每天卖出苹果和橘子各多少箱?(指名上来做,其他的同学认真观察,思考他们做的对不对。)。
3)你还能提出什么问题?
4、出示想想做做4。
下面我们来看看篮球场上的运动员们都在干什么?他们给大家带来了什么样的问题呢?(课件出示题目)。
学生回答的过程中,说明为什么?
明确:平均身高并不能代表其中的每一个人的身高,当中有的比平均身高高,有的比平均身高矮。
五、全课总结。
这节课你有什么收获?
小学数学平均数的教案篇十
大家都听过小猫钓鱼的故事吧?今天老师也要讲一段小猫钓鱼的故事。
1、在一个天气晴朗的午后,大虎、二虎和小虎三位猫兄弟到河边钓鱼。两个小时以后他们每人数了数自己的鱼,大虎钓到7条鱼,二虎也钓到6条鱼,只有小虎才钓到2条鱼,你能用圆形代替鱼,摆出他们钓鱼的条数吗?(竖排或横排摆都可以)。
3、怎样才能让每个人的鱼同样多呢?用圆片摆一摆再在小组内说说你的方法。
方法二:大虎拿出两条鱼给小虎,二虎拿出1条鱼给小虎,这样每个人都有5条鱼,这种方法叫做移多补少。
5条是大虎钓鱼的条数吗?是二虎和三虎钓鱼的`条数吗?我们给他起个名字,5条就是大虎、二虎、小虎钓鱼的平均数,我们可以说他们平均每人钓了5条鱼。
1、大虎、二虎、小虎在回家的路上遇到花花姐妹,原来她们也去钓鱼了,花花姐妹可是钓鱼的高手。大虎:“你们平均每个人钓了多少条鱼?”
2、这是花花姐妹钓鱼的条数,你估计一下花花姐妹平均每人大约钓到多少条鱼?
3、你能算出花花姐妹到底平均每人钓了多少条鱼呢?
1、森领卡拉ok大赛就要开始了,许多小动物都赶着去观看比赛呢!
3、你知道谁是这次比赛的冠军吗,想一想、算一算,然后在小组里说说你的理由。
4、黄鹂是4位评委打出的分数,而百灵鸟是3位评委打出的分数,因为评委的人数不同,所以算总分是不公平的,这个时候只有算平均分才公平。在现实生活中你知道哪些比赛是取平均分来决定比赛成绩的。
看完卡拉ok比赛,三位猫兄弟觉得天气太热,就派大虎到小熊冷饮店买冰糕。咦!小熊遇到什么难题了?(小熊:星期四该进多少雪糕呢?)。
这是小熊冷饮店本周前三天卖出冰糕的情况,小熊星期四该进多少箱冰糕合适呢?
小学数学平均数的教案篇十一
1、 使学生理解平均数的意义,初步学会简单的平均数的方法。
2、 理解平均数在统计学上的意义。
3、 培养应用所学知识合理、灵活解决简单的实际问题。
教学重点
使学生理解平均数的意义,初步学会简单的平均数的方法。
教学难点
培养应用所学知识合理、灵活解决简单的实际问题。
教学过程:
1、他们在干什么?其中有一个红领巾小队收集的情况是这样的(给出数据7个 5个 4个 8个)。
2、看了这些数据,你获得了那些信息?你是怎么发现的?
3、他是怎么得到平均每人收集6个的呢?请同学们拿出学习材料,四人小组讨论一下。最后,推选一位同学介绍你们小组的学习成果。
小组汇报
(板书)还有其他方法吗?(以多补少)
3、那平均数是不是就是以前学过的每份数呢?为什么?(7+5+4+8)表示什么?
总数量(板书)4又表示什么呢?总份数,那你们知道平均数可以怎么求吗?
4、刚才同学们通过自己讨论,尝试,发现了平均数,学会了求平均数。知道这个红领巾小队平均每人收集6个。如果我们全班40名同学都去参加,一次可以收集多少个呢?你是怎么想的?这就是平均数的一个用处。我们还可以推想出全年级的收集的个数。
1、 我们已经学会了求平均数的方法,你们能解决有关平均数的问题吗?老师这里有一组来自会展中心博览会的消息。出示下列信息:
(1)美食节开幕后,第一天参观的有3万人;第二天参观的有4万人;第三天参观的有1万人。
(2)李刚参加打靶比赛,第一次中了7环,第二次中了9环,第三次与第四次共中了16环。
2、你能求什么问题?请大家做在练习本上。
反馈时强调:我们在求平均数时要找准总数量与总份数之间的对应关系。
3、平均数问题在我们生活中有很广泛的应用,我从统计部门了解一组平均数。出示:
(1)1959年南宁市女性平均寿命是52岁,1999年南宁市女性平均寿命是72岁。
我们同学家里的住房面积有多大?你们能算出你们家里平均每人的住房面积吗?
我们同学家里的人均住房面积比9平方米大的有多少?
100%的同学都比9平方米大。生活是很幸福的,我们一定要珍惜这样幸福的日子,好好学习。
生活当中还有那些地方也用到平均数呢?谁举例
1、平均数在生活中的用处确实非常广泛,我们学校的校医非常关心我们同学的身体健康,经常要了解我们同学的平均体重,平均身高等,(出示班级座位图):
2、老师了解了这么些数据:(出示)你们能求出这一小组同学的平均身高吗?自己试一试。
3、请一位同学来说一说。
4、这样同一个班里,抽取了两组数据,求出的平均身高是135厘米和130厘米,到底那一个更接近全班同学的平均身高呢?请认为是135厘米的同学说说理由。
小学数学平均数的教案篇十二
1、体会平均数可以反映一组数据的总体情况和区别不同组数据的总体情况这一统计学上的意义。
2、使学生认识统计与生活的联系,发展学生的实践能力。
3、巩固求平均数的计算方法。
一、复习。
2、学生动手解决,并交流解决的方法。
二、创设问题情景,引导探究。
(1)组织交流解决的方法。
(2)小结:象这种情况下,每组的人数不一样,不能直接拿总数来比较,而是要求出每组同学的平均数来比较。
2、出示情景图,告诉同学穿兰色衣服的是开心队,穿黄色衣服的是欢乐队,引导学生观察后猜一猜:你认为哪一队的身高高?并说说理由。
3、出示统计表,组织学生收集有关数据,根据统计表估一估,欢乐队和开心队的平均身高分别是多少?并说说估的方法。
5、组织交流计算的方法与结果。
6、组织讨论:从刚才的这件事,你有什么发现,并小结:平均数能较好地反映一组数据的总体情况。
三、拓展与应用。
说说生活中还有哪些事要通过求平均数来解决一些问题。
四、小结:通过本节课的学习,你有什么收获,有什么问题需要帮助的吗?
五、作业练习十一4、5。
教学反思:
小学数学平均数的教案篇十三
(一)知识与技能:
1、使学生理解“平均数”的含义,初步掌握求平均数的方法,使学生能根据简单的统计表求平均数,培养学生分析问题的能力和操作能力。
2、结合解决问题的过程初步认识平均数,体会平均数的必要性,并能根据统计图表解决一些简单的实际问题,在具体的情境中培养学生合作交流的能力,并能根据情况进行合理推测。
(二)过程与方法:
采用“自主合作,相互交流”的方法更好地理解平均数。在解决实际问题的过程中,进一步积累分析和处理数据的办法,发展统计观念。
(三)情感态度、价值观:
向学生渗透事物间联系的思想和统计思想,使学生感悟到数学知识内在联系的逻辑之美,提高学生审美意识。
明确“平均数”的含义;掌握求“平均数”的方法。
感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考,体会平均数的意义。
多媒体课件。
一、创设情境、激情导入。
师:刚才短片中,石正小学让你印象最深刻的是什么?
生1:美丽的校园。
生2:是一所有特色的足球学校。
生:(很兴奋地)想啊。
师:现在就请我们一起看看当时的比赛情况!
设计谈话导入,一方面拉近了师生间的关系激起了学生的认知兴趣,另一方面也为学生探究活动的开展指明了方向。
二、合作交流、建立概念。
1、初步感知。
生1:我不同意。万一他后面两次踢进的多了,那我不就危险啦!
生2:我会同意的。做老师的应该大度一点。
师:呵呵,还真和我想到一块儿去了。不过,小力后两次的成绩很有趣。
(师出示小力的后两次点球成绩:5个,5个。生会心地笑了)。
生:5。
师:为什么?
生:他每轮都踢进了5个,所有用5来表示他的成绩最合适。
师:说的有理!小林出场了,三次成绩各不相同。这一回,又该用哪个数来表示小林的成绩比较合适呢(3、4、5)。
能不能通过移一移的办法使到小林三次点球的成绩看起来一样多?
2、展示交流,理解求平均数的两种方法。
数学上,像这样从多的'里面移一些补给少的,使得每轮个数都一样多。这一过程就叫“移多补少”。移完后,小林每轮看起来都踢进了几个(4个)。
小刚也踢了三轮,成绩又怎样?(3、7、2)。
讨论交流:现在,又该用几来表示他的成绩同学们先独立思考,然后看看除了移动补少的方法外有没有更快、更好的方法来解决?你有什么发现?学有困难的同学也可以自学课本90页。
3、引出课题:平均数。
数学上,我们把通过移多补少或计算后得到的每一轮同样多的这个数,就叫做原来这几个数的平均数。(板书:平均数)。
这里的平均数4是表示小刚的最高水平?是最低水平?那表示的是?(板书:平均水平)。
4、理解平均数的意义。
正式比赛前,我主动提出踢四轮的想法。前三轮射门已经结束,怎么样,想不想看看(师呈现前三轮成绩:4个、6个、5个)。
猜猜看,三位同学看到我前三轮的成绩,可能会怎么想。
5、体会平均数的取值范围。
出示4次成绩(4、6、5、1)凭直觉,刘老师最后的平均数可能是几个。
感知最后的平均成绩应该比最大的数6小,比最小的数1大。
[生列式计算,并交流计算过程:4+6+5+1=16(个),16÷4=4(个)]。
6、体会平均数的特点——敏感性。
失败乃成功之母,你觉得老师输在哪里?
试想一下:如果老师最后一轮踢进9个,比赛结果又会如何呢。
看来,要使平均数发生变化,只需要改变其中的几个数。
其实呀,平均数很敏感,善于随着每一个数据的变化而变化,任何一个数据的“风吹草动”都会使它改变,这正是平均数的一个重要特点。
三、巧设练习,巩固新知。
你能计算这一周的平均最高气温是多少摄氏度吗?平均数是一个知冷暖的“人”。
2、为了使同学们对平均数有更深刻的了解,我还给大家带来了一幅图。(出示中国男子篮球队队员的合影)画面中的人,相信大家一定不陌生。
没错,这是以姚明为首的中国男子篮球队队员。老师从网上查到这么一则数据,中国男子篮球队队员的平均身高为200厘米。这是不是说,篮球队每个队员的身高都是200厘米平均数只反映一组数据的一般水平,并不代表其中的每一个数据。平均数是一个很善变的“人”。
3、好了,探讨完身高问题,我们再来看看池塘的平均水深。(师出示图)。
平均水深110cm,小明身高140cm下河游泳不会有危险!您认同吗?
生:不认同,最深的地方有200cm,下河游泳还是有危险的。
师:看来,平均数还是个危险的“人”。
你们知道在实际的一些比赛中是如何计算平均分的吗?刘老师带来了中央电视台青歌赛的视频请看!
去掉最高分和最低分的目的是什么?平均数是一个严谨的“人”。
5、看来,认识了平均数,对于我们解决生活中的问题还真有不少帮助呢。当然,如果不了解平均数,闹起笑话来,那也很麻烦。
20xx年5月14日综合外媒报道,世界卫生组织(who)13日发布了2015年版《世界卫生统计》报告。报告指出,从总体上看,全世界人口的寿命都较以往有所增加。中国在此次报告中的人口平均寿命为:男性74岁,女性77岁。
一位73岁的老伯伯看了这份资料后,不但不高兴,反而还有点难过。这又是为什么呢。
假如我就是那位73岁的老伯伯,你们打算怎么劝劝我。
平均数是一个会开玩笑的“人”。
四、畅谈收获、回顾总结。
平均数是一个怎样的“人”?您懂他了吗?
五、回应课本、课后延伸。
今天我们学习的是课本第90页的内容,请大家翻开书看看内容,有没有不明白的地方?发现重点可以用笔划起来。
小学数学平均数的教案篇十四
在本节课内容学习之前,学生已经掌握了简单条形统计图的绘制及单个条形统计图内数据的分析、比较。可以通过观察统计图准确地比较出数量的多少及大小。例题中的情景也是学生生活中常见或类似的事情,学生分析起来也没有陌生感。
小学数学平均数的教案篇十五
1、体会平均数可以反映一组数据的总体情况和区别不同组数据的总体情况这一统计学上的意义。
2、使学生认识统计与生活的联系,发展学生的实践能力。
3、巩固求平均数的计算方法。
一、情景导入。
2、学生动手解决,并交流解决的方法。
(1)组织交流解决的方法。
(2)小结:象这种情况下,每组的人数不一样,不能直接拿总数来比较,而是要求出每组同学的平均数来比较。板书课题。
二、探究体验。
1、出示情景图,告诉同学穿兰色衣服的是开心队,穿黄色衣服的是欢乐队。
2、引导学生观察后猜一猜:你认为哪一队的身高高?并说说理由。
3、出示统计表,组织学生收集有关数据,根据统计表估一估,欢乐队和开心队的平均身高分别是多少?并说说估的方法。
4、同桌合作,一人求欢乐队的平均身高,另一个求开心队平均身高,然后比较哪一队高?
5、组织交流计算的方法与结果。
6、组织讨论:从刚才的这件事,你有什么发现?
7、小结:平均数能较好地反映一组数据的总体情况。
三、实践应用。
1、说说生活中还有哪些事要通过求平均数来解决问题。
2、生独立完成练习十一第4、5题。
四、全课总结。
1、通过本节课的学习,你有什么收获,有什么问题需要帮助的吗?
2、师总结。
小学数学平均数的教案篇十六
学习内容:
练习十一1―3题,教材42页例1。
学习目标:
1、掌握平均数的意义和求平均数的方法。
2、知道移多补少求平均数的方法。
3、会根据数据列出算式求平均数。
学习重点:
学习难点:
正确计算平均数。
学习准备:
课件,小黑板,统计表。
学习流程:
一、导入。
拿8枝铅笔,指4名同学,要平均分怎样分?
每人2枝,每人手中一样多,叫平均分。2是平均数。
二、学习交流。
1、出示例1、小红、小兰、小亮、小明收集矿泉水瓶统计图。
(1)从图中,你知道了什么信息?
(2)他们四人怎样分才能一样多?
(3)平均分后是多少个?
2、课件展示统计图的变化过程。
(1)指名展示。
(2)这种方法叫什么?
点拨:移多补少。
3、要求平均数,还可以怎样想?
(1)要把4人收集的矿泉水瓶平均分成4份,必须先求出什么?
14+12+11+15=。
(2)平均分成4份,怎么办?
52÷4=。
4、归纳。
要求平均数,可以先求出()数,再平均分几份。
5、算一算你们小组的平均身高,交流展示求平均数的方法和过程。
6、算出各小组的平均体重,说说你们是怎么算的?
三、交流展示。
展示自己的学习成果,说清求平均数的方法和过程。
四、达标测评。
1、练习十一第2题。
(1)什么是最高温度?什么是最低温度。
(2)你知道了哪些信息?
(3)填写统计表:本周温度记录。
(4)计算出一周平均最高温度和最低温度。
(5)说说你是怎么算的?
2、测量小组跳远成绩,求平均数。
五、总结。
通过这节课的学习活动,你有什么收获?
小学数学平均数的教案篇十七
(二)掌握简单的求平均数的方法.。
(三)培养学生分析、概括的能力.。
口答:
1.小华4天读完60页书,平均每天读几页?
2.五一班有42人,平均分成6个组,每个组有多少人?
3.小明期中测验语文和数学两科成绩共得180分,平均每科成绩多少分?
1.新课引入.。
在日常生活、工农业生产中,经常用到平均数的概念,如平均速度、平均成绩、平均产量等.怎样理解平均数的概念,如何求出几个数的平均数呢?这就是我们今天要研究的课题.(板书:平均数)。
2.出示例2.。
3.分析,教师演示,学生观察、思考.。
教师拿出盛水的4个同样的杯子,标明刻度.。
师:这4个杯子水面高度相等吗?
生:这4个杯子水面高度不相等.。
师:求4个杯子水面的`平均高度是什么意思?
生:平均高度就是4个杯子里的水面一样高.。
师:怎样才能找出4杯水的平均高度呢?
教师演示,把水多的杯子倒一些到水少的杯子,使4杯水同样多,得到平均高度.。
师:这平均高度是每杯水的实际高度吗?它是怎样得到的呢?
通过演示使学生明确,它不是每杯水的实际高度,而是把4个杯子里的水平均分的结果.。
师:如果我们不倒水,能算出这个平均高度吗?
教师板书:(6+3+5+2)÷4。
=16÷4。
=4(厘米)。
答:4个杯子水面平均高度是4厘米.。
说说括号里求什么?为什么除以4?得到的结果表示什么.。
要强调4厘米是平均数.。
4.做29页上的“做一做”中的第1,2,3题.。
订正时让学生讲出思考过程.。
5.总结规律.。
师:从刚才做的几道题中,你能说一说求平均数的一般方法吗?
6.出示例3.学生默读例3,理解题意,明确条件和问题.。
师:如何比较哪一组平均身高高一些?怎样计算出高多少?
师:如果不求平均身高,直接用各组所有人数的和进行比较行不行?为什么?
使学生明确,由于两组人数和每人身高不一样,不能直接比较,只能用平均身高进行比较.。
1.选择正确列式,并说明理由.。
a.(53+58+30+27)÷3。
b.(53+58+30+27)÷4。
小组讨论后得出:
平均每个年级捐款多少元?
(750+1210)÷2。
(750+1210)÷(3+4)。
练习七第1,2题.。
小学数学平均数的教案篇十八
2、知道移多补少求平均数的方法。
3、会根据数据列出算式求平均数。
课件,小黑板,统计表。
一、导入。
拿8枝铅笔,指4名同学,要平均分怎样分?
每人2枝,每人手中一样多,叫平均分。2是平均数。
二、学习交流。
1、出示例1、小红、小兰、小亮、小明收集矿泉水瓶统计图。
(1)从图中,你知道了什么信息?
(2)他们四人怎样分才能一样多?
(3)平均分后是多少个?
2、课件展示统计图的变化过程。
(1)指名展示。
(2)这种方法叫什么?
点拨:移多补少。
3、要求平均数,还可以怎样想?
(1)要把4人收集的矿泉水瓶平均分成4份,必须先求出什么?
14+12+11+15=。
(2)平均分成4份,怎么办?
524=。
4、归纳。
要求平均数,可以先求出()数,再平均分几份。
5、算一算你们小组的平均身高,交流展示求平均数的方法和过程。
6、算出各小组的平均体重,说说你们是怎么算的?
三、交流展示。
展示自己的学习成果,说清求平均数的方法和过程。
四、达标测评。
1、练习十一第2题。
(1)什么是最高温度?什么是最低温度。
(2)你知道了哪些信息?
(3)填写统计表:本周温度记录。
(4)计算出一周平均最高温度和最低温度。
(5)说说你是怎么算的?
2、测量小组跳远成绩,求平均数。
五、总结。
通过这节课的学习活动,你有什么收获?
【本文地址:http://www.pourbars.com/zuowen/18087063.html】