数学教案倒数的认识(专业15篇)

格式:DOC 上传日期:2023-12-08 12:24:09
数学教案倒数的认识(专业15篇)
时间:2023-12-08 12:24:09     小编:灵魂曲

教案可以帮助教师更好地组织教学内容和活动,提高教学效率。教师应该合理安排教学过程,保证教学环节的有机衔接和流畅进行。以下是一些教案的实例,供大家借鉴和参考。

数学教案倒数的认识篇一

教学目标:

(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。

(2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。

(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。

教学重点:倒数的意义与求法。

教学难点:1、0的倒数。

教学用具:媒体展示台。

教学过程:

一、竞赛激趣,揭示课题。

1、谈话:

师:同学们,你们喜欢比赛吗?现在我们进行小组间比赛。

(说明比赛事项)比赛内容:写两个数的乘法算式,要求:乘积等于1;比赛时间:30秒;比赛规则:每人每次写一式,写完后传给小组内其它同学。比赛结果评定:比较数量与正确率(重复计一次)。(写在白纸上)。

2、学生开始紧张激烈比赛,教师组织评议,评选出优胜小组。

3、说明:其实我们的祖先早就已经研究过这方面的问题,这就是今天要学习的倒数。(板书课题)这堂课我们就来学习倒数的知识。

二、引导质疑,自主探究。

1、引导质疑。

师:看着“倒数”这个数学新名词,你的脑子里产生哪些问题?

学生可能提出:什么是倒数?

倒数是指一个数吗?

倒数应该怎样表述?

怎样求倒数?

倒数是不是一定是分数?

倒数有什么用?

是不是每个数都有倒数?..........

2、自主探究。

(1)明确学习方法。

师:今天我们采用自学加小组讨论的方法学习倒数的有关知识。同学们围绕刚才我们提出的这些问题先自学课本,然后小组讨论,解决问题。

(2)学生自学讨论,教师指导。

(3)组织全班交流:

a你现在知道什么是倒数了吗?强调:“互为”两个词的意思。

b怎样求一个数的倒数?

3、质疑:在自学的过程中你们还有什么疑惑的地方吗?

三、巩固提高,拓展外延。

师:现在老师要来检查一下同学今天自学的效率怎么样?对自己有信心吗?

1、找朋友游戏(课前给七个同学发一张数字卡片)。

出示卡片:(六位同学举着卡片依次站在黑板前)7/911/41/5086/599。

规则:如果下面的同学拿到的数是以上这些数字的倒数就到相应的同学前面排队。

2、说出下列各数的倒数,说说你是怎么想的?

4/1116/9357/84/1510。

(组织讨论:1的倒数是1,0没有倒数。你能用已有的知识来给大家解释吗?)。

3、课本练习题:第4题。

4、数学诊所:“我来当名医”

数学教案倒数的认识篇二

使学生感知倒数的意义,掌握求倒数的方法,学会对倒数的正确表述。

培养学生的观察能力、数学语言表达能力、发现规律的能力等。

求一个数的倒数的方法。

理解倒数的意义,掌握求一个数的倒数的方法。

:教学光盘。

:自学课本p50:

什么是倒数?倒数的概念中哪几个字比较重要?说一说你是怎么理解的。

观察互为倒数的两个数,说说他们分子、分母的位置发生了什么变化?

0有倒数吗?为什么?

出示例7。

学生在自备本上完成,指名核对。

教师板书:×=1×=1×=1。

你能模仿着再举几个例子吗?

学生回答,教师板书。

观察板书,揭示倒数意义:乘积是1的两个数互为倒数。(板书)。

和互为倒数,也可以说的倒数是,的倒数是。

让学生模仿着说另外两个算式,谁和谁互为倒数?谁是谁的倒数?

你能分别找出和的倒数吗?

学生同桌讨论找法,指名交流。

观察上面互为倒数的'两个数,学生讨论怎样求一个分数的倒数?

指名交流方法:求一个分数的倒数时,只要把它的分子、分母调换位置就可以了。

合作练习:同桌两位同学一位说出一个分数,请另一位同学说这个分数的倒数,并交换练习。

电脑出示:5的倒数是多少?1的倒数呢?

学生跟自己的同桌说一说,再指名交流。

方法一:求5的倒数时,可以先把5看作,所以它的倒数是;

方法二:想5×()=1,再得出结果。

数学教案倒数的认识篇三

使学生理解倒数的意义,掌握求倒数的方法。

提高学生观察、比较、、概括的能力。

感悟“变通”的数学思想。

:倒数的意义与求法。

:理解“互为”的意义,明确倒数只是表示两个数间的关系。

(生:上下两部分调换了位置,变成了另一个字)。

师:对了,上下两部分倒过来了,变成了另一个字,这个现象很有趣很奇妙吧!

再出示“吴”,让学生得出“吞”。

引导质疑。

生:什么是倒数?

生:倒数是指一个数吗?

生:倒数应该怎样表述?

生:怎样求倒数?

生:倒数是不是一定是分数?

生:倒数有什么用?

生:是不是每个数都有倒数?

游戏比赛,理解倒数的意义。

师:同学们想探究的知识还真不少,在研究这些问题之前,我们先来一项比赛,好不好?

好,请大家准备好课堂练习本,请你写出乘积是1的乘法算式,同样的算式不能重复,而且还要书写规范,写得字迹潦草的不算数。时间1分钟。

准备好了吗?开始……。

师:时间到,停!举手的方式比一比谁写得最多。让他把写的算式念出来,和大家共同分享。

(生读,师有选择的板书在黑板上。)。

师:这么短的时间内就能写出这么多乘积是1的两个数,不错。

师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?

生:无数个。

师:为什么能写这么多呢?你们有什么窍门吗?

生:因为我们所写的这两个数的乘积都是1。将其中一个分数的'分子分母颠倒就能写出另一个数。

揭示倒数的意义。

师:请同学们观察这些算式,小组内互相说一说它们有什么共同的特点?

生可能回答:乘积都是1;两个因数的分子分母颠倒了位置。

师归纳总结:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来竟有如此重大的发现,平凡之中见伟大,像符合这种规律的两个数叫做什么数呢?请同学们阅读课本例1,并找出倒数的意义。

师板书:乘积是1的两个数互为倒数。

你认为哪个词非常重要?你是如何理解“互为”的?生回答。

(小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)。

强调:(1)乘积必须是1。

只能是两个数。

倒数是表示两个数的关系,它不是一个数。

小组探究求一个倒数的方法。

师:同学们知道了什么是倒数,你能求出一个数的倒数?

请大家打开课本,自学例题2。可以同桌之间相互交流一下自学的感想和遇到的困惑。

小结:如何求一个数(0除外)的倒数,把这个数的分子和分母调换位置。如果这个数是带分数或者是小数,先把这个数化成分数再求倒数。

内化提高。

反思,发展能力。

接下来请同学们欣赏一幅对联的上联:“客上天然居,居然天上客”,这幅对联出自乾隆皇帝之手。清代的北京有个酒楼叫“天然居”,一次,乾隆到那儿吃饭,触景生情,以酒楼为题写了对联,上联就是这句:客上天然居,居然天上客。

后来民间有人对出了绝妙的下联:“僧游云隐寺,寺隐云游僧”。你看对得多好。这幅对联无论顺读、倒读皆能成联,贴切而不混乱,从而产生了引人注目的效果。

数学教案倒数的认识篇四

教学目标:

1、通过观察、比较、概括、抽象,从本质上理解倒数的意义,并能正确地求一个数的倒数。

2、培养学生的数学思维。

教学重点:

理解倒数的意义,求一个数的倒数。

教学难点:

从本质上理解倒数的意义。

教学过程:

一、呈现数据,先计算,再观察发现。

1、出示:3/8×8/37/15×15/75×1/50。

2、计算后,这些数据你发现有什么规律?(学生先独立思考,然后组内交流)。

二、交流思辨,抽象概念。

1、汇报。乘积都是1。

2、你能根据上面的观察写出乘积是1的另一个数吗?

说说你是怎样写得,有什么窍门?

你还能写出像这样乘积是1的两个数吗?不过要写得与众不同!(鼓励学生写出整数、小数)。

3、抽象概念,乘积是1的两个数,互为倒数。可以说谁和谁是互为倒数,也可以说谁是谁的倒数。

4、让学生说说上面的数(用两种说法)。

5、是互为倒数的它们的积是1,这两个数有特点吗?仔细观察这些数。

学生讨论:分数的分子分母调了一下位置;

师:那么5×1/50。2×5乘积也是1哟!怎么?把整数和小数也化成分数。

6、沟通:分子分母倒一下跟乘积是1有联系吗?

7、现在你对倒数有了怎样的认识?

三、求一个数的倒数。

1、找一个数的倒数。

5/11的倒数是(),()的倒数是4/7,()和15是互为倒数。

你是怎样找一个数的倒数的?说说你的方法。(从倒数的意义和现象)。

2、会找了吗?你能找到下列数的倒数吗?

3/54/967/2学生独立完成,然后交流。

(1)先说说你找到的这个数的倒数的,你是怎样找的?

(2)在找这些数的倒数中,你有什么想说的?

3、现在你对倒数有了什么新的认识?(0没有倒数,其他的数都有,1的倒数就是1。)。

四、巩固深化。

1、做一做,写出下面各数的倒数,并说说你是怎样想的。

2、同桌互说倒数,你说一个数,让同桌说他的倒数。汇报几组。

3、判断题。书上第25页的第3题。

补充:(3)2/5×5/2=1,那么2/5是倒数。

(4)任何一个数都有倒数。

(5)如果一个数是a(0除外),那么这个数的倒数就是1÷a。重点讨论:一个数的倒数一定比这个数小。

那么哪些数的倒数比原数小、大或相等。

4、完成作业:作业本第12页的`1、2、3题。

五、课堂小结。今天这节课我们认识了倒数,你对倒数有什么认识?

《倒数》教学的想法和反思。

结合自己的个人研究重点:

1、关注数学概念的内涵和外延的关系。

2、关注学生学习数学过程中的思维活动。

先给自己提几个问题:

1、倒数的内涵是什么?分子分母颠倒位置的外延与内涵的关系?如何处理两者的关系?

倒数的内涵是乘积是1的两个数。分子分母颠倒位置是倒数的外在表现,正因为分子分母颠倒了位置,那么他们的乘积就是1了,或者说因为乘积是1了,所以两个数成互为倒数就会产生这样现象。

内涵决定着外延,外延是内涵的一种表现,两者关系密切。如果让倒数的外延更丰富,那么对内涵的理解也就更充分。其实乘积是1和分子分母颠倒位置是有因果联系。

2、概念教学,一般是建立表象,然后逐步地去非本质的特征,抽象概括,最后变式巩固。但是由于倒数这一知识的本质是乘积是1,而学生往往会忽视这一本质,注重其分子分母颠倒位置的现象。因此要改变这样的教学过程。

于是,决定先直接对本质进行提练抽象(因为比较简单),然后在进一步观察现象、比较沟通(为什么叫倒数,是什么现象决定两个数的乘积是1)逐步地丰富,不断地理解本质。

数学教案倒数的认识篇五

教学目标:

1、知道倒数的意义,会求一个数的倒数。

2、经历倒数的意义这一概念的形式过程。

3、利用教师的情感特征,激发学生的学习兴趣,让学生体会成功的快乐。

教学重点:掌握倒数的意义,会求一个数的倒数。

教学难点:0为什么没有倒数。

教学过程:

一、口算引入,揭示课题。

师:出示口算题。

(评析:上课伊始,让学生进行简单的口算并进行分类,揭示课题,直奔重点,有利于让学生在一节课的最佳时域知晓今天研究的是乘积是1的两个数的关系特点。教师只有确立了以学生为本的概念,充分了解学生的学习起点和学习疑难症结,把握学生跳动的脉博,才能有针对性地下功夫。)。

二、自学课本,初步理解倒数的意义。

(评析:教师恰到好处地设置疑问,有利于学生层层深入地思考,同时,老师有时假装糊涂,把聪明留给学生,老师忘了,谁来帮忙,短短的话语满足了学生求知探新的成功欲,这时促进学生有效学习的基本策略。)。

三、举例验证,深入探究倒数的意义。

(评析:对于概念的教学,我们老师大多比较轻视,认为让学生读一、二遍记住就达到目的了。其实,这是表面现象,根本不能促使学生数学思维品质的提高。所以,让学生关注基础知识的本身,这是我们数学教师不能丢的根本,也是实现新课程提出的三维目标的关键,重要的是让学生在掌握概念的过程中,学会数学思考,体会解决问题所带来的成功体验。

四、仔细观察,探究求倒数的方法。

五、综合练习:

(总评:数学的本质是一种沟通与合作,教师创设了与学生围绕倒数。

这个知识目标进行民主、平等、和谐、生动的对话交流,在交流中,包含了知识信息和情感态度,行为规范等多方面的有机组合,促进了学生多方面素养的提高。本课教学活动让学生经历了学习数学知识的全过程,着力培养了学生的数学思维。)。

数学教案倒数的认识篇六

通过学习,使学生知道什么叫做倒数,倒数表示的是两个数之间的关系,它是不能孤立存在的;掌握求倒数的方法;通过学习,使学生知道“0”没有倒数,“1”的倒数还是“1”。

学生根据自己的理解,发现求倒数的方法,知道不仅可以用乘法求一个数的倒数,还可以用调换分子和分母位置的方法求一个数的倒数。

在知识获取过程中,培养学生观察、归纳、推理和概括的能力。提高学生学好数学的信心。

理解倒数的意义,学会求倒数的方法。

熟练正确的求小数、带分数的倒数,发现倒数的一些特征。

多媒体课件。

上课之前,老师来考考同学们的语文学得如何。“吞”这个字读什么,如果把上下部分颠倒后是什么字?(“吞”——吴),“士”这个字读什么,如果把上下部分颠倒后是什么字?(“士”——干)。中国汉字有不少字有这样的关系,在数学中也存在这种关系。

如:(板书:3/8)如果把这个分数的分子和分母的位置调换,是哪个分数?(8/3)。

师:谁还能说出这样的数?(课件出示)。

象这样把分数的分子和分母上下颠倒之后就成另一个数,你能给这种特性给这些上下颠倒的数起个名字吗?(倒数)今天我们就一起来研究倒数(板书:倒数的认识,并让学生读一读。)。

理解倒数的意义。

掌握求一个数的倒数的方法,能熟练准确地写出一个数的倒数。

探究讨论,理解倒数的意义。

(课件出示教材例1的四个算式。)。

开展小组活动:算一算,找一找,这组算式有什么特点?

小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的。)。

生:我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

出示倒数的意义:乘积是1的两个数互为倒数。(学生齐读三次)。

深化理解。

乘积是1的两个数存在着怎样的倒数关系呢?

举例:3/8×8/3=1,那么我们就说8/3是3/8的倒数,反过来(引导学生说)3/8是8/3的倒数,也就是说3/8和8/3互为倒数。(谁还想举例说说。)。

互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)。

例如:(2/5的倒数是5/2,5/2的倒数是2/5,……不能说5/2是倒数,要说它是谁的倒数。)。

想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。

又因为0与任何数相乘都不等于1,所以0没有倒数。)。

运用概念。

讨论求一个数的倒数的方法。

所以3/5的倒数是5/3,7/2的倒数是2/7。(能不能写成3/5=5/3,为什么?)。

小结:求一个数(0除外)的倒数,只要把这个数的`分子、分母调换位置。)。

怎样求小数和带分数的倒数呢?(课件演示,学生观察。)。

师强调:带分数先化成假分再把分子和分母调换位置;小数要先把它化成分数再把分子和分母调换位置。

怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)。

填一填。(出示课件)。

乘积是()的()个数()倒数。

a和b互为倒数,那a的倒数是(),b的倒数是()。

只有当假分数为()时,它与它的倒数相等;而()是没有倒数。

一个真分数的倒数一定是()。

判断题。(演示课件)。

5/3是倒数。()。

因为3/4×4/3=,所以4/3是倒数。()。

真分数的倒数大于1,假分数的倒数小于1。()。

因为1/4+3/4=1,所以1/4和/4互为倒数。()。

说一说。(课本的第3题)。

今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有什么的问题吗?板书设计:

乘积是1的两个数互为倒数。0没有倒数,1的倒数是它本身。例2:写出其中2/5、7/2两个分数的倒数。

2/5的分子分母调换位置---5/27/2的分子分母调换位置---2/76的倒数是1/6求带分数的倒数先把带分数化成与假分数,再把分子和分母调换位置。

求小数的倒数的先把小数化成分数,再把分子和分母调换位置。

数学教案倒数的认识篇七

本课的内容是第十一册第三单元中的“倒数的认识”,它是在分数乘法计算的基础上进行教学的,是进一步学习分数除法的一个重要概念。教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。

1、使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。

2、采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。

3、提高学生学习数学的兴趣,发展学生质疑的习惯。

知道倒数的意义和会求一个数的倒数。

1、0的倒数的求法。

课件。

一、导入。

师:上课前啊,老师发现许多同学是结伴来到多媒体教室的,比如说~~~~~~~你们俩是不是好朋友啊?(请点到名字的两名学生分别表述一下两人之间的关系)。

师:好朋友是双向的,可以说成“xxxx为好朋友(也可以说xxxx好朋友)。

教师找一对儿同桌,让他们也说说相互间的关系。(xxxx为同桌,一起来上数学课)。

二、揭示倒数的意义。

师:那今天咱们来学点儿什么呢?

1、(课件出示例7)。

请学生动手找找哪两个数的乘积是1?

学生回答教师演示。

2、师:你知道吗?像这样的乘积是1的两个数,我们把它称之为互为倒数。(课件展示:乘积是1的两个数互为倒数。)板书课题:倒数的认识。

教师请学生提炼一下,然后板书:乘积是1、两个数、互为倒数。

3、举例子说清两数之间的关系。比如3/8和8/3的乘积是1,我们就说3/8和8/3互为倒数。(师板书3/8和8/3互为倒数)。

师:还可以怎么说呢?像刚才我们表述朋友、同桌关系一样。

引导学生说:3/8的倒数是8/3;8/3的倒数是3/8。

师:我们能不能说3/8是倒数?“互为”是什么意思呢?你是怎样理解这两个字?

生1:“互为”是指两个数的关系。

生2:“互为”说明这两个数的关系是相互依存的。

师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

比如5/4和4/5的积是1,我们就说……7/10和10/7的乘积是1,我们就说……(生齐说)。

4、请你再举个例子和你的同桌说一说。

(学生活动)。

(学生写并汇报师板书。)。

三、探索求一个倒数的方法。

1、师:我们来进行一个小小的比赛。请你写出更多的乘积是1的任意两个数,看谁写得多。四人一小组,怎么分工呢?(请学生说建议)准备好了吗?一分钟倒计时开始!

师:时间到,停!谁愿意把你写的念出来,和大家共同分享?

(生读,师有选择的板书在黑板上。)。

生:无数个。

(学生畅所欲言,但是一定不规范。)。

教师引导学生观察每组互为倒数的两个数分子和分母的位置发生了什么变化?规范说法。

4、师生一起小结:也就是说求一个数的倒数,只要把分子分母调换位置。(板书)。

5、学生自主探索5和1的倒数。

学生先独立思考,在小组交流。

师根据学生的回答及时板书。

6、0的倒数呢?

启发思考,允许讨论。

因为0和任何数相乘都得0,不可能得1。

四、归纳小结。

师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

生1:求一个分数的倒数,只要把分子分母调换位置。

生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。

生3:1的倒数是1,0没有倒数。

(生齐读求一个数倒数的方法。)。

五、巩固练习。

1、完成练习十一第一题。

2、完成练一练。

(1)学生在书上完成,教师巡视,请同学板演。注意学生的书写格式是否正确。

(2)发现一学生书写有误,与该生交流。

(3)用展台展示该生的错误。

师:这样写可以吗?(7/12=12/7)。

师:为什么?规范书写,要写清谁是谁的倒数,或谁的倒数是谁。

3、完成练习十一第二题。

4、完成练习十一第三题。

5、完成练习十一第四题。

师:请你仔细观察每组数,你发现了什么?

同桌可以先互相说一说。

应该有的汇报是:

生1:我从第一组中发现真分数的倒数都是假分数(大于1)。

生2:大于1的假分数的倒数都是真分数(小于1)。

生3:几分之一的倒数都是整数。

生4:非0整数的倒数都是几分之一。…………。

五、全课总结。

今天我们学习了什么?你有什么收获?

认识倒数这一小节,就像是一篇文章里的过渡段一样,既承上又启下,是学习下一章分数除法的必要基础,请同学们课后认真练习,掌握倒数的意义和求一个数的倒数的基本方法,为下一章的学习做好准备。

数学教案倒数的认识篇八

教学内容教科书第28~29页例1、“做一做”及相关内容。

1.使学生通过观察、分类、讨论等活动认识倒数,理解倒数的意义。

2.使学生体验找一个数的倒数的方法,会求一个数的倒数。

3.在探索交流的活动中,培养学生观察、归纳、推理和概括的能力,发展数学思维。

教学重点理解倒数的意义;求一个数的倒数。

教学难点理解“互为倒数”的含义。

教学准备教学课件、写算式的卡片。

教学过程具体内容修订。

基本训练,强化巩固。

(3分钟)1.出示几道分数乘法式题:(包括教材中的四道题与另外补充的四道结果不为1的算式)。

2.学生独立完成上面几组题,小组内检查并订正。

创设情境,激趣导入。

(2分钟)请个别学生说说分数乘法的计算方法,突出分子与分母的约分。

提示目标,明确重点。

(1分钟)通过本节课的学习,我们要认识倒数,理解倒数的意义。会求一个数的倒数。

学生自学,教师巡视。

(6分钟)1.观察这些算式,如果将它们分成两类,怎样分?

2.通过观察发现算式的特点。

展示成果,体验成功。

(4分钟)让学生说说乘积为1的算式有什么特点。

学生讨论,教师点拨。

(8分钟)1.学生讨论并说出自己的发现:两个数的乘积都是1。相乘的两个数的分子和分母正好颠倒了位置。

2.认识倒数。出示倒数的定义:乘积是1的两个数互为倒数。理解倒数。让学生说一说如何理解“乘积是1的两个数互为倒数”。引导学生对定义中关键要素的理解:乘积是1;两个数;互为倒数。

3.引导学生思考:互为倒数的两个数有什么特点?

(1)出示例题,让学生说说哪两个数互为倒数。

(2)在汇报时说说怎样找一个数的倒数,在学生汇报的同时板书。

数学教案倒数的认识篇九

《倒数的认识》是人教版小学数学六年级上册第二单元中的内容,是学生学习了分数乘法的意义及应用题之后的内容,为学习分数除法的意义及计算法则打基础,分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。

学生初看到“倒数”这一概念时,从字面上看也许对它有了一定的了解,所以通过学生自学,自主探索倒数有什么意义,如何求一个数(0除外)倒数的方法,使学生真正理解倒数的含义,在此基础上培养学生观察能力、比较能力与分析概括的能力。

1、知道倒数的意义,会求一个数的倒数。

2、经历倒数的意义这一概念的形式过程。

3、培养学生观察、归纳、推理和概括的能力。

4、利用教师的情感特征,激发学生的学习兴趣,让学生体会成功的快乐。

理解倒数的意义,会求一个数的倒数。

教学环节

教师活动

预设学生行为

设计意图

倒,你对这个字怎么理解?

那要是在这个字的后面加个数,就变成。。。倒数,你对这个词又是怎么理解?

出示1/5×5,3/8×8/3,1/12×12,15/7×7/15这几组算式,开展小组活动,算一算,找一找,这几组算式有什么特点? 同学们发现了每组算式两个分数的分子与分母正好颠倒了位置, 并且它们的乘积是1.

具有这种关系的数叫做互为倒数。谁来说一说什么样的两个数叫做互为倒数?出示倒数的意义:乘积是1的两个数叫做互为倒数。

学生说,就是把它倒过来,还做了个手势颠倒位置。

学生有可能会说,每组中都是一个是真分数一个是假分数。

学生有可能只计算出结果。没发现这几组算式它们的分子,分母的位置是颠倒的。

设疑,让学生产生求知的欲望。

从两个数的关系入手研究,抓住了数学的本质,使学生体会到数学的研究是一脉相连的。

让学生通过观察﹑计算发现这几组算式的乘积都是1.并且它们的分子分母的位置刚好颠倒。

让学生说说对倒数意义的理解,在这个概念中你认为哪个词比较关键?

学生有可能会说1/5是倒数。5/1也是倒数。并让学生知道这种说法是不正确的。

乘积是1的两个数叫做互为倒数。只能说1/5和5/1互为倒数或1/5的倒数是5/1。但也有可能会说得很完整。

让学生重点去理解“互为”是什么意思,加深对倒数的概念的理解。

3/5的倒数是( ),

8的倒数是( ),

0.5的倒数是( )

1. 3/5交换分子分母的位置,得5/3,所以3/5的倒数是5/3。

2. 8可以写成8/1,所以8的倒数是1/8。

3. 0.5也可以写成1/2,所以0.5的倒数是2.

让学生归纳总结出找倒数的方法。

0和1 有没有倒数,如果有,它的倒数是几,如果没有,为什么?同学们试着研究。

1的倒数是1 。

0没有倒数。因为0不能做为分数的分母。

加深对0没有倒数的理解;

加深对倒数知识的理解;

学生的思维逐步深刻,较好地实现了对于概念的建构,而且渗透了认真,严谨的学习态度。

1.同桌互说倒数;

2.判断。

(1) 5/9是倒数,9/5也是倒数。( )

(2)0的倒数还是0.( )

(3)一个数的倒数一定比这个数小。( )。

3.开放性训练。3/5 ×( )=( ) ×4/7=( ) ×( )

学生会很活跃。

加深对0没有倒数的理解;

加深对倒数知识的理解;

开放题让学生的思维得到更深层次的拓展。

这节课你学会了什么?

与教师一起总结

培养学生的表达能力以及加深对倒数知识的理解。

板书设计

倒数的认识

倒数的意义:乘积是1的两个数叫做互为倒数。

求倒数的方法:1.分数——分子分母调换位置。

2.整数或小数——先化成分数,再调换分子分母的位置。

1的倒数是1, 0没有倒数。

数学教案倒数的认识篇十

1、知道倒数的意义,会求一个数的倒数。

2、经历倒数的意义这一概念的形式过程。

3、利用教师的情感特征,激发学生的学习兴趣,让学生体会成功的快乐。

掌握倒数的意义,会求一个数的倒数。

0为什么没有倒数。

一、口算引入,揭示课题。

师:出示口算题。

(评析:上课伊始,让学生进行简单的口算并进行分类,揭示课题,直奔重点,有利于让学生在一节课的最佳时域知晓今天研究的是乘积是1的两个数的关系特点。教师只有确立了以学生为本的概念,充分了解学生的学习起点和学习疑难症结,把握学生跳动的脉博,才能有针对性地下功夫。)。

二、自学课本,初步理解倒数的意义。

(评析:教师恰到好处地设置疑问,有利于学生层层深入地思考,同时,老师有时假装糊涂,把聪明留给学生,老师忘了,谁来帮忙,短短的话语满足了学生求知探新的成功欲,这时促进学生有效学习的基本策略。)。

三、举例验证,深入探究倒数的意义。

(评析:对于概念的教学,我们老师大多比较轻视,认为让学生读一、二遍记住就达到目的了。其实,这是表面现象,根本不能促使学生数学思维品质的提高。所以,让学生关注基础知识的本身,这是我们数学教师不能丢的根本,也是实现新课程提出的三维目标的关键,重要的是让学生在掌握概念的过程中,学会数学思考,体会解决问题所带来的成功体验。

四、仔细观察,探究求倒数的方法。

五、综合练习:

(总评:数学的本质是一种沟通与合作,教师创设了与学生围绕倒数。

这个知识目标进行民主、平等、和谐、生动的对话交流,在交流中,包含了知识信息和情感态度,行为规范等多方面的有机组合,促进了学生多方面素养的提高。本课教学活动让学生经历了学习数学知识的全过程,着力培养了学生的数学思维。)。

数学教案倒数的认识篇十一

苏教版义务教育教科书《数学》六年级上册第36页例7、练一练,第39页练习六第16~21题。

认识倒数的概念,掌握求倒数的方法,能熟练得求一个数的倒数。

掌握求倒数的方法,能熟练得求一个数的倒数。

一、导入新课。

问:每个算式中两个数相乘的积有什么共同的地方?你还能举几个这样的例子吗?

二、新授。

教学例题。

(1)出示例7。

下面的几个分数中,哪两个数的乘积是1?

(2)学生回答。

(3)引出概念。

乘积是1的两个数互为倒数。例如和互为倒数。可以说是的倒数,是的倒数。

(4)学生举例来说。进行及时的评议。

(5)追问:怎样的两个数互为倒数?为什么要说“互为”倒数?

归纳方法。

小组讨论:

全班交流。

求一个数的倒数时,只要把这个数的分子和分母调换位置即可。

问:5的倒数是几?1的倒数是几?

学生回答,并说原因。

追问:0有倒数吗?为什么?

指出:因为0和任何数相乘的积都不会是1,所以0没有倒数。

除0以外,在求一个数的倒数时,只要把这个数的分子和分母调换位置即可。

教学“练一练”

学生回答。

提醒学生正确地书写格式。

三、巩固练习。

1、做练习六第17题。

学生填书上后,集体订正,并说说是怎样想的。

2、做练习六第18题。

指名口头回答,选择两题让学生说说思考的过程。

3、做练习六第19题。

重点引导学生讨论每一组数的规律。

4、做练习六第21题。

5、做思考题。

联系倒数的意义想一想,要使三个分数乘积是1,必须符合什么条件?

四、全课总结。

这节课学习了什么内容?什么是倒数?怎样求一个数的倒数?

五、作业。

练习六第20题。

(略)。

数学教案倒数的认识篇十二

理解倒数的含义,能进行准确的叙述,会求一个数的倒数。

2教材分析。

这部分内容是新知识,是为后面学习分数除法扫清障碍。由于分数除法的基本方法为“除以一个不等于0的数,等于乘这个数的倒数”,因此认识倒数的概念以及熟练地求出一个非0数的倒数,是学习分数除法的基础。

3.学情分析。

倒数的认识是在学习了分数乘法的基础上学习的,主要为后面学习分数除法做基础。

目标。

通过观察、分类、讨论等活动认识倒数,能说出倒数的意义。

2.体验找倒数的方法,会求一个数的倒数。

3.在探索交流的活动中,经历观察、归纳、推理和概括的学习过程。

评价任务。

学生口算、思考互为倒数的特征。

2.会求一个数的倒数。

3.通过交流、游戏活动探讨找倒数的方法。教学过程。

一、创设情境,引入新课。

1、创设活动“造反”游戏。

师:同学们,在学习新课之前,先让我们来玩一个游戏,游戏的名字是“造反”游戏。

反说:

刷牙—牙刷球台—台球唱歌—歌唱反写:

杏—呆吴—吞干—士。

师:在我们的语文上有许多这样有趣的文字,那么在我们的数学王国里,也有这样有趣的数学,大家一起来试一试。

像这样有趣的现象,在数学上叫什么呢?这就是我们这一节要学习的。

板书“倒数的认识”看到这个题目,你有什么问题吗?生1:生2:

师:带着这些问题,我们来深入探究一下“倒数”我们先来算一算。

谁能照上面的例子,再说一说?通过上面的算式,你有什么发现?生1:生2:

师:大家都是活眼金睛啊!那么大家的这些发现之间有没有什么必然的联系呢?

下面请大家打开课本,自学一下下面的知识。

请学习完的同学坐端正。回答:什么是倒数?

怎样叙述它们之间的关系?生1:生2:生3:

板书:乘积是1的两个数互为倒数。

师:你认为在这句话中,哪些字或词语比较重要呢?那么,根据上面的两组算式,谁来叙述一下它们之间的关系。生1:生2:

板书:求一个数的倒数,只要把分子和分母调换位置就可以了。评价要点:知道交换位置。

怎么办?

整数都可以看成分母是1的假分数。

练习2:整数、假分数的倒数填空。

既然大家都这么棒,那么我们一起来智慧屋里去闯一闯吧!第一关:填空(积是1)。

第二关:我来当裁判(以书信的形式出现)第三关:修改日记。

希望大家也能把本节课学习的知识,用日记的形式写下来。

其实,在我们的学习中,各学科之间都是有一定的联系的,下面大家来看一看下面几道题。

最后,我们来猜谜语。

数学教案倒数的认识篇十三

1.通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。

2.使学生经历倒数意义的概括过程,提高观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。

3.通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。

:理解倒数的意义,学会求倒数的方法。

:发现倒数的一些特征。

课件

教学过程

特色设计

通过观察,使学生发现一个分数的倒数就是把它的分子与分母的位置颠倒,进而使学生体会到“倒数”这一概念中“倒”的含义,很自然的得出求一个分数的倒数的方法。

一、猜字游戏引入新课

找找下面文字的构成规律

呆———杏 土———干吞———吴

按照上面的规律填数

——( ) ——( ) ——( )

能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数

二、新知探究

(一)探究讨论,理解倒数的意义。

1.课件出示算式。

开展小组活动:算一算,找一找,这组算式有什么特点?

小组汇报交流。

我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

2.出示倒数的意义:乘积是1的两个数互为倒数。

3.你是怎样理解互为倒数的呢? 能举例吗?

(二)深化理解。

1.乘积是1的两个数存在着怎样的倒数关系呢?

2.互为倒数的两个数有什么特点?

3.想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?

因为1×1=1,根据“乘积是1的两个数互为倒数”,所 以1的倒数是1。

又因为0与任何数相乘都不等于1,所以0没有倒数。)

(三)运用概念。

1.讨论求一个数的倒数的方法。

出示例2:写出其中3/5 、7/2 两个分数的倒数。

学生试做讨论后,教师将过程 。

小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)

2.怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)

三、巩固练习

(一)完成教材第28页的“做一做”

(二)完成教材第29页练习六的第1-5题。

四、课堂小结

今天我们学习了有关倒数的哪些新知识? 板书设计

数学教案倒数的认识篇十四

1、通过观察、比较、概括、抽象,从本质上理解倒数的意义,并能正确地求一个数的倒数。

2、培养学生的数学思维。

:理解倒数的意义,求一个数的倒数。

:,从本质上理解倒数的意义。

一、呈现数据,先计算,再观察发现。

1、出示:3/8×8/37/15×15/75×1/50。25×4。

2、计算后,这些数据你发现有什么规律?(学生先独立思考,然后组内交流)。

二、交流思辨,抽象概念。

1、汇报。乘积都是1。

2、你能根据上面的观察写出乘积是1的另一个数吗?

3/4×()=1()×9/7=1。

说说你是怎样写得,有什么窍门?

你还能写出像这样乘积是1的两个数吗?不过要写得与众不同!(鼓励学生写出整数、小数)。

你是怎样想的?如0。5、1。7。

3、抽象概念,乘积是1的两个数,互为倒数。可以说谁和谁是互为倒数,也可以说谁是谁的倒数。

4、让学生说说上面的数(用两种说法)。

5、是互为倒数的它们的积是1,这两个数有特点吗?仔细观察这些数。

学生讨论:分数的分子分母调了一下位置;

师:那么5×1/50。2×5乘积也是1哟!怎么?把整数和小数也化成分数。

6、沟通:分子分母倒一下跟乘积是1有联系吗?

7、现在你对倒数有了怎样的认识?

三、求一个数的倒数。

1、找一个数的倒数。

5/11的倒数是(),()的倒数是4/7,()和15是互为倒数。

你是怎样找一个数的倒数的?说说你的方法。(从倒数的意义和现象)。

2、会找了吗?你能找到下列数的倒数吗?

3/54/967/211。251。20学生独立完成,然后交流。

(1)先说说你找到的这个数的倒数的,你是怎样找的?

(2)在找这些数的倒数中,你有什么想说的?

3、现在你对倒数有了什么新的认识?(0没有倒数,其他的数都有,1的倒数就是1。)。

四、巩固深化。

1、做一做,写出下面各数的倒数,并说说你是怎样想的。

2、同桌互说倒数,你说一个数,让同桌说他的倒数。汇报几组。

3、判断题。书上第25页的第3题。

补充:(3)2/5×5/2=1,那么2/5是倒数。

(4)任何一个数都有倒数。

(5)如果一个数是a(0除外),那么这个数的倒数就是1÷a。重点讨论:一个数的倒数一定比这个数小。

那么哪些数的倒数比原数小、大或相等。

4、完成作业:作业本第12页的1、2、3题。

五、课堂小结。今天这节课我们认识了倒数,你对倒数有什么认识?

结合自己的个人研究重点:1、关注数学概念的内涵和外延的关系。2、关注学生学习数学过程中的思维活动。

先给自己提几个问题?

1、倒数的内涵是什么?分子分母颠倒位置的外延与内涵的关系?如何处理两者的关系?

倒数的内涵是乘积是1的两个数。分子分母颠倒位置是倒数的外在表现,正因为分子分母颠倒了位置,那么他们的乘积就是1了,或者说因为乘积是1了,所以两个数成互为倒数就会产生这样现象。

内涵决定着外延,外延是内涵的一种表现,两者关系密切。如果让倒数的外延更丰富,那么对内涵的理解也就更充分。其实乘积是1和分子分母颠倒位置是有因果联系。

2、概念教学,一般是建立表象,然后逐步地去非本质的特征,抽象概括,最后变式巩固。但是由于倒数这一知识的本质是乘积是1,而学生往往会忽视这一本质,注重其分子分母颠倒位置的现象。因此要改变这样的教学过程。

于是,决定先直接对本质进行提练抽象(因为比较简单),然后在进一步观察现象、比较沟通(为什么叫倒数,是什么现象决定两个数的乘积是1)逐步地丰富,不断地理解本质。

数学教案倒数的认识篇十五

教学目标:

1、理解倒数的意义,掌握求一个数倒数的方法,能熟练地写出一个数的倒数。

2、引导同学自主合作交流学习,结合教学实际培养同学的笼统概括能力,激发同学学习的兴趣。

教学重点:理解倒数的意义,掌握求倒数的方法。

教学难点 :熟练写出一个数的倒数。

教具准备:多媒体课件。

教学过程:

一、情境导入。

1、口算。

5/12×2/5 = 15/7 ×7/5 = 11/8 ×8/13 =

5/21×1/5 = 3/16 ×7/3 = 8/21 ×7/8 =

先独立考虑,再指名口算订正。

2、比一比,看谁算得又对又快:

2/3×3/2 = 2×1/2 = 11/8 ×8/11 =

1/10×10= 7/9×9/7 = 1/7×7=

6/5×5/6 = 1/5×5 = 22/35×35/22 =

同学先独立口算,再口答订正。观察这些算式,说说自身有什么发现。

二、合作探索。

1、小组合作交流:

(1)和同桌说一说你的发现。

(2)请你自身举出3个像上面这样的乘法式子。

小组代表说说有什么发现。指名说说自身举出的例子。

教师:像这样的乘积是1的两个数我们说它们的关系是互为倒数。

教师:关于倒数的知识,你已经有哪些认识?(同学说说自身的已有认识)

教师:书上又是怎样讲解倒数的呢?我们一起来读一读。

阅读教材,进一步理解。

教师:现在谁来说一说自身是怎样理解倒数的?

同学口答,教师小结:假如两个数的乘积是1,那么我们称其中一个数是另一个数的倒数,并称这两个数互为倒数。

出示:乘积是1的两个数互为倒数。读一读,强调概念中的关键词:“乘积”、“互为”。

2、强化概念理解。

你认为下面这两种说法是否正确?

(1) 2/3 是倒数。

(2) 得数是1的两个数互为倒数。

同学先独立考虑,再口答,说明理由。

【本文地址:http://www.pourbars.com/zuowen/18125505.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map