初中数学平方差公式教案(实用22篇)

格式:DOC 上传日期:2023-12-11 04:23:26
初中数学平方差公式教案(实用22篇)
时间:2023-12-11 04:23:26     小编:文轩

"教案是教师在教学过程中为明确教学目标、组织学习活动、设计教学内容和评价学生学习效果而提前准备的一种教学计划,它具有指导性、系统性和操作性的特点。"教案的设计要符合学生的学习特点和兴趣,激发学生的学习兴趣。这是一份经过精心编写的教案,希望能给大家提供一些思路和借鉴。

初中数学平方差公式教案篇一

平方差公式是在学习多项式乘法等知识的基础上,自然过渡到具有特殊形式的多项式的乘法,体现教材从一般到特殊的意图。教材为学生在教学活动中获得数学的思想方法、能力、素质提供了良好的契机。对它的学习和研究,不仅得到了特殊的多项式乘法的简便算法,而且为以后的因式分解,分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础,同时也为完全平方公式的学习提供了方法,因此,平方差公式在教材中有承上启下的作用,是初中阶段一个重要的公式。

学生是在学习积的乘方和多项式乘多项式后学习平方差公式的,但在进行积的乘方的运算时,底数是数与几个字母的积时往往把括号漏掉,在进行多项式乘法运算时常常会确定错某些次符号及漏项等问题。学生学习平方差公式的困难在于对公式的结构特征以及公式中字母的广泛的理解,当公式中a、b是式时,要把它括号在平方。

难点:理解掌握平方差公式的结构特点以及灵活运用平方差公式解决实际问题.。

初中数学平方差公式教案篇二

2、注意培养学生分析、综合和抽象、概括以及运算能力。

教学重点和难点。

难点:用公式的结构特征判断题目能否使用公式。

教学过程设计。

我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子。

让学生动脑、动笔进行探讨,并发表自己的见解。教师根据学生的回答,引导学生进一步思考:

(当乘式是两个数之和以及这两个数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于乘式中这两个数的平方差)。

继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算。以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式。

在此基础上,让学生用语言叙述公式。

例1计算(1+2x)(1-2x)。

解:(1+2x)(1-2x)。

=12-(2x)2。

=1-4x2.

教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么。

例2计算(b2+2a3)(2a3-b2)。

解:(b2+2a3)(2a3-b2)。

=(2a3+b2)(2a3-b2)。

=(2a3)2-(b2)2。

=4a6-b4.

教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算。

课堂练习。

(l)(x+a)(x-a);(2)(m+n)(m-n);

(3)(a+3b)(a-3b);(4)(1-5y)(l+5y)。

例3计算(-4a-1)(-4a+1)。

让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演。

解法1:(-4a-1)(-4a+1)。

=[-(4a+l)][-(4a-l)]。

=(4a+1)(4a-l)。

=(4a)2-l2。

=16a2-1.

解法2:(-4a-l)(-4a+l)。

=(-4a)2-l。

=16a2-1.

根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果。解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果。采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷。因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案。

课堂练习。

1、口答下列各题:

(l)(-a+b)(a+b);(2)(a-b)(b+a);

(3)(-a-b)(-a+b);(4)(a-b)(-a-b)。

2、计算下列各题:

(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);

教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法。

2、运用公式要注意什么?

(1)要符合公式特征才能运用平方差公式;

(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形。

(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);

(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);

初中数学平方差公式教案篇三

1、左边为两数的和乘以两数的差,即在左边是两个二项式的积,在这两个二项式中有一项(a)完全相同,另一项(b与-b)互为相反数。右边为这两个数的平方差即完全相同的项的平方减去符号相反的平方。

2、公式中的a,b不仅可以表示具体的数字,还可以是单项式,多项式等代数式。

提醒学生利用平方公式计算,首先观察是否符合公式的特点,这两个数分别是什么,其次要区别相同的项和相反的项,表示两数平方差时要加括号。

初中数学平方差公式教案篇四

进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异.

教学重点和难点:公式的应用及推广.

1.(1)用较简单的代数式表示下图纸片的面积.

(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积.

讲评要点:

沿hd、gd裁开均可,但一定要让学生在裁开之前知道。

hd=bc=gd=fe=a-b,

这样裁开后才能重新拼成一个矩形.希望推出公式:

a2-b2=(a+b)(a-b)。

2.(1)叙述平方差公式的数学表达式及文字表达式;。

(2)试比较公式的两种表达式在应用上的差异.

说明:平方差公式的数学表达式在使用上有三个优点.(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁.但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的`问题,否则容易对公式产生各种主观上的误解.

依照公式的文字表达式可写出下面两个正确的式子:

经对比,可以让人们体会到公式的文字表达式抽象、准确、概括.因而也就“欠”明确(如结果不知是谁与谁的平方差).故在使用平方差公式时,要全面理解公式的实质,灵活运用公式的两种表达式,比如用文字公式判断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又灵活.

3.判断正误:

(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)。

(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)。

(1)102×98;(2)(y+2)(y-2)(y2+4).

解:(1)102×98(2)(y+2)(y-2)(y2+4)。

=(100+2)(100-2)=(y2-4)(y2+4)。

=9996;。

(1)103×97;(2)(x+3)(x-3)(x2+9);。

(3)59.8×60.2;(4)(x-)(x2+)(x+).

3.请每位同学自编两道能运用平方差公式计算的题目.

例2填空:

思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?

(某两数平方差的二项式可逆用平方差公式写成两数和与这两数的差的积)。

练习。

填空:

1.x2-25=()();。

2.4m2-49=(2m-7)();。

3.a4-m4=(a2+m2)()=(a2+m2)()();。

例3计算:

(1)(a+b-3)(a+b+3);(2)(m2+n-7)(m2-n-7).

解:(1)(a+b-3)(a+b+3)(2)(m2+n-7)(m2-n-7)。

=[(a+b)-3][(a+b)+3]=[(m2-7)+n][(m2-7)-n]。

=(a+b)2-9=a2+2ab+b2-9.=(m2-7)2-n2。

=m4-14m2+49-n2.

1.什么是平方差公式?一般两个二项式相乘的积应是几项式?

3.怎样判断一个多项式的乘法问题是否可以用平方差公式?

(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);。

(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).

(1)69×71;(2)53×47;(3)503×497;(4)40×39.

初中数学平方差公式教案篇五

本课的学习目的主要是熟练掌握整式的运算,并且这些知识是以后学习分式、根式运算以及函数等知识的基础,同时也是学习物理、化学等学科及其他科学技术不可或缺的数学工具。而本节是整式乘法中乘法公式的首要内容,学生只有熟练掌握了包括平方差公式在内的乘法公式及它的推导过程,才能实现本节乃至本章作为数学工具的重要作用。因此,在教学安排上,我选择从学生熟悉的求多边形面积入手,遵循从感性认识上升为理性思维的认知规律,得出抽象的。概念,并在多项式乘法的基础上,再次推导公式,使原本枯燥的数学概念具有一定的实际意义和说理性;之后安排了一系列的例题和练习题,把新知运用到实战中去,解决简单的实际问题,这样既调动了学生学习的主动性,又锻炼了思维,整个过程由浅入深,在对所得结论不断观察、讨论、分析中,加深对概念的理解,增强学生应用知识解决问题的能力,从而达到较好的授课效果。

数学是一门抽象的学科,但数学是来源于实际生活的。因此,数学教育的目的是将数学运用到实际生活中去,让学生深切感受到数学是有价值的科学,来源于生活,是其他科学的基础。本节公式中字母的含义对学生来讲很抽象,是本节的难点,也是学生运用公式解决实际问题的最大障碍,通过巩固练习,让学生逐步体会,为今后学习其他乘法公式做好准备。乘法公式的逆用就是因式分解的重要方法,因此,在本节补充练习中,已经开始渗透这部分知识,为后面学习因式分解做好铺垫。

但是,我在教本章内容时却始终感到困惑。本以为这一章很简单,由于教材安排存在一定问题,如将同底数幂乘法、幂的乘方、积的乘方、单项式乘以单项式、单项式乘以多项式、多项式乘以多项式这么多的内容安排在一起,造成学生没掌握好、消化好,知识间相互混淆,设置了障碍。所以很多学生出现下列错误(3x?2)(3x?2)?3x象我们想象中掌握的那么好。

本章教材编者在此安排不太合理,没有考虑到学生的认知规律,不利于学生很好掌握,所以,我感觉以后上这章的时候不能按照教材课时安排走。否则还会出现今天的问题。

初中数学平方差公式教案篇六

教学目标:

一、知识与技能。

1、参与探索平方差公式的过程,发展学生的推理能力2、会运用公式进行简单的乘法运算。

二、过程与方法。

1、经历探索过程,学会归纳推导出某种特种特定类型乘法并用简单的。

数学式子表达出,即给出公式。

2、在探索过程的教学中,培养学生观察、归纳的能力,发展学生的符。

号感和语言描述能力。

三、情感与态度。

以探索、归纳公式和简单运用公式这一数学情景,加深学生的体验,增加学习数学和使用的信心。培养学生由观察-发现-归纳-验证-使用这一数学方法的逐步形成.

教学重点:公式的简单运用。

教学难点:公式的推导。

教学方法:学生探索归纳与教师讲授结合。

课前准备:投影仪、幻灯片。

初中数学平方差公式教案篇七

1.掌握平方差公式的推导和运用,以及对平方差公式的几何背景的理解;(重点)。

2.掌握平方差公式的应用.(重点)。

一、情境导入。

1.教师引导学生回忆多项式与多项式相乘的法则.

学生积极举手回答.

多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.

2.教师肯定学生的表现,并讲解一种特殊形式的多项式与多项式相乘——平方差公式.

二、合作探究。

探究点:平方差公式。

【类型一】直接运用平方差公式进行计算。

初中数学平方差公式教案篇八

这节课学习的主要内容是运用平方差公式进行因式分解,学习时如果直接就给同学们讲把前面在整式的乘法中学习到的平方差公式反过来运用就形成了因式分解的平方差公式,然后就是反复的运用、反复的操练的话,学生学起来就会觉得没有味道,对数学有一种厌烦感,所以我就想到了运用逆向思维的方法来学习这节课的内容,而且非常不利于学生理解整式乘法和因式分解之间的互逆的关系。

在新课引入的过程中,首先让学生回忆了前面在整式的乘法中遇到的乘法公式,比如平方差公式、完全平方公式。然后,巧妙的'将刚才用平方差公式计算得出的三个多项式作为因式分解的题目请学生尝试一下。可以说,对新问题的引入,是采取了由浅入深的方法,使学生对新知识不产生任何的畏惧感。

在这节课中就明显出现了这个问题,许多学生容易产生的问题都集中在一起让学生解决,反而将学生搞得不清不楚。所以,通过这节展示课也让我学到了很多,比如,化解难点时要考虑到学生的思维障碍,不可操之过急,否则适得其反。

初中数学平方差公式教案篇九

重点、难点根据公式的特征及问题的特征选择适当的公式计算.

教学过程。

一、议一议。

1.边长为(a+b)的正方形面积是多少?

2.边长分别为a、b拍的两个正方形面积和是多少?

3.你能比较(1)(2)的结果吗?说明你的理由.师生共同讨论:学生回答(1)(a+b)(2)a+b(3)因为(a+b)=a+2ab+b,所以(a+b)-(a+b)=a+2ab+b-a-b=2ab,即(1)中的正方形面积比(2)中的正方形面积大.

二、做一做。

例1.利用完全平方式计算1.102。

三、试一试。

计算:。

1.(a+b+c)。

2.(a+b)师生共同分析:对于1要把多项式完全平方转化为二项式的完全平方,要使用加法结合律,为使用完全平方公式创造条件.如(a+b+c)=[a+(b+c)]对于(2)可化为(a+b)=(a+b)(a+b).学生动笔:在练习本上解答,并与同伴交流你的做法.学生叙述。

四、随堂练习。

p381。

五、小结。

本节课进一步学习了完全平方公式,在应用此公式运算时注意以下几点.1.使用完全平方公式首先要熟记公式和公式的'特征,不能出现(ab)=ab的错误,或(ab)=aab+b(漏掉2倍)等错误.2.要能根据公式的特征及题目的特征灵活选择适当的公式计算.3.用加法结合律,可为使用公式创造了条件.利用了这种方法,可以把多项式的完全平方转化为二项式的完全平方.

六、作业。

课本习题1.14p381、2、3.

七、教后反思。

1.9整式的除法第一课时单项式除以单项式教学目标1.经历探索单项式除法的法则过程,了解单项式除法的意义.

2.理解单项式除法法则,会进行单项式除以单项式运算.重点、难点重点:单项式除以单项式的运算.难点:单项式除以单项式法则的理解.

将本文的word文档下载到电脑,方便收藏和打印。

初中数学平方差公式教案篇十

二、学习重点。

三、学习难点。

灵活运用平方差和完全平方公式进行整式的简便运算。

四、学习设计。

(一)预习准备。

(2)思考:如何更简单迅捷地进行各种乘法公式的运算?[。

(1)(2)(3)(4)。

2.计算:

(1)(2)。

(二)学习过程。

由反之。

反之。

1、填空:

(1)(2)(3)。

(4)(5)。

(6)。

(7)若,则k=。

例1计算:1.2.

现在我们从几何角度去解释完全平方公式:

从图(1)中可以看出大正方形的边长是a+b,

它是由两个小正方形和两个矩形组成,所以。

大正方形的面积等于这四个图形的面积之和.

则s==。

即:

如图(2)中,大正方形的边长是a,它的面积是;矩形dcge与矩形bchf是全等图形,长都是,宽都是,所以它们的面积都是;正方形hcgm的边长是b,其面积就是;正方形afme的边长是,所以它的面积是.从图中可以看出正方形aemf的面积等于正方形abcd的面积减去两个矩形dcge和bchf的面积再加上正方形hcgm的面积.也就是:(a-b)2=.这也正好符合完全平方公式.

例2.计算:。

(1)(2)。

变式训练:

(1)(2)。

(3)(4)(x+5)2c(x-2)(x-3)。

(5)(x-2)(x+2)-(x+1)(x-3)(6)(2x-y)2-4(x-y)(x+2y)。

拓展:1、(1)已知,则=。

(2)已知,求________,________。

(3)不论为任意有理数,的值总是。

a.负数b.零c.正数d.不小于2。

2、(1)已知,求和的值。

(2)已知,求的值。

(3).已知,求的值。

回顾小结。

1.完全平方公式的使用:在做题过程中一定要注意符号问题和正确认识a、b表示的意义,它们可以是数、也可以是单项式,还可以是多项式,所以要记得添括号。

2.解题技巧:在解题之前应注意观察思考,选择不同的方法会有不同的效果,要学会优化选择。

初中数学平方差公式教案篇十一

本节教材是初中数学七年级下册第一章第八节的内容,是初中数学的重要内容之一。一方面,这是在学习了整式的加、减、乘、除及平方差公式的基础上,对多项式乘法的进一步深入和拓展;另一方面,又为学习《因式分解》《配方法》等知识奠定了基础,是进一步研究《一元二次方程》《二次函数》的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。

2、学情分析。

从心理特征来说,初中阶段的学生逻辑思维能力有待培养,从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

从认知状况来说,学生在此之前已经学习了多项式乘法法则、平方差公式的探索过程,对“完全平方公式”已经有了初步的认识,为顺利完成本节课的教学任务打下了基础,但对于“完全平方公式”的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

3、教学重难点。

根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:

对公式(a+b)2=a2+2ab+b2的理解,包括它的推导过程、结构特点、语言表述(学生自己的语言)、几何解释。

难点确定为:从广泛意义上理解完全平方公式的符号含义,培养学生有条理的思考和语言表达能力。

初中数学平方差公式教案篇十二

重点、难点根据公式的特征及问题的特征选择适当的公式计算。

1.边长为(a+b)的正方形面积是多少?

2.边长分别为a、b拍的两个正方形面积和是多少?

3.你能比较(1)(2)的结果吗?说明你的理由。师生共同讨论:学生回答(1)(a+b)(2)a+b(3)因为(a+b)=a+2ab+b,所以(a+b)-(a+b)=a+2ab+b-a-b=2ab,即(1)中的正方形面积比(2)中的正方形面积大。

例1.利用完全平方式计算1.102。

计算:

1.(a+b+c)。

2.(a+b)师生共同分析:对于1要把多项式完全平方转化为二项式的完全平方,要使用加法结合律,为使用完全平方公式创造条件。如(a+b+c)=[a+(b+c)]对于(2)可化为(a+b)=(a+b)(a+b).学生动笔:在练习本上解答,并与同伴交流你的做法。学生叙述。

p381。

本节课进一步学习了完全平方公式,在应用此公式运算时注意以下几点。1.使用完全平方公式首先要熟记公式和公式的特征,不能出现(ab)=ab的错误,或(ab)=aab+b(漏掉2倍)等错误。2.要能根据公式的特征及题目的特征灵活选择适当的公式计算。3.用加法结合律,可为使用公式创造了条件。利用了这种方法,可以把多项式的完全平方转化为二项式的完全平方。

课本习题1.14p381、2、3.

1.9整式的除法第一课时单项式除以单项式教学目标1.经历探索单项式除法的法则过程,了解单项式除法的意义。

2.理解单项式除法法则,会进行单项式除以单项式运算。重点、难点重点:单项式除以单项式的运算。难点:单项式除以单项式法则的理解。

初中数学平方差公式教案篇十三

第二步:将左端的二次三项式分解为两个一次因式的积;。

第三步:方程左边两个因式分别为0,得到两个一次方程,它们的解就是原方程的解.

解法二:配方法。

x^2-4x+3=x^2-4x+4-1=(x-2)^2-1=0。

即(x-2)^2=1。

于是x=3或x=1。

一般来说,一元二次方程往往可以用这样2种方法解答,特别是对配方来说,它可能更实用,普遍。

比如x^2+x-1=0。

我们可能分解不出它的因式来,不过我们可以采用配方法。

x^2+x-1=(x+1/2)^2-5/4=0。

于是得到x=(根号5-1)/2或x=(-根号5-1)/2。

小练习。

1.分解因式:

(4)(x+1)2-16=________。

2.方程(2x+1)(x-5)=0的解是_________。

3.方程2x(x-2)=3(x-2)的解是___________。

5.已知y=x2+x-6,当x=________时,y的值为0;当x=________时,y的值等于24.6.方程x2+2ax-b2+a2=0的解为__________.

初中数学平方差公式教案篇十四

探索单项式除以单项式法则(出示投影1)计算下列各题,并说说你的理由1.xyx,(8mn)(2mn),(abc)(3ab).师生共同分析:此题是做除法运算,可以从两方面思考:根据除法是乘法的逆运算,将除法问题转化为乘法问题去解决,即()x=xy,由单项式乘以单项式法则可得(xy)x=xy,因此,xyx=xy.另外,根据同底数幂的除法法则,由约分也可得=xy.学生动笔:写出(2)(3)题的结果。教师板书:xyx=xy,(8mn)(2mn)=4n,(abc)(3ab)=abc师:以上运算是单项式除以单项式的运算,你能说说如何进行单项式除以单项式的运算?学生活动:小组讨论,教师引导学生从系数、同底数幂、只在被除式含有的字母三方面思考,讨论充分后,由一名同学叙述,其余同学补充纠正。出示单项式除法法则(投影显示)单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

p401学生活动:让四名同学到黑板板演,其余同学在练习本上计算,同伴可交流,互相订正。教师巡回检查,对存在问题及时更正。待四名板演同学完成后,师生共同订正。

本节课主要学习了单项式除以单项式的运算。在运用法则计算时应注意以下几点:

1.系数相除与同底数幂相除的区别;

2.符号问题;

初中数学平方差公式教案篇十五

本节课的目标是会推导公式(a+b)(a-b)=a2-b2,并能简单计算。上一节学了多项式×多项式的运算法则,因此在回顾旧知识利用法则来计算(a+2)(a-2),(2x-y)(2x+y)的同时直接引入本节课的内容,问学生上面的两个多项式乘多项式中各个式有什么特征?结果又有什么特征,学生的回答跟预测的差不多看是能看出来但要把他描述出来有点困难,因此指导并和学生一起用语言描述:二项式乘二项式中其中一项相同,另一项互为相反数的积等于(自己不回答学生回答)两项的平方差,这时就问对吗?学生很快就能反映过来,更能加深印象结果应该等于相同项的平方—互为相反数项的平方。继续探究同类型的计算:(x+1)(x-1);(m+2)(m-2);(2x+1)(2x-1),都能找到此规律,让学生归纳出结论(用式子),因为从特殊到一般的归纳学生比较擅长,得出结论是:(a+b)(a-b)=a2-b2,因为结果是平方差所以把公式的名称叫为平方差公式。接着那学生尝试着用文字归纳,为了归纳的方便把连接两项的符号看成运算符号,该怎么描述此规律:两项的和乘两项的差(提示学生这两项跟前面的两项是一样的)等于这两项的平方差,接着几个二项式乘二项式的练习让学生板演,目的是看看学生的易错点并一起归纳怎样做不容易出错及应注意那些事项:利用平方公式计算,首先观察是否符合公式的特点,用不同的符号把找到相同的项和相反的项表示出来,并把它写成公式的形式,先不要急着答案出来。让学生比较用法则计算跟用公式计算的区别,平方差公式(a-b)(a+b)=a2-b2它是特殊的整式的乘法,运用这一公式可以迅速而简捷地计算出符合公式的特征的多项式乘法的结果,但运用公式计算一定要看是否符合公式的特征,严格要求不能乱套公式。

为了让学生理解公式的几何背景,通过拼图计算,既可以直观说明公式的几何特征,又可以体现数形结合。

初中数学平方差公式教案篇十六

本节课属于人教版八年级数学上册第十五章《整式乘除与因式分解》第二节中的内容,前一节已学习习近平方差公式,这一课主要研究完全平方公式的特征及应用。教学关键是引导学生正确理解完全平方公式的推导过程,几何背景,并能准确应用完全平方公式解决相关问题。教学后我进行反思如下:本课的知识要点是经历探索完全平方公式的过程,了解公式的几何背景,会应公式进行简单的计算,教学已基本达到了预期目标,能突出重点,兼顾难点。本节课上学生体会了数形结合及转化的数学思想,并知道猜想的结论必须要加以验证;授课思维流畅,知识发生发展过渡自然,学生容易得到一些结论但在老师的.引导下又使问题的探讨得以不断深入,学生思考积极、气氛活跃,教学效果较好。采用以小组自主探究的学习方式,同时各小组展开激烈的比赛。整节课都在紧张而愉快的气氛中进行。学生非常活跃。人人都能积极参与。先从代数式的几何意义出发,激发学生的图形观,利用拼图的方法,使学生在动手的过程中发现规律,并通过小组合作,探究归纳公式,然后强调数值的计算,使学生掌握公式的计算技巧。从而突出以学生为主体的探索性学习原则。让学生自编符合完全平方公式和平方差公式结构的计算题,从而有效地将两类公式区分开,深刻认识公式的结构特征,并大大激发了学生的学习积极性。

同时课后感觉应该引导学生用文字概括公式的内容,从而培养学生抽象的数学思维能力和语言表达能力。对需要帮助的学生进行针对性的个别指导较少。对于学生计算中存在的问题应让学生自己纠错,教师不应全权代劳。如利用两数和的公式计算(a+b)2环节,两位学生分别讲述自己的想法之后,教师应该让全体学生根据其方法进行计算,自主验证,即使有些学生写不出来,也会因为经过思考而印象深刻,如果为了节省时间教师自己代劳,那样就不能够充分体现学生的主体作用,而且效果也较前者差些。

在今后的教学中应注意从以下几个方面改进:1、在教学中要讲法则、公式的应用,也要讲公式的推导,使学生在理解公式,法则道理的基础上进行记忆,比如:我们要借助面积图形对完全平方公式做直观说明。

初中数学平方差公式教案篇十七

本节课选自人教版八年级上册第15章第二节内容,它是在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例。对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简等内容奠定了基础,同时也为学习完全平方公式的学习提供了方法。因此,中公教育专家认为,平方差公式作为初中阶段的第一个公式,在教学中具有很重要地位。

二、说学情。

学生已熟练掌握了幂的运算和整式乘法,但在进行多项式乘法运算时常常会出现符号错误及漏项等问题;另外,数学公式中字母具有高度概括性、广泛应用性,鉴于八年级学生的认知水平,理解上有困难。因此,我们把教学难点定为:理解平方差公式的。结构特征,灵活应用平方差公式。

三、说教学目标。

基于对教材的理解和分析,我在教学中以学生为主体,以学生的学为根本,我把本课的目标定位为:

知识与技能目标:了解平方差公式产生的背景,理解平方差公式的意义,掌握平方差公式的结构特征,并能灵活运用平方差公式解决问题。

过程与方法目标:经历平方差公式产生的探究过程,培养观察、猜想、归纳、概括、推理的能力和符号感,感受利用转化、数形结合等数学思想方法解决实际问题的策略。

情感态度与价值观目标:通过探究平方差公式,形成学习数学公式的一般套路,体会成功的喜悦,培养团结协助的意识,增强学生学数学、用数学的兴趣。

教学重点:理解平方差公式的意义,掌握平方差公式的结构特征。

教学难点:运用平方差公式解决问题。

四、说教法、学法。

课堂是学生学习的主阵地,真正做到把课堂还给学生,因而我采取的的教学模式定为:三先两主动,即让学生先说话、先动手、先总结,让学生主动提问、主动探索。学习方法:学生积极参与、大胆猜想、合作交流和自主探索。

五、说教学过程。

(一)创设情景,引入新课。

数学课标强调:“数学来源于实际生活”,为了体现这一思想,我设计了一个实际问题。这里只提供情境,刺激学生主动提出问题,因为“提出问题”比“解决问题”更重要。这个以生活实例创设的情境,不仅激发学生的求知兴趣,又为平方差公式的引人服务,更为说明平方差公式的几何意义做好铺垫。

(二)合作交流,探求新知。

首先,我用情境中一道题目,并再安排了两个练习,通过对特殊的多项式与多项式相乘的计算,既复习了旧知,又为下面学习习近平方差公式作了铺垫,让学生感受从一般到特殊的认识规律,引出乘法公式----平方差公式。

顺势鼓励学生用自己的语言归纳表述,总结出公式,从而提高学生的语言组织与表达能力。

然后,教师通过分析公式的本质特征使学生掌握公式,在认清公式的结构特征的基础上,

进一步剖析a、b的广泛含义,抓住了概念的核心,使学生在公式的运用中能得心应手,起到事半功倍的效果。

最后,用学生最喜欢的拼图游戏,引导学生从“形”的角度认识平方差公式的几何意义,再次验证了猜想。渗透了数形结合的思想,让学生体会到代数与几何的内在联系,引导学生学会从多角度、多方面来思考问题。

(三)巩固深化,内化新知。

总结出平方差公式后,我先设计两个简单练习题。通过练习,使学生加深对平方差公式结构特点的认识和理解,进一步掌握平方差公式的本质特征和运用平方差公式必须具备的条件。

然后设计了三个例题。例1和例2是教材上的内容,例3是我设计的一道实际问题。

例1有两道小题,其中设计第(1)题,然后学生完成。第(2)题学生板演,师生共同纠错。例2有两道小题,先让学生尝试练习,出错后教师及时纠正,使学生认识深刻。第一题体现了转化的思想和数式通性;另一题是平方差公式与一般多项式乘法的综合,强调不能用公式的仍按多项式乘法法则进行。

例3运用平方差公式解决实际问题,体现了数学来源于生活,服务于生活,学生感受到学习数学的价值,设计此题与平方差公式的几何意义相吻合,加深学生对平方差公式的理解。

(四)反馈练习,巩固新知。

练习题的设计有梯度,从基础应用公式入手,到拓展提高。加强基本知识和基本技能训练,使不同水平的学生学习都有收获,体现出“人人学有用的数学”。

在练习的基础上,教师归纳总结,提升学习理念。

(五)当堂练习。

这部分给出两类练习题。

设计意图(第一类题是完全平方公式的直接应用,通过实例,使学生进一步体会到完全平方公式中字母a,b的含义是很广泛的,它可以是数,也可以是整式)(第二道题直接给出一些同学的错误认识,强调错误原因并引导学生走出误区)。

(六)课堂小结。

设计意图:(让学生回想本节课的主要内容完全平方公式,教师再次强调并指出易错点和需注意的地方公式中项数、符号、字母及其指数。)。

(七)布置作业。

作业分必做题和选做题两部分。

设计意图:(必做题巩固本节课知识,让学生熟练应用公式。选做题为下节课的学习做铺垫,同时分层布置作业也满足了不同层次学生的要求)。

初中数学平方差公式教案篇十八

探索单项式除以单项式法则(出示投影1)计算下列各题,并说说你的理由1.xyx,(8mn)(2mn),(abc)(3ab).师生共同分析:此题是做除法运算,可以从两方面思考:根据除法是乘法的逆运算,将除法问题转化为乘法问题去解决,即()x=xy,由单项式乘以单项式法则可得(xy)x=xy,因此,xyx=xy.另外,根据同底数幂的除法法则,由约分也可得=xy.学生动笔:写出(2)(3)题的结果.教师板书:xyx=xy,(8mn)(2mn)=4n,(abc)(3ab)=abc师:以上运算是单项式除以单项式的运算,你能说说如何进行单项式除以单项式的运算?学生活动:小组讨论,教师引导学生从系数、同底数幂、只在被除式含有的字母三方面思考,讨论充分后,由一名同学叙述,其余同学补充纠正.出示单项式除法法则(投影显示)单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.

二、做一做。

三、随堂练习。

p401学生活动:让四名同学到黑板板演,其余同学在练习本上计算,同伴可交流,互相订正.教师巡回检查,对存在问题及时更正.待四名板演同学完成后,师生共同订正.

四、小结。

本节课主要学习了单项式除以单项式的运算.在运用法则计算时应注意以下几点:。

1.系数相除与同底数幂相除的区别;。

2.符号问题;。

初中数学平方差公式教案篇十九

2.注意培养学生分析、综合和抽象、概括以及运算能力.

教学重点和难点。

难点:用公式的结构特征判断题目能否使用公式.

教学过程设计。

我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子.

让学生动脑、动笔进行探讨,并发表自己的见解.教师根据学生的回答,引导学生进一步思考:

(当乘式是两个数之和以及这两个数之差相乘时,积是二项式.这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了.而它们的积等于乘式中这两个数的平方差)。

继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算.以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式.

在此基础上,让学生用语言叙述公式.

二、运用举例变式练习。

例1计算(1+2x)(1-2x).

解:(1+2x)(1-2x)。

=12-(2x)2。

=1-4x2.

教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么.

例2计算(b2+2a3)(2a3-b2).

解:(b2+2a3)(2a3-b2)。

=(2a3+b2)(2a3-b2)。

=(2a3)2-(b2)2。

=4a6-b4.

教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算.

课堂练习。

(l)(x+a)(x-a);(2)(m+n)(m-n);。

(3)(a+3b)(a-3b);(4)(1-5y)(l+5y).

例3计算(-4a-1)(-4a+1).

让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演.

解法1:(-4a-1)(-4a+1)。

=[-(4a+l)][-(4a-l)]。

=(4a+1)(4a-l)。

=(4a)2-l2。

=16a2-1.

解法2:(-4a-l)(-4a+l)。

=(-4a)2-l。

=16a2-1.

根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果.解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果.采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷.因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案.

课堂练习。

1.口答下列各题:

(l)(-a+b)(a+b);(2)(a-b)(b+a);。

(3)(-a-b)(-a+b);(4)(a-b)(-a-b).

2.计算下列各题:

(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);。

教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法.

三、小结。

2.运用公式要注意什么?

(1)要符合公式特征才能运用平方差公式;。

(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形.

四、作业。

(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);。

(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);。

2.计算:

(3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4).

初中数学平方差公式教案篇二十

2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,进行简单的开平方运算。

了解平方根的概念,求某些非负数的平方根。

了解被开方数的非负性;

1、我们已经学习过哪些运算?它们中互为逆运算的是?

答:加法、减法、乘法、除法、乘方五种运算。加法与减法互逆;乘法与除法互逆。

2、什么叫乘方?什么叫幂?乘方有没有逆运算?完成下面填空。

32=()()2=9。

(—3)2=()()2=。

()2=()()2=0。

()2=()。

02=()()2=—4。

3、左边算式已知底数、指数求幂,右边算式已知幂、指数求底数。

一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也叫做a的二次方根。

即如果x2=a,那么叫做的平方根。请按照第3页的举例你再举两个例子说明:

叫做开平方,平方与互为逆运算。

4、观察上面两组算式,归纳一个数的平方根的性质是:

一个正数有两个平方根,它们互为相反数;

零有一个平方根,它是零本身;

交流:(1)的平方根是什么?

(2)0.16的平方根是什么?

(3)0的平方根是什么?

(4)—9的平方根是什么?

一个正数a有两个平方根,它们互为相反数。

这两个平方根合在一起记作。

如果x2=a,那么x=,其中符号读作根号,a叫做被开方数。

这里的a表示什么样的数?a是非负数。

1、判断下面的说法是否正确:

1)—5是25的平方根;()。

2)25的平方根是—5;()。

3)0的平方根是0()。

4)1的平方根是1()。

5)(—3)2的平方根是—3()。

6)—32的平方根是—3()。

2、阅读课本第4页例题1,按例题格式判断下列各数有没有平方根,若有,求其平方根。若没有,说明为什么。

(1)0.81(2)(3)—100(4)(—4)2。

(5)1.69(6)(7)10(8)5。

本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?

1、检验下面各题中前面的数是不是后面的数的平方根。

(1)12,144()(2)0.2,0.04()。

(3)102,104()(4)14,256()。

2、选择题(1)0.01的平方根是()。

a、0.1b、0.1c、0.0001d、0.0001。

(2)因为(0.3)2=0.09所以()。

a、0.09是0.3的平方根。b、0.09是0.3的3倍。

c、0.3是0.09的平方根。d、0.3不是0.09的平方根。

3、判断下列说法是否正确:

(1)—9的平方根是—3;()。

(2)49的平方根是7;()。

(3)(—2)2的平方根是()。

(4)—1是1的平方根;()。

(5)若x2=16则x=4()。

(6)7的平方根是49。()。

1)812)0。253)4)(—6)2。

5、求下列各式中的x:

(1)x=16(2)x=(3)x=15(4)4x=81。

1、一个数的平方等于它本身,这个数是一个数的平方根等于它本身,这个数是。

2、若3a+1没有平方根,那么a一定。3、若4a+1的平方根是5,则a=。

4、一个数x的平方根等于m+1和m—3,则m=。x=。

5、若|a—9|+(b—4)=0,则ab的平方根是。

6、熟背1至20的平方的结果。

初中数学平方差公式教案篇二十一

本周x上午我听了x老师一节关于《运用平方差公式进行因式分解》的公开课,x老师以自己扎实的数学基本功,细致严谨的数学解题思路,灵活轻松的师生互动,为我们献上了一节优质的数学课。

x老师针对本章内容所要用上了前面的知识做了细致的.复习。实现了本章节知识点的联系与复习回顾,对接下去的学习做了很好的铺垫。

x老师通过求长方形的面积来引导学生探索、总结出运用平方差公式进行因式分解的法则,利用数形结合,让学生对这个法则的理解更深入,同时突破了难点,体现了以教师为主导、学生自主探究、讨论、合作交流的新课改理念。

x老师通过练习,让学生观察步骤,并做出总结。使学生加深了对知识的理解,学会观察,发现,总结知识。最后x老师还给学生编了个解题的顺口溜,既方便让学生记忆,又能巩固知识。

(1)整节课老师讲得多,学生个别回答较少。

(2)学生的讨论与合作学习还需加强,讨论问题还不够深入,应让学生从合作学习中有所提高,从与它人的交流中碰撞出思维的火花。

(3)还需加强的对知识点的认识,比如为什么要学升降幂,是为了结果的有序,数学的结果需要简洁有序。这样让学生很清楚,有目的的学习效果总是比较好的。

初中数学平方差公式教案篇二十二

方法2:

可还有其他方法,鼓励学生探究。

问题:这个大正方形的边长应该是多少呢?

大正方形的边长是,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?

建议学生观察图形感受的大小。小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究。

【本文地址:http://www.pourbars.com/zuowen/18565531.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map