初一数学下知识点总结 初一的数学知识点总结(精选11篇)

格式:DOC 上传日期:2023-12-13 19:38:03
初一数学下知识点总结 初一的数学知识点总结(精选11篇)
时间:2023-12-13 19:38:03 小编:书香墨

总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使我们思考,我想我们需要写一份总结了吧。那关于总结格式是怎样的呢?而个人总结又该怎么写呢?以下是小编收集整理的工作总结书范文,仅供参考,希望能够帮助到大家。

初一数学下知识点总结篇一

棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个多边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。棱柱用表示底面各顶点的字母来表示。

棱柱的底面:棱柱中两个互相平行的面,叫做棱柱的底面。

棱柱的侧面:棱柱中除两个底面以外的其余各个面都叫做棱柱的侧面。

棱柱的侧棱:棱柱中两个侧面的公共边叫做棱柱的侧棱。

棱柱是由一个由直线构成的平面沿着不平行于此平面的直线整体平移而形成的。

在棱柱中,侧面与底面的公共顶点叫做棱柱的顶点。

棱柱的对角线:棱柱中不在表面同一平面上的两个顶点的连线叫做棱柱的对角线。

棱柱的高:棱柱的两个底面的距离叫做棱柱的高。

棱柱的对角面:棱柱中过不相邻的两条侧棱的截面叫做棱柱的对角面。

斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱,画斜棱柱时,一般将侧棱画成不与底面垂直。

直棱柱:侧棱垂直于底面的棱柱叫做直棱柱。画直棱柱时,应将侧棱画成与底面垂直。

正棱柱:底面是正多边形的直棱柱叫做正棱柱。

平行六面体:底面是平行四边形的棱柱。

直平行六面体:侧棱垂直于底面的平行六面体叫直平行六面体。

长方体:底面是矩形的直棱柱叫做长方体。

我们学习的棱柱也包括了斜棱柱、直棱柱、正棱柱,连长方体也是棱柱的一种。

初一数学下知识点总结篇二

1.做好预习:单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。坚持预习,找到疑点,变被动学习为主动学习,能大大提高学习效率噢,兴趣是最好的老师嘛。

2.认真听课:听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点(记住预习中的疑点了吗?更要听仔细了),听例题的解法和要求,听蕴含的数学思想和方法,听课堂小结。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题,大胆猜想。记,当然是指课堂笔记了,不是记得多就是有效的知道吗?影响了听课可就不如不记了,记什么,什么时候记,可是有学问的哩,记方法,记技巧,记疑点,记要求,记注意点,记住课后一定要整理笔记。

3.认真解题:课堂练习是最及时最直接的反馈,一定不能错过的,不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆,很重要噢。

4.及时纠错:课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,审题出问题了吗?概念模糊了吗?时间紧没来得及?不会做吗?切忌不要动不动就以粗心放过自己(形成习惯可就麻烦了),如果思路正确而计算出错,及时订正,必要时强化相关计算的训练。概念模糊和审题出错都说明你的学习容易出现似懂非懂却还不自知的状态,这可是学习数学的大忌,要坚决克服。至于不会做,当然要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。

5.学会总结:大人们常说,数学是一环扣一环,这意思是说知识间是紧密相关的,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,学习的目的性,必要性,知识性做到了然于心,融会贯通,解题时就能做到入手快,方法直接简单,即使平时课堂上没练到的题型,也能得心应手,即举一反三。

初一数学下知识点总结篇三

1.同号两数相加,取相同的符号,并把绝对值相加。

绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

2.互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

4.减去一个数,等于加上这个数的相反数。

二、乘除法法则

1.两数相乘,同号得正,异号得负,并把绝对值相乘。0乘以任何数,都得0。

2.几个不为0的数相乘,积的符号由负因数的个数确定,负因数的个数为偶数时,积为正;负因数的个数为奇数时,积为负。

3.两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

4.有理数中仍然有:乘积是1的两个数互为倒数。

5.除以一个不等于0的数等于乘以这个数的倒数。

三、乘方

乘方定义:求n个相同因数的积的运算,叫做乘方。

底数是a,指数是n,幂是乘方的结果;读作:的n次方或的n次幂。

负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。

四、运算律及混合运算

1.加法交换律:a+b=b+a

1.加法交换律:a+b=b+a

2.乘法交换律:a·b=b·a

3.加法结合律:a+(b+c)=(a+b)+c

4.乘法结合律:a·(b·c)=(a·b)·c

5.乘法分配律:a·(b+c)=ab+ac

6.有理数混合运算顺序:先乘方;再乘除;最后算加减。

7.有括号,先算括号内的运算,按小括号、中括号、大括号依次进行。

8.同级运算,从左到右进行。

五、近似数

1.近似数:在一定程度上反映被考察量的大小,能说明实际问题的意义,与准确数非常地接近,像这样的数我们称它为近似数。

2.近似数的分类

(1)具体近似数(如30.2、58.0…)

(2)带单位近似数(如2.4万…)

(3)科学记数法

3.精确度:用位数较少的近似数替代位数较多或位数无限的数,有一个近似程度的问题,这个近似程度就是精确度。四舍五入到哪一位,就说精确到哪一位(看精确度得到原数中去看在哪一位上,如:2.4万精确到千位,而非十分位,因为2.4万就是24000,4在千位上)。

4.有效数字:对于一个不为0的近似数,从左边第一个不为0的数字起,到末尾数止,所有数字都是这个近似数的有效数字。

求近似数要求保留n个有效数字时,第n+1个有效数字作四舍五入处理。

例:0.0109有三个有效数字1、0、9,要求保留2个有效数字时,0.0109的第三个有效数字9四舍五入,变为0.0110,保留两个有效数字1、1后求出近似数0.0109≈0.011。

初一数学下知识点总结篇四

1、打好初中的基础。

数学的学习属于环环相扣,很多初中学习过的基础知识,到了开云KY官方登录入口 还会大量使用,所以升入开云KY官方登录入口 以后,葛艳波建议大家,如果初中数学基础太差,一定要想办法再弥补一下,不然会成为后续数学学习的绊脚石。

2、学习一定要有目标。

试想一下,一个学生学习数学没有一个明确的目标,哪来的学习动力?有了学习目标就有了学习动力,那么学生在课堂上就会精神饱满、热情洋溢,学生会身心健康。没有目标的学生,数学学习过程中完全属于被动式学习,效果很差。尝试给自己制定一些目标,比如下次考试考多少名,大学要考什么大学,每天要完成具体哪些任务,目标越明确、越详细越好。

3、学习要主动,不能被动式学习。

数学差生和优秀学生最大的差别,就是学习是主动还是被动。一定积极主动去参与学习,而不是被老师、作业逼着去学习。

返回目录


初一数学下知识点总结篇五

1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.

2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.

3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.

4.通分的依据:分式的基本性质.

5.通分的关键:确定几个分式的公分母.

通常取各分母的所有因式的次幂的积作公分母,这样的公分母叫做最简公分母.

6.类比分数的通分得到分式的通分:

把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.

7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。

8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.

9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.

10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.

11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.

12.作为最后结果,如果是分式则应该是最简分式.

初二数学复习方法总结

一、初中数学中考复习方法:

数学家华罗庚曾经说过:“聪明在于学习,天才在于勤奋”,勤能补拙是良训,一分辛劳一分才。

1.复习一定要做到勤

勤动手:做题不要看,一定要算,不会的知识点写下来,记在笔记本上。

勤动口:不会的有疑问的一定要问老师,时间不等人,在没有时间可以浪费。而且学会与同学讨论问题。

勤动耳:老师讲的复习课一定要听,不要认为这道题会,老师讲就可以溜号,须知温故可知新。

勤动脑:善于思考问题,积极思考问题——吸收、储存信息

勤动腿:不要参加过于激烈的运动,防止受伤影响学习,但要运动,每天慢跑30分钟即可,报至状态。

2.初中数学复习还要强调两个要点:

一要:动手,二要:动脑。

动脑就是要学会观察分析问题,学会思考,不要拿到题就做,找到已知和未知之间的联系,多问几个为什么,多体会考的哪个知识点。

动手就是多实践,多做题,要拳不离手曲不离口。同学就是题不离手,这两个要点大家要记住并且要坚持住。动脑又动手,才能地发挥大脑的效率。这也是老师的经验。

3.用心做到三个一遍

上课要认真听一遍:听老师讲的方法知识等。

动手算一遍:按照老师的思路算一遍看看是否融会贯通。

认真想一遍:想想为什么这么做题,考的哪个知识。

4.重视简单的学习过程

读好一本教科书它是教学、中考的主要依据;

记好一本笔记方法知识是教师多年经验的结晶,每人自己准备一本错题集;

做好做净一本习题集它是使知识拓宽;

没有宝典神功,只有普普通通。最最难能可贵的是坚持。

资源可以的话,找几套往届的期末考试题,是自己县区的,其他县区也可以(考点差不多一样的),在规定时间内,摸摸底,熟悉每个章节考的的题型,练练自己的做题效率。很多同学第一次做练习出错,如果不及时纠正、反思,而仅仅是把答案改正,那么他没有真正地弄明白自己到底错在什么地方,也就没弄明白如何应用这部分知识,最终会导致在今后遇到类似的问题一错再错。

将本文的word文档下载到电脑,方便收藏和打印

推荐度:

点击下载文档

搜索文档

初一数学下知识点总结篇六

单项式和多项式统称整式。

a)由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。

b)单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数,系数为1或-1。

c)一个单项式中,所有字母的指数和叫做这个单项式的次数(注意:常数项的单项式次数为0)

a)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。其中,不含字母的项叫做常数项。一个多项式中,次数最高项的次数,叫做这个多项式的次数.

b)单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数。多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.

a)整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.

b)括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。

(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

b)指数是1时,不要误以为没有指数;

d)当三个或三个以上同底数幂相乘时,法则可推广为

(其中m、n、p均为整数);

e)公式还可以逆用:

(m、n均为整数)

a)幂的乘方法则:

(m,n都是整数数)是幂的乘法法则为基础推导出来的,但两者不能混淆。

b)

(m,n都为整数)。

d)底数有时形式不同,但可以化成相同。

e)要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。

f)积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(ab)n=anbn(n为正整数)。

g)幂的乘方与积乘方法则均可逆向运用。

初一数学下知识点总结篇七

二元一次方程组

1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.

2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.

3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有解(即公共解).

4.二元一次方程组的解法:

(1)代入消元法;(2)加减消元法;

(3)注意:判断如何解简单是关键.

※5.一次方程组的应用:

(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;

(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.

一元一次不等式(组)

1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.

2.不等式的基本性质:

不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;

不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.

3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.

4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0).

5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.

七年级下册数学知识点

概率

一、事件:

1、事件分为必然事件、不可能事件、不确定事件。

2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。

3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。

4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。

二、等可能性:是指几种事件发生的可能性相等。

1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用p来表示,p(a)=事件a可能出现的结果数/所有可能出现的结果数。

2、必然事件发生的概率为1,记作p(必然事件)=1;

3、不可能事件发生的概率为0,记作p(不可能事件)=0;

4、不确定事件发生的概率在0—1之间,记作0

三、几何概率

1、事件a发生的概率等于此事件a发生的可能结果所组成的面积(用sa表示)除以所有可能结果组成图形的面积(用s全表示),所以几何概率公式可表示为p(a)=sa/s全,这是因为事件发生在每个单位面积上的概率是相同的。

2、求几何概率:

(1)首先分析事件所占的面积与总面积的关系;

(2)然后计算出各部分的面积;

(3)最后代入公式求出几何概率。

初一数学方法技巧

1.请概括的说一下学习的方法

曰:“像做其他事一样,学习数学要研究方法。我为你们推荐的方法是:超前学习,展开联想,多做总结,找出合情合理。

2.请谈谈超前学习的好处

曰:“首先,超前学习能挖掘出自身的潜力,培养自学能力。经过超前学习,会发现自己能独立解决许多问题,对提高自信心,培养学习兴趣很有帮助。”

其次,够消除对新知识的“隐患”。超前学习能够发现在现有的基础上,自己对新知识认识的不妥之处。相反地,若直接听别人说。似乎自己也能一开始就达到这种理解水平,实践证明,并非这样。

再次,超前学习中的有些内容,当时不能透彻理解,但经过深思之后,即使搁置一边,大脑也会潜意识“加工”。当教师进度进行到这块内容时,我们做第二次理解,会深刻的多。

最后,超前学习能提高听课质量。超前学习以后,我们发现新知识中的多数自己完全可以理解。只有少数地方需借助于别人。这样,在课堂上,我们即能将可以集中注意力的时间放“这少数地方”的理解上,即“好钢用在刀刃上”。事实上,一节课,能集中注意力的时间并不太多。

3.请谈谈联想与总结

曰:联想与总结贯穿与学习过程中的始终。对每一知识的认识,必定要有认识基础。寻找认识基础的过程即是联想,而认识基础的是对以前知识的总结。以前总结的越简洁、清晰、合理,越容易联想。这样就可以把新知识熔进原来的知识结构中为以后的某次联想奠定基础。联想与总结在解题中特别有效。也许你以前并没有这样的认识,但解题能力却很强,这说明你很聪明,你在不自觉中使用这种做法。如果你能很明确的认识这一点,你的能力会更强。

4.那么我们怎样预习呢?

曰:“先说说学习的目标:(1)知道知识产生的背景,弄清知识形成的过程。

(2)或早或晚的知道知识的地位和作用:(3)总结出认识问题的规律(或说出认识问题使用了以前的什么规律)。

再说具体的做法:(1)对概念的理解。数学具有高度的抽象性。通常要借助具体的东西加以理解。有时借助字面的含义:有时借助其他学科知识。有时借助图形……理解概念的境界是意会。一定要在理解概念上下一番苦功夫后再做题。

(2)对公式定理的预习,公式定理是使用最多的“规律”的总结。如:完全平方公式,勾股定理等。往往公式的推导定理的证明蕴含着丰富的数学方法及相当有用的解题规律。如三角形内角平分线定理的证明。我们应当先自己推导公式或证明定理,若做不成再参考别人的做法。无论是自己完成的,还是看别人的,都要说出这样做是怎样想出来的。

(3)对于例题及习题的处理见上面的(2)及下面的第五条。

初一数学下知识点总结篇八

要想学好初一数学,做一定量的题目是必需的,刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些初一数学辅导书上的课外习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的初一数学解题规律,熟悉掌握各种题型的解题思路。对于一些易错题,可备有错题集,写出自己错误的解题思路和正确的解题过程,两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中会充分暴露,故在平时养成良好的解题习惯是非常重要的。

很多初一同学对数学概念和公式不够重视,这类问题反映在三个方面:一是,对初一数学概念的理解只是停留在文字表面,对概念的特殊情况重视不够。二是,对初一数学概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。

当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了数学这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。

同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。

初一数学下知识点总结篇九

用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。

注意:(1)单个数字与字母也是代数式;(2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号;(3)代数式可按运算关系和运算结果两种情况理解。

1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中所有字母的指数的和叫做单项式的次数。特别地,单独一个数或者一个字母也是单项式。

2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数就是这个多项式的次数。

把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。

3.带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;

4.在代数式中出现除法运算时,按分数的写法来写;

5.在一些实际问题中,有时表示数量的代数式有单位名称,如果代数式是积或商的形式,则单位直接写在式子后面;如果代数式是和或差的形式,则必须先把代数式用括号括起来,再将单位名称写在式子的后面,如2a米,(2a-b)kg。

单项式的系数和次数,多项式的项数和次数。

1.单项式的系数:单项式中的数字因数叫做单项式的系数。

注意:(1)单项式的系数包括它前面的符号;

(2)若单项式的系数是"1”或-1“时,"1"通常省略不写,但“-”号不能省略。

2.单项式的次数:单项式中所有字母的指数和叫做单项式的次数。

(2)单项式中字母的指数为1时,1通常省略不写,在确定单项式的次数时,一定不要忘记被省略的1。

3.多项式的次数:多项式中次数最高的项的次数就是多项式的次数.

4.多项式的项数:在多项式中,每个单项式都叫做多项式的项,其中不含字母的项称为常数项。一个多项式有几项,就叫几项式,它的项数就是几。多项式的项数实质是“和” 中单项式的个数。

用含有数、字母和运算符号的式子把问题中的.数量表示出来就是列代数式。

正确列出代数式,要掌握以下几点:

(1)列代数式的关键是理解和找出问题中的数量关系;

(2)要掌握一些常见的数量关系如行程问题、工程问题、浓度问题、数字问题等;

(3)要善于抓住问题中的关键词语,如和、差、积、商、大、小、几倍、平方、多、少等。

一般地,用数值代替代数式中的字母,按照代数式中指明的运算计算的结果叫做代数式求值。

代数式求值的三种方法:1.直接代入求值;2.化简代入求值;3.整体代入求值。

常见考法

列代数式与代数式求值是中考的必考知识点,它涉及的知识范围广,可与实际问题(如乘车,购物、储蓄、税收等)相结合,特别的探索规律列代数式这类考题为中考命题者提供了广泛的空间,是近几年的热点,这类题通常是从一列数、一个数阵、一个等式、一组图形中,观察出规律,并尝试归纳出代数式或公式,再加以验证。

误区提醒

(1)列代数式时,由于审题不清,对条件理解不透,很容易搞错运算顺序而列错代数式;(2)求代数式的值,将代数式中字母用相应的数值后,代数式就变成了实数的混合运算。如果没有对实数运算掌握好,就会出现运算顺序搞错的现象。(3)在进行规律探索中,由于在审题中没有抓住问题的性质,常常得出不能完全反映全部规律的错误规律,出现以点概面,以偏概全的现象。

初一数学下知识点总结篇十

一、有余数的除法

1、有余数的除法的意义:在平均分一些物体时,有时会有剩余。

2、余数与除数的关系:在有余数的除法中,余数必须比除数小。的余数小于除数1,最小的余数是1。

3、笔算除法的计算方法:

(1)先写除号“厂”

(2)被除数写在除号里,除数写在除号的左侧。

(3)试商,商写在被除数上面,并要对着被除数的个位。

(4)把商与除数的乘积写在被除数的下面,相同数位要对齐。

(5)用被除数减去商与除数的乘积,如果没有剩余,就表示能除尽。

4、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。

(1)商:即试商,想除数和几相乘最接近被除数且小于被除数,那么商就是几,写在被除数的个位的上面。

(2)乘:把除数和商相乘,将得数写在被除数下面。

(3)减:用被除数减去商与除数的乘积,所得的差写在横线的下面。

(4)比:将余数与除数比一比,余数必须必除数小。

二、解决问题

根据除法的意义,解决简单的有余数的除法的问题,要根据实际情况,灵活处理余数

二年级上册数学第七单元练习知识点

一、填空。

1、时针走一个大格是()时,走一圈是()个小时。

分针走一个小格是()分,走一个大格是()分,走一圈是()分。

2、2∶10再过30分钟后是()时()分。

3、现在时间是上午7时45分,再过()分是8时正。

4、现在的时间是1∶57,再过3分是()。

5、()时整,时针和分针成一条直线;()时整,分针和时针重合。

6、现在是11时,再过2时是()时。

7、分针从6走到9,走了()分,时针从6走到9走了()时

8、钟面上时针指着8,分针指着12是()时整。

9、钟面上时针走过7,分针从12起走了30个小格,这一时刻是()时()分。

10、钟面上时针指着6,分针指着12是()时。这时时针和分针在一条直线上。

11、时针在9和10之间,分针指着7,是()时()分。

12、从上海开往南京的火车,甲车是6:50开,乙车是7:30开,()车开的早。

13、小军每天6:20起床,小青每天6:25起床,()起床早。

14、1时=()分1时-8分=()分

50分+40分=()时()分1时+15分=()分

1个半小时=()分1个半小时-20分=()分

二、填上合适的时间单位。

1、一节课的时间是40()。

2、小学生每天在校时间是6()。

3、看一场电影要2()。

4、工人叔叔每天工作8()。

5、从上海坐火车到北京要17()。

6、李勇从家走到学校要15()。

三、判断。

1、分针走一圈是1分。()

2、钟面上最短的针是分针。()

3、电子表上显示6:45就是6时45分。()

4、分针从一个数字走到下一个数字是5分钟。()

5、妈妈每天工作8小时。()

小学二年级的孩子如何学好数学?

1、数学入门越早越容易

现在数学在各种选拔以及小学六年级考试等方面越来越重要,很多家长希望孩子能够学习一些数学。对于今后希望在小学六年级中选择较好学校的学生,我们的建议是较早的学习相对是较好的。首先较早学习数学,数学的知识体系比较完整,不会存在六年级时还要补习三年级数学知识的情况。其次较早入门有比较充足的时间激发孩子对数学的兴趣,入门难度相对较低。

2、兴趣最重要,起点是关键

不少四五年级希望开始学习数学的学生,令人惊讶的是,这些学生中有相当一部分学生其实在低年级时曾经学过数学的,但因为当时学习听课效果不好便放弃了,到了高年级,迫于小学六年级形势又不得不学。对于这样的学生,学习数学是有一定阴影的,甚至有些学生抱定了自己不适合学数学的念头,有一定抵触心理。

所以既然家长决定低年级开始学习数学,一定要首先注意兴趣上的培养,帮助他们找到数学中引起他们兴趣的事情,比如数字游戏等等。

同时起点如果没有选好,孩子学得吃力,自然不会有兴趣,所以合适的课程选择也是家长要注意的。

3、一个好老师,一个好习惯

对于二年级的学生来说,兴趣和学习习惯的培养都是非常重要的。所以找一位孩子喜欢的老师就是学习的重中之重。一位好的老师能够让孩子迅速喜欢上课堂,以自己的人格魅力感染学生。在课堂上,老师不仅是孩子的是师长,也是孩子的朋友,和孩子们一起探讨问题,一起思考,使孩子们养成良好的学习习惯,在喜欢老师的同时喜欢数学。

-->

-->

-->

-->

初一数学下知识点总结篇十一

1.字母可以表示任意的数,也可以表示特定意义的公式,还可以表示符合条件的某一个数,甚至可以表示具有某些规律的数,总之字母可以简明的将数量关系表示出来。比如:a可以表示一个集合;f(x)表示x的函数等等。

【列代数式的定义】

【代数式的求值步骤】

1.用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.

2.求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.

1.同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫做同类项(lie ters)。

2.所有的常数项都是同类项。

【合并同类项】

1.合并同类项的定义:把多项式中的同类项,叫做合并同类项(unite lie ters)。

2.合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。

【去括号与添括号】

1.去括号法则:如果括号外的因数是正数,去括号原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

2.去括号是应该注意:

(1)去括号时,要将括号连同它前面的符号一起去掉;

(2)在去括号时,首先要明确括号前是“+”还是“-”;

(3)该变号时,各项都变号;不该变号时,各项都不变号。

添括号

添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.

【整式的加减运算法则(整式加减去括号)】

一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

【本文地址:http://www.pourbars.com/zuowen/19266016.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map